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Abstract—In this paper, we study the optimum transmission
strategy of the multiple access channel in a cellular system
in which the base station has multiple antenmas. Recently,
scheduling algorithms incooperating both the physical and data
link layer were proposed e.g. in [1], |2], [3] for the multiple
antenna case, In this work, we study the scheduling in a SIMO
MAC under arbitrary ergodic fading. We assume that the
instantaneous channel vector realizations as well as the buffer
sizes of all mobiles are known at the base station. The base
station performs successive interference cancellation. We propose
the optimal scheduling policy. In order to get rid of the time-
sharing argument, we define a spatial capacity region in which
all rate topels are achieved by spatial maltiplexing only without
time-sharing.

Finally, we connect the capacity region of the SIMO MAC on
the physical layer with the stability region of the corresponding
queneing system on the data link layer. It is shown that all bit
arrival rate vector lying in the capacity region of the SIMO MAC
are achievable, too. All theoretical results are illustrated.

I. INTRODUCTION

In {4] it was shown that the optimum strategy for maximiz-
ing the sum rate of a cellular single-input single-output (SISO)
MAC is to allow only the best user to transmit at each time
slot. This is not valid for multiantenna systems. The result
in [4] has induced the notion of multiuser diversity, i.e. the
achievable capacity of the system increases with the number
of users. In addition to this, the result in [4] has led to the
development of opportunistic downlink scheduling algorithms
[5]. In general, the different mobiles have different rate re-
quirements depending on which service they use. The task
of fair scheduling algorithms it to guarantee the requirements
and to optimize the system throughput [6]. All users share
the same frequency band and-time slot, thus channelization
is uniquely performed in the spatial domain. Unlike single
user transmission, multiuser transmission should be jointly
optimized with the transmission powers. The transmission
powers can be chosen to optimize different criteria functions
like the sum capacity, SINR and rate requirements.

Recently, the so called cross-layer design was asked for
in [7] in order to optimize the scheduling schemes in future
communication systems. This lead to the development of
scheduling algorithms which take link layer as well as physical
layer parameter into account [3]. In [2], the optimal power
allocation and scheduling algorithm for stabilizing a number
of queues for fading channel which fulfill the Markovian
assumption,

We study a MAC with multiple antennas at the base station.
We assume that the base has perfect channel state information.
The base performs successive interference cancellation (SIC)
in order to achive capacity. From the physical layer view there
are two degrees of freedom for scheduling left, namely power
allocation and SIC order. In this work, we choose an objective
function which is different from the objective functions like
sum capacity [8], [9] or the average sum MSE [10]. Following
the cross-layer design, the bit-arrival processes from the link-
layer at the mobiles is taken into account. The contributions
of this work are the following:

1) We trim the familiar capacity region and get rid of
the somewhat problematic time-sharing argument. The
notion of spatial rate region is introduced which is
achievable alone with spatial multiplexing.

2) We propose an optimal scheduling policy which is
able to stabilize all bit arrival rate vectors which lie
inside the achievable spatial rate region. This scheduling
policy has got convincing properties, namely, the optimal
permutation order is directly given by the order of bit
arrival rates and the remaining power optimization is
shown to be convex.

The extension to the MIMO MAC is done in [I] and [11]. The
additional choice of transmit covariance matrices complicates
the scheduling algorithm.

11. SYSTEM MODEL, PRELIMINARIES, FIRST RESULTS AND
PROBLEM STATEMENT ’

In our system model in figure (1), we incooperate the data
link layer as well as the physical layer. This leads to the ap-
plication of quening theory on the link and information theory
on the physical layer. There are K users which participate in
the SIMO MAC.

The input buffer at the encoder of one user is filled accord-
ing to a bit-arrival rate ¢; [bit/s] of each bulk-arrival process
[12] which is given by

g =E[Li] A\

with average bit-size L; and packet arrival rate A;. The data
packets cannot be sent immediatley. As a result, we have a bit
arrival rate g; in front of the encoder. We denote by a;(n) the
number of arrived bits in time interval [(n — 1)T; nT.

