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Abstract—We consider the capacity of a narrowband point to point com-
munication system employing multiple-element antenna arrays at both the
transmitter and the receiver with covariance feedback. Under covariance
feedback the receiver is assumed to have perfect Channel State Information
(CSI) while at the transmitter the channel matrix is modeled as consisting
of zero mean complex jointly Gaussian random variables with known co-
variances. Specifically we assume a channel matrix with i.i.d. rows and
correlated columns, a common model for downlink transmission. We de-
termine the optimal transmit precoding strategy to maximize the Shannon
capacity of such a system. We also derive closed form necessary and suffi-
cient conditions on the spatial covariance for when the maximum capacity
is achieved by beamforming. The conditions for optimality of beamforming
agree with the notion of waterfilling over multiple degrees of freedom.

I. INTRODUCTION

The Shannon capacity of systems with MEA (Multiple Ele-
ment Antenna) arrays at the transmitter and/or the receiver has
attracted much research activity recently. With perfect chan-
nel state information at both the transmitter and the receiver the
( �������	� ) MEA array ( ��� transmit and �
� receive antennas) was
shown in [1] to consist of ��� min 
��	�����	��� Single Input Sin-
gle Output (SISO) non-interfering channels or eigenmodes. The
optimal transmit strategy in this case takes the form of a water-
fill over these modes. When the transmitter does not know the
instantaneous channel state perfectly, it is not possible to trans-
form the Multiple Input Multiple Output (MIMO) channel into
parallel non-interfering SISO channels and the required vector
coding across the antenna array significantly increases the com-
plexity of the system.

Recent work in [2], [3] and [4] on multiple antenna channel
capacity with partial Channel State Information at the Transmit-
ter (CSIT) has produced some interesting results. It was found
that unlike single antenna systems where exploiting CSIT does
not significantly enhance the Shannon capacity, for multiple an-
tenna systems the capacity improvement through even partial
CSIT can be substantial. Moreover, the numerical results in [2]
and [3] show that in some scenarios a beamforming transmis-
sion strategy achieves close to channel capacity. This is interest-
ing since beamforming corresponds to scalar coding with linear
preprocessing at the transmit antenna array and the complex-
ity involved is only a fraction of the vector coding complexity
for typical array sizes. For mean feedback, Narula and Trott
[2] point out that there are cases where the capacity is actually
achieved via beamforming. While they do not obtain fully gen-
eral necessary and sufficient conditions for when beamforming
is a capacity achieving strategy, they develop partial answers to
the problem for two transmit antennas. The capacity optimiza-
tion problem itself was recently solved by Visotsky and Madhow
in [3] for the cases of mean feedback and covariance feedback.

Their numerical results indicate that beamforming is close to the
optimal strategy when the quality of feedback improves (mean
feedback) or a stronger path is present (covariance feedback).
The general necessary and sufficient conditions for optimality
of beamforming with mean or covariance feedback are given in
[4].

Note that the solution to the capacity optimization problem
and the necessary and sufficient conditions for optimality of
beamforming in [2], [3] and [4] all assume a single receive an-
tenna with multiple transmit antennas. The solutions for the case
of multiple antennas at both the transmitter and the receiver have
not been obtained so far and form the main thrust of this paper.
Specifically, in this work we extend the capacity optimization
problem model in [3] to multiple receive antennas for the case of
covariance feedback and develop necessary and sufficient con-
ditions for optimality of beamforming.

The organization of this paper is as follows. The next section
describes the system model and introduces our notation. The
problem statement is presented in Section III. Section IV con-
tains the solution to the capacity optimization problem. Nec-
essary and sufficient conditions for optimality of beamforming
are derived in Section V. We conclude with a summary and a
waterfilling interpretation of the results in Section VI.

II. SYSTEM MODEL

We use the following notation: ��� �� 
���������� implies that
� is a complex circularly symmetric Gaussian with mean � and
variance �	� . �� "! and �#! $ represent the %'&�( row and the )*&�( col-
umn of a matrix � respectively. E[ � ] denotes the expectation of
random variable � . Lastly, s.t. is short for subject to.

