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Abstract— Game-theoretic formulations of the resource allo-
cation problem have existed for a while. However, the issue of
perfect knowledge continues to be a significant hurdle on the path
to realistic implementations. In this paper, the notion of playing
bandwidth allocation games is investigated under imperfect in-
formation. Specifically we look at the case of connection oriented
networks regulated by resource pricing. We devise a distributed
adaptive control strategy based on dynamic estimation in order
to cope up with the uncertainty of noise and delay. Simulation
results illustrate the scalability and accuracy of the algorithms
under multiple scenarios. Potential applications include teletraffic
and optical networks, as well as ad hoc wireless networks,
enabling users to partition bandwidth without the need of a
centralized synchronizing entity.

I. INTRODUCTION

Game theory has established itself to be an important tool
for analyzing the problem of resource allocation in computer
networks. The behavior of competing users in a shared en-
vironment comes under the aegis of noncooperative games.
When each user maximizes her profit given the strategies of
other users, the game settles down at the Nash equilibrium [1]
providing a stable operating point for network services. Flow
control and the related problem of congestion alleviation has
been analyzed using both cooperative [2] and noncooperative
flavors e.g. [3], [4]. In [5], the authors consider a Stackelberg
game in which users choose routes in a wired network after
the leader has chosen routes for its own traffic; in choosing,
the leader controls user behavior to optimize network utility.
In [6], the authors formulate a CDMA power data-rate control
games for which the equilibrium point is studied. Rate-based
flow control is also studied in [7]. Kelly in [8], [9] developed a
pricing framework based on explicit congestion feedback. [10]
examined TCP users in a wired Internet in a similar setting.

The existence of Nash equilibria in an environment popu-
lated by self-interested users rests on the assumption of perfect
information. This requires every user to be aware of the state
of all others at any point in time. Errors in measurement
coupled with delay in information propagation can violate this
condition. Users might also try to conceal their behavior so
as to deny competitors of any unfair advantage. Hence any
application of game theory based flow control strategies in a
real world setting would have to address the issue of imperfect
information. Alpcan et al. in [11] acknowledge the inherent

restrictions of implementing cost functions in Internet-style
networks and propose a scheme based on the variations in
queuing delay of the individual user. In contrast, we derive
our inspiration from optimal estimation based adaptive control
techniques for stochastic dynamical systems [12], [13]. An
analogous approach involving the Kalman filter was employed
by Alouf et al. in [14] for the on-line estimation of dynamic
multicast groups.

In this paper, we extend our bandwidth allocation model
developed for connection oriented networks in [15], [16] to
encompass an imperfect information regime, characteristic of
real world settings. We propose a distributed adaptive algo-
rithm to be used by each user to attain her desired optimum
in the presence of uncertainty. The instantaneous bandwidth
utilization observed while entering the network is employed
to infer the system state through recursive estimations. Users
then modify their arrival rates to maximize their individual
utilities. We also develop two variants of the original algorithm
to account for the curvilinearity of the input-output response.
These adaptive control schemes were simulated for making
comparisons of scalability and performance under various
system parameters. Results indicate the algorithms converge
even in the presence of uncertainty about the number of other
players and their strategies. Applications of this algorithm
include teletraffic, wireless and optical networks, enabling
users to partition bandwidth without the need of a centralized
synchronizing entity.

We use the following notation throughout this paper. Vectors
are represented by bold-face letters. If Λ is a vector, Λ(i)
represents its ith iterate, λi its ith component and λ a generic
component. Optimal entities are marked by an asterisk, for
example Λ∗.

The rest of the paper is organized as follows: In the next
section, we present a bandwidth allocation model to represent
user behavior in an optical network setting. We then develop
our observer based feedback control in section III. After
motivating a dynamic estimation algorithm in IV, we propose
our distributed adaptive control strategies in V. Simulation
results for different scenarios are presented in section VI. We
conclude by providing a summary and a discussion on future
work.
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II. BANDWIDTH ALLOCATION MODEL

We consider a loss network scenario where N users compete
for a finite amount of bandwidth K as expostulated in [15],
[16]. Each user has a utility function Ui(θ) which is maxi-
mized at an optimal bandwidth θ∗i . Requests for bandwidth
arrive as a Poisson process with rate λi. Queuing is not a
concern here as unfulfilled user requests depart the system
immediately. The behavior of competing users can then be
modelled as a noncooperative game wherein each player
strives to attain her optimal θ∗i by regulating her sending rate
λi. Under the assumption that total demand for bandwidth is
not greater than supply

∑N
i=1 θ∗i ≤ K, the mean bandwidth

allocated to the ith user is given by Little’s formula as

θi(Λ) =
λi

µi
(1 − E(ρ(Λ))). (1)

Here Λ is the user arrival rate vector [λ1, . . . , λN ] and µi is
the exponential service rate for user i. The traffic intensity
is defined as ρ ≡ ∑N

i=1
λi

µi
and blocking probability as

E(ρ,K) ≡ ρK/K!∑ K
k=0 ρk/k!