In general on the physical layer, 2 number of K users with
bit arrival rate vector q = [g1,...,gx]| communicate with a
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base station which is equipped with n antennas at the same
time and in the same frequency range. The channel vector
realizations of the K users are given by h;,....hg as 1 xn
vectors. The received signal vector of size » x 1 at the base
station at some time point is given by

K
y= thxk +ng
k=1

with additive white Gaussian noise nx ~ CA(0,02I). Each
user has an individual power constraint py, ..., pr. We define

Dueue-System
Deiter

Coutrol Unit
Schedwling
Compulation

Fig. 1. SIMO MAC model: Cross-layer view of the physical and data link
layer and the proposed scheduler

The capacity region of this MAC is given by the set
of all rate vectors R which satisfy. [13] 5, Ry <
Iy; (x:)ies)(xi)igs) VS € 1,..., K. For the Gaussian MAC
with individual power constraints py,...,pg the capacity re-
gion reduces to

Cp.H) = {R: Z Ry < loga det (I+prkhfhk)

ke8 keS

VS C {1,.,.,K}}. (1)
The achievable rate region in (1) depends on the power allo-
cation p and the channel vector realizations H = [hy, ..., hg).
The capacity can be achieved by SIC [14]. With SIC the
decoding order is important to the different rates of the users.
For a fixed user ordering # and power allocation p we have
the rates

RT(p) = logzdet [I+ > pihf'hy
w{k)z=(l)

~—logzdet [ T+ Z pkhfhk
w(kY>=()

The rate vector R™(p} is then given by R™(p) =
[RT(P), ... RE(p)]T. We define the S-rate-region (spatial
MAC region)

S, (H,p) = {R: R < R;'(p)}. @)

Obviously, the S-rate-region is achievable, because for any rate -
point R there is a decoding order and power allocation which
achieves this rate point. We define the S-rate-region for all
power allocations and fixed order 7 as

S,(H,P} = U’J S"l'(p1H)
Zf-{:l pr=F

We define the S-rate-region for all possible permutations as

S(H,P)=|S~(H,P). @

(3

Obviously, one can define the ergodic capacities and the er-
godic capacity region analoguely to the instantaneous capacity
regions, i.e. the ergodic capacity region is given as the convex
hull (CO(-)) of all ergodic capacity regions over all power
allocations )

crspy=co| |J C“9H,p)

Ef:l pe=F

with ergodic capacity region for fixed power allocation

(1 +pY_pehff h,,)

=

CoI(p) = {R: ¥ Ri < Elogz det

kES

vS C {1,...,K}} (5)

In order to connect the information theoretic quantities
from above with the queueing theory, we need the following
definitions:

Definition 1: A scheduling policy is a general mapping
from the Cartesian product of the space of K channel vectors
h; € C"**! and the buffer size vector ¢ € RY to the
Cartesian product of the space of power ailocation vector
p € RY and the space of permutations II

9 : (xK,Cr ) x RE — <K RE x 1L

The function © provides tupels with a power allocation p and
a permutation 7.
Remark: The scheduling policy © depends on the channel
realization h and the buffer sizes q. It provides the power
allocation p and permutation . In order to satisfy a sum power
constraint the scheduling policy outputs power allocation with
ZiK=1 pi=F.

Definition 2: The system of bit queues at all transmitters
g1, ..., gk is stable, if for all ¢ € {1,2,..., K'} holds

Jim_gi(M) =0
with the overflow function
. 17t
g(M) = hixiigp Efo Vi m»>mdr

where the indicator function Iz takes the value 1 whenever
event F is satisfied, and 0 otherwise.
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Definition says, that the probability of infinite length of any
queue is zero. The next definition characterizes the stability
region D of the SIMO MAC. It is the queueing theoretic
counterpart of the capacity region from information theory.

Definition 3: The stability region D of the SIMO MAC is
the set of ali bit arrival rate vectors p = [p1, ..., px] such that
there exists a scheduling policy © which achieves stability of
all bit queues for all bit arrival rate vectors in D.

The following theorem characterizes the optimal scheduling
policy which achieves the largest possible stability region:

Theorem I: The spatial SIMO MAC scheduling policy de-
fined by

K

O(H,q) =arg max ';1 ar By (6)
achieves the stability region equal to the ergodic capacity
region.

This theorem is proved in [11]. It is further shown by a
converse of Fosters criterium [15, Proposition 5.4] that for all
vectors outside the ergodic capacity region the system becomes
unstable. Therefore, the scheduling policy in 6 is optimal with
respect to stability.

Starting from the optimal scheduling policy in 1, we con-
sider the following problem statements which are defined on
the basis of the S-rate-region-in (4).

Problem I: For given bit arrival rates q and channel realiza-
tion H find the optimum user decoding order and the optimum
power allocation, i.e.

Sept(Fiq.H) = max

)

For small SNR values only one user 1s allowed to transmit.
After solving the first problem, the ’best” user is characterized.
In contrast to the case in which the base station has only
one antenna {4], the gain by using multiple antennas is that
multiple users are allowed to transmit at the same time at
sufficient high SNR. The next problem asks about the SNR
range in which only one user is transmitting in order to
maximize (7).