We focus on a point-to-point communication system using
��� transmit and �
� receive antennas over a narrowband flat
fading channel. The channel matrix is represented as + �, -  .$0/21*3546187 where

-  9$:� �� 
";6��� � .$ � represents the channel gain
from transmit antenna ) to receive antenna % (Rayleigh Fad-
ing). It is assumed that the channel coefficients are available
to the receiver while the transmitter knows only the correlations<  9$�=0>�� E[

-  9$ -@?=A> ].
The ��� dimensional vector symbol �5
�BC�D� , �
EF
�BG� , � � 
�BC� ,HAHIH , �@187�
�BC�'/ � is transmitted at time instant B to yield the �
�

dimensional received vector JK
�BG� as

JL
�BG���M+N
�BG� �5
�BG��O ��
�BC��P (1)

The �	� components of AWGN ��
�BG� are assumed to be i.i.d.
�� 
";L��� � � and uncorrelated with the signals. For convenience

the time index B will be dropped in this paper.
Recall that in general for partial information Q at the trans-

mitter, codes need to be defined over an extended alphabet of



functions Q ��� where � is the input alphabet. However when
the CSIT is a deterministic function of the CSIR optimal codes
can be constructed directly over the input alphabet � [6]. For
our case since the receiver knows the channel perfectly, the spa-
tial correlations available to the transmitter are also available to
the receiver. Thus the CSIT is a deterministic function of the
CSIR and the capacity is easily shown to be� � �����	�
 trace � 	�
���� � 
��:��� (2)

where � 
�� ��� E

������������  163 O +!� +#"
� �

���� $ (3)

is the capacity with the input covariance matrix E
, � � " / �%� .

The capacity
� 
�� � is achieved by transmitting independent

complex circular Gaussian symbols along the eigenvectors of� . The powers allocated to each eigenvector are given by the
eigenvalues of � . Thus the capacity optimization problem in-
volves finding the optimum � to maximize

� 
��:� subject to the
transmit power constraint trace( � )= & . Consistent with [3] and
[7], we define beamforming as a transmission strategy where the
input covariance matrix � has rank one. Beamforming capac-
ity therefore refers to the maximum capacity

� 
�� � subject to
trace 
��:���'& and rank 
�� ���)( .

A key assumption for this paper is that the entries in a given
row of + are correlated while those belonging to different rows
of + are uncorrelated. More specifically we assume that the
rows of + are i.i.d. while the columns are correlated. This is
typical of the channel correlations obtained using the ’one-ring’
model employed by Shiu et. al. in [5]. The model is a ray tracing
model appropriate for a scenario where the base station (BS) is
unobstructed and the subscriber unit (SU) is surrounded by local
scatterers. A detailed description of the model is presented in
[5]. For our purpose it suffices to point out the following two
features of the correlations obtained using the one ring model:
1. E[

-  = -@? > /C� E
, - $�= -G?$�> ] for (+* %�� )�* �	���,(-*/.@�102* ��� . So

the rows of + are identically distributed.
2. The scatterers surrounding the SU impose random phase
shifts onto the waves incident upon them, decorrelating the fades
associated with any two distinct antennas at the SU. Thus, for a
wavelength 3 and an angle spread 4 (typical values range from
0.6 degrees to 15 degrees), the minimum decorrelating antenna
spacing at the receiver is just ;LP65�7�3 , while at the transmitter
it is 0.38 384:9 E for a broadside transmitting antenna array and
1.53 384;9 � for an inline transmitting antenna array. For GHz
frequency operation, these correspond to antenna spacings on
the order of centimeters for receive antenna array, meters for
broadside transmit antennas and hundreds of meters for inline
transmit antennas. So practical systems demonstrate strong cor-
relation between fades associated with different transmit anten-
nas on the downlink while the fades associated with different
receive antennas are fairly uncorrelated. This justifies our as-
sumption that the rows of + are uncorrelated. Since they are
jointly Gaussian, they are also independent.

III. PROBLEM DEFINITION

We address the following problems:

Problem 1 : Characterize the optimal input covariance matrix� that maximizes the Shannon capacity of our system given by
Equation (2) where the elements of + are all zero mean complex
Gaussians and + has i.i.d. rows and correlated columns. The
distribution of the %'&�( row of + is given by +  "!K� �� 
�<��>= �!?@%A@B ( �>C6� HAHIH ���	�AD .
Problem 2 : Find necessary and sufficient conditions on = for
beamforming to be the optimal transmission strategy, i.e. for the
optimal input covariance matrix � to have rank one.

