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Abstract— This paper examines the theoretical aspects of
bandwidth sharing in wireless, possibly mobile, ad-hoc networks
(MANETs) through a game theoretic framework. It presents
some applications to show how such a framework can be invoked
to design efficient media access control protocols in a non-
cooperative, self-organized, topology-blind environment as well
as in environments where the competing nodes share some basic
information to guide their choice of channel access policies. For
this purpose, contentions between concurrent links in a MANET
are represented by a conflict graph, and each maximal clique in
the graph defines a contention context which in turn imposes a
constraint on the share of bandwidth that the links in the clique
can obtain. Using this approach the fair bandwidth allocation
problem is modeled as a general utility based constrained
maximization problem, called the system problem, which is
shown to admit a unique solution that can only be obtained
when global coordination between all links is possible. By using
Lagrange relaxation and duality theory, both a non-cooperative
and a cooperative game formulation of the problem are derived.
The corresponding mathematical algorithms to solve the two
games are also provided where there is no need for global
information. Implementation issues of the algorithms are also
considered. Finally, simulation results are presented to illustrate
the effectiveness of the algorithms.

Index Terms— IEEE 802.11, Ad-hoc networks, Medium access
control, Fairness, Backoff procedure, Game Theory.

I. INTRODUCTION

Due to their ease of deployment, and a foreseeable wide
range of both commercial and military applications, mobile
ad-hoc networks (MANETs) are under extensive investigation
in the research community. A MANET is a network where
there are no centralized control units, and where any node
can serve as both a host as well as a router. MANETs are
usually self-organized and self-administrated networks where
the nodes can move about arbitrarily. In a nutshell, the
topology of MANETs is dynamic, and their architecture and
control are usually totally distributed, which gives rise to many
challenges in the design and implementation of protocols to
operate such networks. At the base of these problems lies
the fundamental problem of providing an efficient bandwidth
sharing mechanism between the potentially competing nodes.
Today, the so-called distributed coordination function (DCF)
introduced in the wireless LAN standard IEEE 802.11 has
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gained wide popularity and use in most performance studies
of routing protocols for MANETs. However, the DCF has
been shown to suffer from the fairness problem, caused by the
existence of hidden terminals and exacerbated by the adopted
binary exponential backoff algorithm to resolve contention.
Many schemes [1–6] have been proposed in the literature to
overcome this problem and provide better bandwidth sharing
between competing nodes. Some of these schemes [3–5]
depend on the sharing of link information between nodes
in the network, while others (e.g., [1], [6]) try to solve the
issue of fairness by maintaining topology-transparency. In
addition, some (e.g., [6]) are based on fully fledged scheduling
to provide short term guarantees, while others use random
access techniques with collision resolution to achieve long
term guarantees.

In MANETs, the link level bandwidth plays an important
role in QoS provisioning for end-to-end flows. If an end-to-end
flow crosses several hops in the link layer, then the bandwidth
that can be assigned to such flow is determined by the capacity
of the bottleneck link. Traditionally, in order to provide QoS
routing and be able to perform tasks such as admission control,
an end-to-end flow’s requested bandwidth is checked against
the link layer bandwidth hop-by-hop to find a feasible and
admissible path. Therefore, QoS routing relies on the ability
of the system in quantifying link layer bandwidth. While this
was not a major problem in traditional networks, it becomes
challenging problem in MANETs due to the volatile nature of
the network topology, and as a consequence to the variable
capacity of link layer bandwidth. To illustrate this, consider
the example in Fig. 1, and assume node F decides to establish
an end-to-end flow to node D. Initially link 5 is not established
since there is no traffic between node F and any of the other
nodes. If this flow is to be established, the nodes need not
only check the flow’s required bandwidth against the available
bandwidth on links 5, 2 and 3, but also whether establishing
link 5 is possible at all: due to the nature of random access
techniques such as CSMA/CA, link 5 would steal bandwidth
from all its surrounding links and would eventually lead to
violation of previously committed QoS guarantees on these
links.

QoS routing algorithms for MANETs proposed in the
literature (e.g., [7], [8]) sometimes directly use bandwidth as
the metric to achieve QoS routing, and assume the link layer is
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Fig. 1. Example of link layer wireless network

capable of providing such bandwidth without considering the
complexity of these assumptions. In addition, QoS support
frameworks and differentiated services frameworks such as
INSIGNIA [9] also utilize hop-by-hop link layer bandwidth
to check feasibility of routes and to reserve resources along
the paths. Todays MAC schemes for MANETs are not capable
of providing QoS. Therefore, it is very important to design
techniques and tools to study the effects of bandwidth sharing
principles on the QoS. Such tools will help guide the design
of media access techniques that provide a certain level of link
layer bandwidth guarantees.