Problem 2: For given rate requirements q and channe)
realization H find the SNR range in which only one user is
allowed to transmit, i.e. pye1y = P, Pa2) = - = Pr(zy = 0.
Furthermore, we are interested in the shape of the achievable
rate regions.

Problem 3: s the achievable region S, (H, P) in (3) con-
vex?

" ReS(H, 5k Z awh

1II. OPTIMUM USER ORDERING AND POWER ALLOCATION

The optimum ordering is characterized in the following
Lemma 1: For given rate requirements g the optimum de-
coding order 7 which maximizes ., gxFy is given by

Gn(1) 2 Gu(2) 2 - 2 In(x) > O- ®

Proof I: The capacity region S(P, H} in (4) is 2 bounded
and closed region. Therefore, it exists an optimum rate vector
RePt. A optimum user ordering w°F* and an optimum power
allocation p°P* belong to this rate vector R°P, It can be shown

that for all fixed individual power constraints p and fixed
permutations 7 the achievable rate region S(p,h,#) in (1)
is a polymatroid [16, Lemma 3.4]. Therefore, it follows by
[16, Lemma 3.2] that the maximum of Ek , @ Ry is attained
for the ordering in (8). If w°P* does not fulfill (8), we apply
the [16, Lemma 3.2} to the optimum power allocation p. This
leads to a contradiction.
O

Remark: The optimum decoding order is independent from
the actual channel vector realizations. The user with the
highest rate requirements is decoded last always.

In order to characterize the optimum power ailocation, we
present the following

Theorem 2: The optimization problem in (7) is concave
with respect to the power allocation p.

Proaf 2: We analyze the objective function with the opti-
mum ordering woP*

K
> anRe
k=1

K k
S g logy det (I +pY_ phf hz) (9

k=1 =1

k-1
~ i loga det (1 +p) b’ hf)

I=1

K K
= ¥ eilogadet (1 + pzp,h{fh,) )
k=1 =1

-~

o

withcr, =g — @1 forl £k € K -1 and cx = gk.
Observe that ¢, > 0 for all 1 < & < K. The term &, in (10)
is a concave function with respect to the power allocation p
for all 1 < k <€ K. The sum of concave functions is concave.
This completes the proof.
. 0

Remark: The result in Theorem 1 is somewhat surprising
because the corresponding rate region is neither convex nor
concave. The result in Theorem 1 allows to solve the optimiza-
tion problem in (7) by efficient convex programming methods
(173

In order to characterize the optithum power allocation we
define the following coefficients

K -1
ar(p) = cxhy (I + pZchthr) h{

=1

an -

Furthermore, we define the set of indices for which a given
power allocation has entries greater than zero

I(p) = (12)

The foilowing lemma provides a characterization of the
power allocation p which maximizes the objective function
in (7) for fixed optimum user ordering .

Lemma 2: A necessary and sufficient condition for the
optimality of a power allocation p is

{kel..nT):px >0},

{k‘q, ko € I(i)) = (y, = &, and ay»
k&€ Z(p < . 14
gI(Pp) < o< max o} (14)
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This means that all indices { which obtain some power py
greater than zero have the same a; = maxg[y,..q |- Further-
more, all other «; are less or equal to oy.

Progf 3: The Lagrangian of the power allocatlon problem
in (7} is given by

E’(pa My A) =

K K
- Z cr loga det (I + pZ ﬁgh{{hg)
k=1 =1
K K
—ZAIPJ —p (P“Zpk) .
=1 k=1

The first derivative of the Lagrangian in (15) with respect to
P: 1s given by
SL(p, 1t N) X -
P, i, _ . ‘LWH H
e = —poh (I+ plzzlmhz hz) h;
(16}

The Karush-Kuhn-Tucker (KKT) conditions for this optimiza-
tion problem are necessary and sufficient for the optimality
of power allocation p [17]. From (16), we have the following
KKT conditions

K -1
pesh; (I +pY phf hz) h¥

(15)

—Ak + u.

= p-AN1<i<K
=1
Mpr = 0 1£k<K
M 2 0 1<k<K
w = 0
T m > 0 1<k<K
K
P-3"p = 0. an
ka=1

The condition in (14) directly follows from the first KKT
condition in {17).
a

The single-user optimality range is characterized in the
following

Lemma 3: Assume that the rate requirements are ordered,
ie q1 2 gy > ... 2 gx > 0. For fixed rate requirements g
and channel realizations H, the SNR range in which only the
best user is allowed to transmit is given by

@[ f? — gof[ho]|?
? % hlhalf = [hF ] (18)
g2(|[hy[1?]|he]? = |[hihe|?)"