. As derived in [16], in a perfect
information regime where each user is aware of every other’s
sending rates, the user arrival rate vector converges to the non-
cooperative Nash equilibrium Λ∗

λ∗
i ≡ µiθ

∗
i

1 − E(ρ(Λ∗))
∀ i = 1, . . . , N (2)

The postulation of perfect information is often violated in
real networks. The requirement that all the players need to be
updated with the current information simultaneously places
an enormous onus on the system. A distributed version of
such an update protocol would involve O(N2) packets to be
exchanged. Centralized broadcast of updates can reduce this to
O(N) but at the cost of increased synchronicity. Propagation
and queuing delays cause staleness of information when user
behaviors are highly variable. Internet connections are very
often bursty and short lived thereby forcing us to examine the
less tractable imperfect information scenario.

III. FEEDBACK BASED RATE CONTROL

We now detail an observer based control scheme for the
bandwidth allocation model system defined above. Under im-
perfect information, each user i is aware of only her individual
tuple of variables - (µi, λi, θi(k)). While the service rate µi

is characteristic to the user, the mean bandwidth consumed
θi can be ascertained from its instantaneous value θi(k) at
the kth time step. Since the information about the available
bandwidth is obtained only when a new arrival enters the
network, the system is modelled using difference equations.
Each user sees the network as a dynamical system evolving
in time with ρ as the system state. She tries to estimate the
state using observations θi(k) which she employs to compute
an observer based feedback control λi designed to attain her
optimal bandwidth θ∗i . The effect of other users on the system
is modelled as noise which can be observed as perturbations

of ρ from the hypothesized value. The state equation thus
becomes

ρ(k + 1) = ρ(k) − λi(k)
µ

+
λi(k + 1)

µ
+ v(ρ(k)) (3)

where v(ρ(k)) is the state dependent noise. Note that the
noise is not statistically independent and hence cannot be
modelled as Gaussian. In the absence of estimation errors due
to uncertainty, the measured output can be related to the state
and control using (1). The user calculates her new feedback
control using the estimate of state ρ̂(k + 1),

λk+1
i =

αi(k + 1)θ∗i µi

1 − E(ρ̂(k + 1))
(4)

Since αi determines how fast each user tries to capture her
optimal bandwidth, it can be considered as an indicator of
user “aggressiveness”. We thus define

αi(k) ≡ 1 − (βi)k, 0 ≤ βi < 1. (5)

In a perfect information scenario, the user would eventually
attain her optimal bandwidth as limi→∞ αi = 1.

If the solution of the fixed point equation (2) is known to
all the users, the user rates get decoupled. Thus the players
move to the Nash equilibrium by the modified state equation

λi(k + 1) = λi(k) + η(λ∗
i − λi(k)), 0 < η ≤ 1 (6)

However in a decentralized game, each user is only aware of
the dynamics of his individual state and observer equations.
Thus the final equilibrium if attained may not be the Nash
Equilibrium Point (NEP) as above.

IV. DYNAMIC ESTIMATION

The key ingredient in calculating an observer based feed-
back control is the estimation algorithm which provides an
accurate estimate of the system state with minimal computa-
tional and storage requirements. The user collects observations
{θ(0), θ(1), . . . , θ(k)} which she employs to estimate the time
varying system state ρk. A recursive estimation procedure is
vital in reducing the observation history to be maintained at
each point in time. We make a first order approximation of
the relationship between the inputs and measured outputs by
assuming θ to be linear in ρ i.e θ(k) � h(k)ρ(k)+w(k) where
h(k) is the design parameter and w(k) is the unknown noise
value. Each user then strives to reduce her least squares error

L(ρ, k) =
1
2k

k∑

j=1

γk−j(θ(j) − h(j)ρ(j))2 (7)

for the weight 0 ≤ γ < 1. Eqn. (7) exponentially de-weights
past measurements indicating that greater importance is placed
on current measurements. L(ρ, k) is minimized by the classic
Recursive Least Squares (RLS) algorithm which produces a
time-varying estimate of the system state ρ [13] as

ρ̂(k) = ρ̂(k − 1) − Kk(λkρ̂(k − 1) − θ(k)) (8)

where Kk = Pkλ(k) and Pk = Pk−1
γ (1− P 2

k−1(λ(k))2

γ+(λ(k))2Pk−1
). The

algorithm is initiated with ρ̂(0) = 0, P0 � 0.
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Fig. 1. Comparison of measured and estimated outputs for 2 users.