IV. SOLUTION TO PROBLEM 1

With just one receive antenna, i.e. when + is just a row vector
distributed as + � �� 
�<��>= � , the optimal solution was shown in
[3] to consist of independent Gaussian inputs along the eigen-
vectors of = . We show that the same is true for our case even
with multiple receive antennas.

Let the eigendecomposition of = be given as = �FEHGJIKG�E "G
where ELG is a unitary matrix and IMG is a diagonal matrix con-
taining the eigenvalues of = arranged in decreasing order. We
assume that = has full rank so that 3 G E�EON 3 G��� N HAHIH N 3 G18761*7�P; . Our goal is to show that the optimal input covariance matrix
has a spectral decomposition � �QEAGJI 	 E "G . Equivalently we
wish to show that for the optimal � the matrix E "G �RELG is di-
agonal. Note that the optimum � may not have full rank, as is
typical of a water filling solution.

Define the matrix

�'�M+#ELGJI 9TSUG P (4)

So the % &�( row of � is given as �� "! � +  "!�E�GJI 9TSUG . Since the
rows of + are zero mean and i.i.d., so are the rows of � . Also,

since ELGJI 9TSUG is the whitening filter for the random vector +  "! ,
the covariance matrix of �� ! is given by the identity matrix. Thus
� consists of i.i.d. zero mean and unit variance complex Gaus-

sian elements. Substituting back + � �MI SUG E "G in the capacity
expression (2) we get� �/�����	 E V �W�X� �����  1*3 O �MI SUG E "G ��ELGJI SUG � "

� �
����� Y

s. t. trace 
�� ���'& P (5)

We define Z�[�\I SUG E "G ��ELG]I SUG . Note that since ELG is uni-
tary the non-negative definite matrices � and E "G ��ELG �I 9OSUG Z�+I 9OSUG have the same set of eigenvalues. Therefore we have

trace 
�� ��� trace 
^E "G ��ELG
��� trace 
_I 9OSUG Z�+I 9OSUG ��� (6)

and the capacity expression (5) can be rewritten as� � �����`	�
 trace �badc SUe `	 adc SUe 
��d� E V �W��� �����  1*3 O �fZ� � "
� �

����� Y � (7)

where the rows of � are independent and identically distributed
as �� "! � �� 
�<��  � . As stated earlier, our aim is to show that



this optimal E "G ��ELG is a diagonal matrix. Now, since I 9TSUG is
a diagonal matrix, this is equivalent to showing that the optimalZ� �/I SUG E "G ��ELGJI SUG is a diagonal matrix. Next we prove that the
optimal Z� that maximizes the capacity in (7) is indeed diagonal.

Let the optimal Z� have a spectral decomposition Z� � ZE ZI ZE "
where as before ZE is a unitary matrix and ZI is a diagonal matrix
of eigenvalues arranged in decreasing order. Since each element
of � is i.i.d. and zero mean and ZE is unitary it is easy to see
that � ZE � � , i.e. � ZE and � are identically distributed. This
implies that

E V �W��� �����  1*3 O �fZ� � "
� �

����� Y � E V �W�X� �����  1*3 O � ZI � "
� �

����� Y
So the diagonal matrix ZI achieves the same capacity as the op-
timal Z� . However note that Z� needs to satisfy the additional
constraint given by

trace 
_I 9OSUG Z� I 9TSUG ���'& P (8)

To complete the proof we need to show that if Z� satisfies the
trace constraint, then so does ZI . Now

trace 
_I 9OSUG Z�+I 9OSUG � �
187�
 � E Z�  2 3 G 2 � (9)

and trace 
_I 9 SUG ZIHI 9 SUG � �
187�
 � E Z3  2 3 G 2 � (10)

where Z�  2 , Z3  2 and 3 G 2 are the diagonal elements of Z� � ZI , and I G
respectively.

We need the following theorems in order statistics:

Theorem 1: For a Hermitian matrix � the vector of diagonal
entries

B��  2 D majorizes the vector of eigenvalues
B 3�� 2 D .

Proof: This is Theorem 4.3.26 in [8].

Recall that a real vector � � , �
 �/ @	� 1 majorizes another real
vector 
 � , 
G �/O@�� 1 if and only if the sum of the . smallest
entries of � is greater than or equal to the sum of the . smallest
entries of 
 for . � ( � C6� HAHAH ���
� ( and the sums of the entries
of � and 
 are equal. This is a mathematical way to capture
the vague notion that the components of a vector � are “less
spread out” or “more nearly equal” than are the components of
a vector 
 . Majorization is the precise relationship between the
eigenvalues and the diagonal entries of a Hermitian matrix. That
is, for any real vector � that majorizes another real vector 
 there
exists a Hermitian matrix with its main diagonal given by � and
its eigenvalues given by 
 .