The objective of link layer fairness schemes is to improve
the bandwidth of links that face more drastic competition
than some of their competitors. More specifically, given a
fair bandwidth sharing principle, such as max-min fairness,
proportional fairness and so on, link layer fairness is con-
cerned with designing the mechanisms that share physical
layer bandwidth among links optimally, where optimality is
defined by the bandwidth sharing principle under consider-
ation. It is important here to draw the readers’ attention to
the difference between this approach (link layer bandwidth
sharing) and classic bandwidth sharing problems studied in
the context of Internet communications using TCP. In the
latter problems, link bandwidth is well defined and links
are disjoint resources, in the former (i.e. wireless networks)
physical layer bandwidth is spatially continuous. Therefore
the constraints of the problem in wireless networks are more
complex than those in their wired counterpart. In this paper
we will concentrate our efforts on studying the problem of
sharing physical layer bandwidth between links rather than
sharing link layer bandwidth between end-to-end flows. Once
the former problem is solved, this latter problem becomes
the same as its counterpart in wired networks, which was
studied extensively in the context of the Internet, as the flow
control problem [10–12], the congestion control problem [13],
[14] and the resource allocation problem [15]. Therefore, in
the sequel, unless otherwise stated, when we refer to flows,
links or link-flows, we are mainly concerned with link layer
flows: that is one hop traffic flow between two nodes identified
by the pair sender-receiver. For example in the sequel “link
contention” and “flow contention” will bear the same meaning.

In this paper we will model the contention relations between
link flows as a flow contention graph and based on the
definition of a feasible frequency vector, the definition of
normalized clique capacity is introduced and its property in
a general flow contention graph is discussed. Based on this
analysis, the fair bandwidth allocation problem is modeled as a

concave utility maximization problem. With the help of classic
tools provided by the well developed convex optimization
theory, a non-cooperative game framework and a cooperative
game framework are developed, and distributed algorithms are
also derived from these frameworks. Existence and uniqueness
of the equilibria reached by the games are demonstrated. In
short, this paper proposes a unified framework for developing
non-cooperative or cooperative distributed algorithms based on
the problem formulation. The algorithms that can be derived
from the non-cooperative game framework do not need to
share local flow information between nodes, and each flow
monitors the channel status by itself to decide the course
of action. The algorithm derived from the cooperative game
framework only needs flow information sharing within one
hop. System wide fairness can be achieved under the control
of these algorithms.

The remainder of the paper is organized as follows: Section
II discusses the capacity of the flow contention graph and
introduces the model for the bandwidth allocation problem.
Section III introduces a non-cooperative game framework for
the system, proves the existence of a unique equilibrium for
the game, and proposes a distributed algorithm based on the
framework. Section IV discusses the algorithm derived from
solving the dual problem. Section V gives some simulation
results for both the non-cooperative and cooperative game
frameworks and numerical results for the cooperative game
framework. Finally, Section VI concludes the paper.

II. MODEL AND PROBLEM FORMULATION

In general, when studying the problem of fair bandwidth
allocation two approaches are available: the first one con-
sists of finding a schedule that achieves a given fairness
principle (without knowing the capacity of the network) and
the throughput achieved by such a schedule is taken as the
performance metric to measure how good the scheduling is;
the second approach consists of starting by estimating the
bandwidth then sharing this bandwidth between the nodes
subject to fairness constraints. In this paper we adopt the latter
approach to formulate the problem however when solving
the problem we revert to the former approach. Therefore in
this section, we first discuss the issues of network bandwidth
estimation, then based on this discussion, formulate the fair
bandwidth sharing problem in MANETs as a constrained
maximization problem.

A. Flow Contention Graph and Clique Capacity

In this paper, mobile nodes are assumed to possess only one
transceiver and cannot send and receive simultaneously. Nodes
mutually interfere with each other. Under these assumptions,
a MANET can be modeled as an un-directed graph, in which
the vertices represent the stations in the network, and the
edges between vertices represent data flows between these two
stations (i.e., an established link). From this so-called node
graph, we can construct another graph that captures all the
contention relations between the links of the network. In this
flow contention graph, a vertex represents an active flow/link,
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Fig. 2. Link contention graph and its decomposition in maximal cliques

and an edge between two vertices denotes wireless proximity
between two links: two links contend with each other when
either the sender or the receiver of one is within interference
range of the sender or the receiver of the other. In this paper
we do not take into account capture effect. An accurate flow
contention graph could be constructed based on the SIR model
as proposed in [16], which may be very difficult in reality. In
practice, if we want to construct the flow contention graph,
we can assume two nodes contend with each other if they are
within each other’s carrier sense range.