V. ALGORITHMS

We detail three algorithms below which would then be
compared with respect to their convergence and accuracy
among others.

A. Original algorithm

This method estimates system state using (8) while the
control is calculated by approximating (4) as

λi(k + 1) =
αi(k + 1)θ∗i µi

1 − E(ρ̂(k))
(9)

We denote it as the “original algorithm”.

B. Logarithmic variant

In microeconomics, the relationship between an economic
output (y) and its inputs (x) is often described by a Cobb-
Douglas type of production function y = C

∏n
i=1 xai

i . Thus
there exists a linear relationship between the logarithmic val-
ues of input and output namely log y = log C+

∑n
i=1 ai log xi.

The correspondence between user inputs and observations for
a two player scenario was analyzed as follows. For symmetric
users, we collected multiple input-output data and computed
the exponents for equation θ = Cλa1

1 λa2
2 by least squares

fitting.
Fig. 1 illustrates the sup-norm of the error between the

measured and estimated outputs for various values of K. It
is clear that the input-output relationship can be approximated
by a log-linear one. The state estimation equation can then be
rewritten as

log ρ̂(k) = log ρ̂(k − 1) − Kk(λ(k) log ρ̂(k − 1) − log θ(k))

The time varying feedback control is computed using (9). We
denote the above algorithm as the “logarithmic variant”.

C. Newton-Raphson variant

Another approximation of (4) could be carried out by ignor-
ing the effect of the external noise v(ρ(k)) on the evolution
of system state. Thus

ρ(k + 1) = ρ̂(k) − λ(k)
µ

+
λ(k + 1)

µ
(10)

Substituting (10) in (4), we obtain

λ(k + 1) =
α(k + 1)θ∗µ

1 − E( ˆρ(k) − λ(k)
µ + λ(k+1)

µ )

The task of computing the new control thus reduces to finding
the root of g(λ(k + 1))

g(λ(k + 1)) ≡ λ(k + 1) − α(k + 1)θ∗µ

1 − E(ρ̂(k) − λ(k)
µ + λ(k+1)

µ )
.

We employ the damped Newton-Raphson method for this
purpose. Denoting δ(n) as the nth iterate of λ(k + 1) and
κ (0 ≤ κ < 1) as the damping coefficient, the iterations are

δ(n + 1) = δ(n) − κ g′(δ(n))−1g(δ(n)) (11)

where

g′(δ(n)) = 1 − α(k + 1)θ∗[((
K

ρ̂(k) − λ(k)
µ + δ(n)

µ

− 1)E(ρ̂(k)

−λ(k)
µ

+
δ(n)
µ

) + E2(ρ̂(k) − λ(k)
µ

+
δ(n)
µ

)]/(1 − E(ρ̂(k)

−λ(k)
µ

+
δ(n)
µ

))2

and

g(δ(n)) = δ(n) − α(k + 1)θ∗µ

1 − E(ρ̂(k) − λ(k)
µ + δ(n)

µ )

Starting from δ(0) = α(k+1)θ∗µ
1−E(ρ̂(k)) , we compute the successive

approximations of λ(k + 1) using (11). Termination of the
iterations is contingent on the condition of the error falling
below the tolerance threshold ξ i.e |δ(n+1)− δ(n)| ≤ ξ. The
“Newton-Raphson variant” thus estimates system state using
(10) and computes the corresponding control by (11).

VI. RESULTS

Computer simulation was employed to investigate the be-
havior of the algorithm under several scenarios. For ease
of analysis, the system considered was composed of a ho-
mogenous population of identical users. Unless mentioned
otherwise, the default values used throughout the simulation
were: θ∗ = 20, µ = 1, β = 0.1, P0 = 103, ξ = 10−3,
κ = 0.1. Each different scenario was executed for 1000 repe-
titions to obtain statistically significant results. For stochastic
optimization methods like the ones used above, measurement
noise makes it unrealistic to expect the algorithms to converge
to a single value. We thus employed the following stopping
criterion in our experiments. The algorithm is presumed to
have stabilized at iteration n when 10 successive values of the
system state are at most 0.1 apart from each other

|ρ(n) − ρ(n − j)| ≤ 0.1 ∀ 1 ≤ j ≤ 10

The maximum number of iterations until convergence was set
to 105 beyond which it was terminated and considered as not
converging.