Theorem 2: For any two given positive real vectors � �, �� "/"��
 � , 
@ "/�@�� 1 � the permutation � ? that minimizes the sum� 1 � E����������� � is such that ���! �  
 and 
@ are in the same order. That
is, ?@%��')�@ B ( �>C*� HAHIH ��� D � if ���! �  
#" ���! � $ 
 � then 
G " 
 $ P
Proof: Let the minimizing permutation be such that for some
%�� ) @ B ( �>C6� HAHIH ��� D8�$���! �  
%" ���! � $ 
 and 
G P 
K$ . We show

that this leads to a contradiction. Specifically, let

���  �  
'& (
K$ � (
@ )( " ���  � $ 
'& (
K$ � (
@ )(* ���! �  

K$ O ���! � $ 

@ " �+�! �  

@ O �+�! � $ 

 $ (11)

Thus the sum
� 1 � E �������,�� � can be reduced further by switching

the values of � ? 
�% � and � ? 
2)L� . Thus � ? can not be the minimiz-
ing permutation and we have a contradiction.
Theorem 3: If � � , �	 �/ �-
 � , 
G �/ and . � , .6 �/ @
� 1 � are three
vectors with components arranged in descending order, i.e. if��E N � � N HAHAH N ��1 , 
	E N 
 � N HIHAH N 
@1 and .@E N . � NHAHIH N .*1 , and if � majorizes 
 then the following is true:

1�
 � E �� .* N 1�

 � E 
@ .6 (12)

Proof: We outline the first two steps here. The rest of the proof
follows in an iterative fashion.�	1 N 
@1 * �	1.61 N 
G1.*1 (13)�	1 O/�	1 9 E N 
@1 O0
G1 9 E (14)* (.61 9 E 
1��1:O��	1 9 E0��O/�	1 & (.*1 � (.61 9 E!( N(.61 9 E 
2
@1:O3
@1 9 E0��O0
G1 & (.*1 � (.61 9 E!( (15)* �	1.61 O �	1 9 E.61 9 E N 
G1.*1 O 
@1 9 E.61 9 E (16)

Proceeding in this fashion we arrive at the desired result. Note
that (13) and (14) make use of the fact that � majorizes 
 .

Now we use these theorems to solve our original problem.

Recall that we need to show that the trace of I 9OSUG ZIHI 9TSUG is never

greater than the trace of I 9TSUG Z� I 9TSUG . Specifically we need to
prove the following:

187�
 � E Z�  2 3 G 2 N 187�

 � E Z3  2 3 G 2 (17)

where 3 G 2 and Z3  2 are arranged in descending order. Let � be a
permutation on the indices so that Z� � � E 
 N Z� � � � 
 N HIHAH N Z� � � 1 
 .
So then it follows from Theorem 2 that

187�
 � E Z�  2 3 G 2 N 187�

 � E Z� � �  
3 G  P (18)

Using Theorem 1 we have that the vector
B Z� � �  
 D majorizes the

vector Z3  2 . Combining this with the result from Theorem 3 we
get

187�
 � E Z�  2 3 G 2 N 187�

 � E Z� � �  
3 G 2 N 1*7�
 � E Z3@ 2 3 G 2 P (19)

This completes the proof and we conclude that the optimal in-
put covariance matrix that maximizes the capacity in (2) has the



same eigenvectors as the covariance matrix = of each row of
the channel matrix. Therefore the optimal transmit strategy is to
transmit independent complex Gaussians along the eigenvectors
of = . The powers allocated to each of the eigenvectors are given
by the diagonal matrix I 	 and need to be determined through
numerical optimization. The solution resembles waterfilling in
the sense that I 	 and IMG are both arranged in descending or-
der, i.e., stronger channel modes get allocated more power than
weaker modes.