Progf 4: We have assumed that the rate requirements are
ordered, i.e. ¢4 > g2 > ... > g > 0. Hence, the optimum
decoding order is given by m = [1,2,.., K]. We allocate
power P — p to the first user and power p to the second user.
The sum of the weighted rates is given by

¢1 logg det (I + (Po;]”)hH hl)

(P-»p

n

Flp) = (19)

+¢3 logs det (1 + )hHh1 + —hHho) .

with ¢; = ¢1 — g2 and ¢3 = g2. A necessary and sufficient
condition for the optimality of only one user transmitting is

given by

6F(p)

T[g:(} < 0. (20)
The first derivative of F'(p) with respect to p is
§F(p) 1 o L vH 1 o w
T = —‘—T—?;clh] Ah1 - E62h2 Bhg - ECZhl Bh1
with

-1
A= (I + (Pa p)h”'h})

and
B=@+”
ol

The first derivative of F{p) with respect to p at the point p = 0
is given by

6F(p) |
§p =0

-1
E—Plyip, ¢ —hHh ) :

n

= aigclh{fch1 - Uich;hg Ch; —

b Tt
1 H
——chy Ch
o L !

4
=~ + gl o 2
plhfh |2
"1+ pf by
= ~alihl +glh|? +
+ogz (I [Pihz))? — by %) . Q1)
From (21) directly follows the inequality in (18). This com-
pletes the proof.

O

IV. CHARACTERIZATION OF RATE REGIONS

For simplicity, we consider the two user case. Let us assume
that we decode user one last. Let us solve the rate equation
of user one for p; and put the resulting p; (R;) into the rate
of user two. We obtain the rate of user 2 as a function of the
rate of user one.

h¥h, - hfh hi’h

- Ry 1.1 2 2. 1t

By(Ry)” = logsdet(1+2 ( i ) T2
1 h2 hy

oghihe s ) - R @2

It can be shown that the second derivative of Ry(R;) with
respect to Ay is for some other Ry smaller than zero and for
some Rj larger than zero. The function is neither convex nor
concave.

For the case in which SIC is applied, the problem of
the fulfillment of SINR requirements was solved in [18].
This problem differs from the problem in (7). At first, the
optimization problem which was solved in [18] is given by

m};n subject to g, < Ri{P) R € S(H,P) V1 < k < K. (23)

We compare the optimization problems in figure (2) for the
two user case.

995



et
:

Rate region ordering 2, 1

Maximum suin capacity line

te region ordering 1.2

» R,

Fig. 2. Illustration of fulfillment of rate requirements vs. proposed optimiza-
tion vs. time sharing rate region

Assume that the rate requirement point { = [¢;, g,] in figure
2 is fixed. The optimization in (23) provides the minimum
power which is needed to fulfill the rate requirements. in doing
so, the complete spatial rate region is considered (outer solid
line in figure 1). In this example, the rate requirement points
lies outside of the spatial achievable region and therefore the
power has to be increased.

By the rate splitting or time sharing argument the connection
line between all achievable points belongs to the achievable re-
gion, especially the line at which the sum capacity is achieved
(dashed line in figure 1). Hence, we obtain the convex achiev-
able region. In contrast, the proposed optimization problem in
(7) does not utilize the time sharing argument. Furthermore,
the optimization in (7) does not lead to rigorous fulfillment of
rate requirements but to maximized rates with respect to soft
weight factors in terms of the users requirements. Starting from
requirement vector [1,0] and decreasing the rate requirement
parameter for user one, the rates which solve (7) walk on the
solid line up to the sum rate point and jump (for g2 > ¢1) to
the other side and walk for increasing ¢ to the peint B; = 0.
This is illustrated in the pink line,

V. CONCLUSION

The SIMO MAC scheduling problem based on bit arrival
rates from link layer was solved. The optimal scheduling
strategy consists of choosing a SIC order of the users and
optimal pawer allocation, The SIC order is determined by the
bit arrival rate vector and does not depend on the channel,
The power allocation depends on the fading realization and
it is a convex optimization problem which can be solved
computational efficiently. The proposed scheduling policy is

optimal with respect to stability of the input buffer queues,
i.e. it stabilizes ail bit arrival rate vectors inside the ergodic
capacity region.
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