The cardinal outcome of the experiments was the conver-
gence of the algorithms in a noisy environment, ruling out
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the occurrence of system instabilities such as oscillations and
finite time singularities. This is impressive considering the fact
that each user pursues her utility optimization oblivious to the
number of competitors or the algorithms adopted by them to
attain their objectives. Further the equilibria under uncertainty
are close to the Nash equilibrium in a perfect information
regime. Other characteristics of the algorithms are detailed
below.

A. Scalability

The scalability of an algorithm determines the speed at
which it stabilizes the system for increasing number of users.
The original algorithm does not scale well and does not
converge when the number of users are greater than 5. Further
as seen in Fig. 4, the number of iterations required for
convergence are two orders of magnitude more than the two
variants. This instability thus rules out its deployment in
a real world setting forcing us to exclude it from further
consideration. The logarithmic and Newton-Raphson variants
scale well with N and are compared in Fig. 2 indicating the
superiority of the former over the latter. The effect of other
users on the constitution of system state becomes prominent
as the number of users proliferate. This affects the validity of
assumption (10) and the scalability of the Newton-Raphson
version.
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Fig. 2. Iterations vs Number of users: Logarithmic and Newton-Raphson.

B. Accuracy

The effect of noise and delay in an imperfect regime is
to move the system away from the non-cooperative Nash
equilibrium. Hence a suitable metric to quantify the superiority
of the algorithms would be the deviation of their equilibria (Λ′)
from zero in the fixed point iteration of (2). Accuracy is then
quantified by computing the residuals ||Λ′ − F (Λ′)||∞

Fi(Λ′) ≡ µiθ
∗
i

1 − E(ρ(Λ′))
∀ i = 1, . . . , N

The error is proportional to the residuals and is depicted in
Fig. 3. The error values indicate that the variants provide
a reasonable approximation to the Nash Equilibrium point.

As opposed to the Newton-Raphson version, the logarithmic
algorithm displays increasing accuracy with respect to number
of users . This is due to the progressively better log-linear
approximation to the control-observation function as evident
in Fig. 1. The increasing accuracy leads us to suspect that the
logarithmic variant might asymptotically converge to the Nash
equilibrium under certain limits.
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Fig. 3. Error vs Number of users: Logarithmic and Newton-Raphson variants.

C. Effect of Aggressiveness on System Convergence

User aggressiveness is characterized by β as defined in (5).
It modifies the rate of user aggression as

dαi

dk
= −βk log(β)

Hence as it approaches zero, players try to attain their optimal
bandwidth more aggressively and in fewer time steps. The
effect of aggression on system convergence for the three
algorithms is shown in figs. 4, 5, 6. The number of iterations
required for convergence increase as the variants become
less aggressive, causing them to move slowly towards their
equilibrium points.
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Fig. 4. Iterations vs β, Original algorithm.
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Fig. 5. Iterations vs β, Logarithmic variant.
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Fig. 6. Iterations vs β, Newton-Raphson variant.

D. Impact of User Demand on System Convergence

User demand is characterized using ε defined as ε ≡ 1 −∑ N
i=1 θ∗

i

K . As we vary ε from 1 to 0, user demand approaches
the supply limit. We investigated the effect of ε on system
convergence for the Logarithmic variant and N = 2,5 and 10
users as illustrated in Fig. 7. The Newton-Raphson version
also displayed analogous behavior. As the demand for band-
width increase, it restricts the adaptability of each user. Any
slight perturbation in demand due to noise becomes amplified
slowing the convergence of the distributed algorithm.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the notion of playing band-
width allocation games under imperfect information. Specif-
ically we looked at the case of loss networks regulated by
resource pricing and devised a distributed adaptive control
strategy based on dynamic estimation. Simulation results il-
lustrated the scalability and accuracy of the algorithms under
multiple scenarios.

We are currently working towards extending our model to
incorporate adaptive pricing as a possible tool for network
control. The dynamic estimation algorithm may be enhanced
with nonlinear stochastic approximation techniques. The effect
of myopic user adaptation on global system behavior could
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Fig. 7. Iterations vs ε, Logarithmic variant.

have implications for adaptive algorithms like the myriad TCP
variants populating today’s Internet.
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