V. SOLUTION TO PROBLEM 2

Now we turn our attention to deriving the necessary and suf-
ficient conditions for optimality of beamforming with multiple
transmit and receive antennas. Assume �5� N C . Starting with
� as defined in (4) and making the substitution � � EHG]I 	 E "G
in (5) we obtain� � ��� �a � 
 trace �ba � 
��d� E V �W�X� �����  1*3 O �MI SUG I 	 I SUG � "

� �
����� Y

� ��� �a � 
 trace �ba � 
��d� E V �W�X� �����  1 3 O 187�
 � E � !  � "!  3 G 3 	 � �

����� Y
Similar to the approach in [4], let us allocate power &���� to the
dominant eigenvector and � to the next strongest eigenvector.
This gives us a capacity of� 
��C���

E
� �W��� ���  163 O 
 & ���C���	� S ��
� S
� e S� U O����	� U ��
� U � eU� U ��� � (20)

In [4], for a single receive antenna the necessary condition
for optimality of beamforming was obtained from the inequal-

ity ��� � � 
� � ��� � ��� " ; and the condition was found to be sufficient

since the second derivative � U � ��� 
� � U was negative for all � . How-
ever, for multiple receive antennas the form of the capacity ex-
pression (20) does not lend itself easily to differentiation. So
instead, we use bounds to derive necessary and sufficient condi-
tions. We start with the necessary condition.

A. Necessary Condition

We use the following theorems.
Theorem 4: Let �:��� be Hermitian matrices, and let 3�� �, 3 � / � 3��N� , 3�� / , and 3 � � �N� , 3 � � � / denote the column vec-
tors in � 1 whose components are the eigenvalues of �:��� � and� O�� , respectively, arranged in increasing order. The vector3 � � � majorizes the vector 3 � O 3�� .
Proof: This is Theorem 4.3.27 in [8].

Theorem 5: If g: � � � � is strictly concave then the sym-
metric concave function �5
���� � � 1 � E�� 
��@ � is Schur-concave.
Recall that a real function �! � 1 � � is said to be Schur
concave if for all �	�#"'@ � 1 such that " majorizes � we have�5
$" � N ��
���� .
Proof: This is Theorem 3.C.1 in [9].

Returning to our problem let us define the Hermitian matrices

� �  1*3 O 
 & ���C� �#! E0� "! E 3 G E� � � (21)

� � � �#! � � "! � 3 G�� � P (22)

The �
� eigenvalues of these matrices, arranged in decreasing
order, are as follows:3 � � B 
 & �%��� � "! E �#! E>3 G E� � O/( � ( � ( � HAHAH � (�D8� (23)3 � � B � � "! � �#! � 3 G�� � ��;L��;6� HAHIH ��; D8P (24)

The capacity expression (20) now becomes� 
��C� � E V 1*3�  � E ����� 
�3 � � � � Y (25)

N E V 1*3�  � E ����� 
�3 � O 3 � � Y (26)

� E

�W���

 ( O�
 & ���C� � "! E � ! E>3 G E� � O�� � "! � �#! � 3 G�� � �� � > 
�����P (27)

Thus
� > 
��C� is a lower bound on the capacity

� 
��C� . We used
Theorems 4 and 5 to obtain (26) from (25). Note that

� 
";*� �� > 
";*� . This is crucial for the derivation that follows.
A necessary condition for optimality of beamforming is that�&� ��� 
� � ��� � ��� * ; . While it is difficult to obtain this deriva-

tive directly we can use the lower bound to obtain a neces-
sary condition. Since

� 
";*� � � > 
";8� and
� 
��C� N � > 
���� for� P ; , if �&� � � 
� � ��� � ��� * ; then we must have �&�	' � � 
� � ��� � ��� * ; .

Then a necessary condition for optimality of beamforming is�&� ' ��� 
� � ��� � ��� * ; .

Let us define (
E � � "! E �#! E (28)(
� � � "! � �#! � (29)

where E[

(
E ]=E[

(
� ]= �	� and

(
EI�
(
� are i.i.d. with distribution

given by �5
 ( ���*) �,+ 3 c S �� 1*3 9 E 
.-0/ 9 ) . Differentiating (27), rearranging
terms and integrating, we obtain the necessary condition as1 � >1 � ���� � ��� � E V � eU� U ( � � � e S� U ( E( O � � e S� U ( E Y * ;6�

which can be simplified as&R3 G�� � * (
�	�

(2 � U� � e S 3 1*3 /54 U687 e S
9 
 ($� �	��� � �&R3 G E � � (

�	� P (30)

Here
9 
1���-
�� �;:=<� � � 9 E / 9?>A@ � is the incomplete Gamma

function.

B. Sufficient Condition

To derive a sufficient condition for optimality of beamforming
we need an upperbound on the capacity expression (20). We
need the following theorem:



Theorem 6: If �:� � @ � 1 are n-dimensional column vectors
then

�  O/� � " O � � " � * �  O/� � " ���  O � � " � (31)
Proof: Note that � �-" and � � " are rank one matrices with the
nonzero eigenvalue given by � " � and � " � respectively. So the
right hand side of the inequality equals 
 ( O �R"�� �0
 ( O � "�� � .
The matrix � � " O � � " has rank at most 2. Let the nonzero
eigenvalues be 3	E and 3 � where 3�E N 3 � . So the LHS equals

 ( O 3	E �0
 ( O 3 � � . Equating traces we must have 3
E O 3 � �� " �DO � " � . Also, using the interlacing property of eigenvalues
of Hermitian matrices (Theorem 4.3.4 in [8]) we must have 35E N� " �:� � " � N 3 � . So the vector

B ( O 3	EI� ( O 3 � D is majorized
by the vector

B ( O � " �:� ( O � " ��D and the result follows (see
Problem 11 on page 199 of [8]).

With � and � defined as
� � � 9 � 
 � e S� �#! E and

� � � eU� � ! � , ap-
plying Theorem 6 to the capacity expression in (20) gives us the
following upperbound:� 
��C� * E

�����

 (�O 
 & ���C�

(
E 3 G E
� � ��O E

�����

 (�O�� ( � 3 G�� � �� ��� 
��C��� (32)

where

(
EI�
(
� are as defined in (28) and (29). Again note that

the upperbound
��� 
���� is equal to the actual capacity

� 
��C� for� � ; and
��� 
���� N � 
��C� for � P ; . This implies that if�&��� � � 
� � ��� � ��� * ; then �&� � � 
� � ��� � ��� * ; . Also it is easy to see that

the second derivative of
��� 
��C� is negative for �#@N
";L�1& � . Thus

a sufficient condition for optimality of beamforming is1 �	�1 � ���� � ��� � � E V � e S� U ( E( O � � e S� U ( E Y O E
,
(
� 3 G�� � /�* ; (33)

* E V (( O � � e S� U ( E Y * ( � �	�2&R3 G�� � (34)

* &R3 G�� � * (
�	� � (

�	� & � �&R3 G E ( 1 3 /54 U687 e S 9 
 ( � �	��� � �&R3 G E �
Figure 1 shows how the necessary and sufficient conditions di-

vide the 
 � � e S� U � � � eU� U � 1 space into regions where beamforming is
the capacity achieving strategy and where beamforming cannot
achieve capacity for two receive antennas. Also shown is the
necessary and sufficient condition for a single receive antenna
found in [4].

VI. CONCLUSIONS

We solved the capacity optimization problem for multiple
transmit and receive antennas when the rows of the channel
matrix are independent and identically distributed while the
columns are correlated. The optimum transmit strategy involves
transmitting independent complex Gaussian symbols along the
eigenvectors of the channel covariance matrix. We also deter-
mined necessary and sufficient conditions on the spatial correla-
tions for beamforming to be a capacity achieving strategy. As in


Note that �
� 
 is the dominant eigenvalue, so we are only interested in the

region ��� 
�� �
�� .

the single receive antenna case the optimality of beamforming
depends upon the total transmit power, noise variance, and the
two largest eigenvalues of the channel covariance matrix.

It is difficult to use the single antenna approach [4] directly
to solve the beamforming optimality problem for multiple re-
ceive antennas since the form of the capacity expression does not
lend itself to simple differentiation. Instead, we derived lower
and upper bounds on the capacity, and then used these bounds
to derive necessary and sufficient conditions for optimality of
beamforming. We find that even with multiple receive anten-
nas and imperfect feedback beamforming becomes the optimal
strategy as the eigenvalues of the channel covariance matrix be-
come more disparate, as the variance of noise increases, or as the
transmit power decreases. This is consistent with the notion of
waterfilling over multiple degrees of freedom. Multiple transmit
antennas add degrees of freedom. Beamforming corresponds to
using only one of these. If the returns associated with using each
degree of freedom are too disparate (this corresponds to strong
spatial correlation between the columns of the channel matrix),
or if the transmit power is too small, the waterfill covers only
the deepest (strongest) mode and all others are left dry - leading
to a beamforming solution.
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Fig. 1. Necessary and Sufficient Conditions for Optimality of Beamforming
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