Fig. 2 shows the link-flow contention graph that corresponds
to the node graph of Fig. 1. In a flow contention graph, flows in
the same maximal clique cannot transmit simultaneously. For
example, in Fig. 2, flows 1, 2, 3, and 5 are in the same clique,
and cannot transmit simultaneously. For the same reason, flows
2, 3 and 4 cannot transmit simultaneously. However, flows 4
and 5 can be activated at the same time, since they belong to
different cliques. To capture these constraints on simultaneous
transmissions, a flow contention graph can be decomposed into
a set of maximal cliques. Each clique stands for a contention
context, therefore it can be treated as a “channel resource”
[1], [17]. Flows in the same clique share the capacity of the
clique. A flow may belong to several cliques. The principle
is that one flow can succeed in transmission if and only if
all flows that share at least one clique with this flow do not
transmit. Examining the problem from another viewpoint, the
flows that form an independent set of a flow contention graph
can transmit simultaneously. For flow contention graph G, let
I be the family of all independent sets of this graph. Schedule
S can be defined as an infinite sequence of independent sets,
I1, I2, · · · , Ik, · · · , where Ik ∈ I. The frequency of flow i in
schedule S is then defined as [18]:

fi = limt→∞

∑t
k=1 S(i, k)

t
,

where S(i, k) is an indicator function such that, S(i, k) = 1
if i ∈ Ik, and S(i, k) = 0 otherwise. For a flow contention
graph with N flows, a vector of frequencies f̂ = (f1, · · · , fN )
is feasible if there exists a schedule S such that the frequency
of the ith flow in schedule S is at least fi [17]. The frequency
of flow i can be treated as the normalized bandwidth allocated
to this flow in schedule S. Based on the definition of feasibility
of a frequency vector, we can introduce the definition of
normalized clique capacity as follows:

Definition 2.1: For a feasible vector of frequencies, the sum
of all the fair shares (frequencies) allocated to the flows in one
clique is defined as the normalized capacity of the clique.

However, given a vector of frequencies f̂ , verifying its
feasibility is a hard task. Since, according to the definition of
feasibility previously, we need to find a schedule that achieves
f̂ . It turns out that for a perfect graph 1, the definition of clique
feasibility is sufficient to justify the feasibility of the frequency
vector. A vector of frequencies (f1, · · · , fN ) is clique feasible
for flow contention graph G if

∑
i∈C fi ≤ 1 for all cliques

C in graph G. This definition shows that for a perfect flow
contention graph, the capacity of a clique can be normalized
to 1. However, this is not true for general graphs (including
non-perfect graphs). For example, in Fig. 3, if the capacity for
each clique is normalized to 1, then for the ring graph of size
5 (a non-perfect graph), each flow should obtain a capacity
of 1

2 according to the max-min fairness allocation criterion
[3]. However, scheduling the links according to a max-min
schedule on the ring allocates only a capacity of 2

5 to each link.
Therefore clique feasibility is only valid for perfect graphs.

For a general flow contention graph, Theorem 5, proved in
[17], states a general definition of feasibility (graph feasibility)
of a frequency vector. The theorem states that a feasible
vector of frequencies must be a convex combination of the
characteristic vectors of all independent sets of the flow con-
tention graph. This theorem shows that the set of all feasible
frequencies is a closed, convex and compact set. In addition,
it is shown in [17] that clique feasibility is equivalent to graph
feasibility if and only if the graph is perfect. According to the
Strong Perfect Graph Conjecture stated by Claude Berge in
the 60s, and which has been recently proved as a theorem by
Chudnovsty [19], a graph is perfect if and only if it has no
induced subgraph that is isomorphic to an odd cycle of length
at least 5 without chords (in graph theory terminology, an odd
hole), or the complement of such a cycle. Therefore if there are
odd holes in a flow contention graph, the capacity of any clique
that includes edges of an odd hole (or the components that can
be reduced to an odd hole) should be reduced (i.e., cannot be
normalized to 1). Let us take the contention graph in Fig. 4
as an example, the graph is non-perfect as it contains an odd
hole of size 5. The maximum clique size is 3 and all vertices
belong to cliques of degree 3. Therefore, clique feasibility
states that each node is assigned a normalized capacity of 1

3 .
However, we can show that no vertex can obtain a normalized
capacity of 1

3 under the max-min allocation, despite the fact
that no node is part of a maximal clique of size more than
3. The max-min fairness schedule in Fig. 4(b) shows that the
capacity of each maximal clique should be reduced to 6

7 .
In general, it is very hard to tell whether a graph is perfect

or not. Moreover, one can easily prove that global topology
information is required to perform such classification (an odd
hole can span the whole network). A practical algorithm for ad
hoc networks should depend at most on local information up
to a few hops. Hence, when we need to know the capacity
of a clique, we do not try to justify whether a graph is
perfect or not. A systematic reduction of the capacity of

1A graph is perfect if for all its induced subgraphs the size of the maximum
clique is equal to the chromatic number.
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all cliques leads to a tight lower bound on the frequencies,
guarantees a minimum throughput to each link, and has the
virtue of requiring very low complexity. On the other hand
the throughput of the network would be reduced by up to
1/3 in the worst case. Determining exactly by how much we
should reduce the capacity is out of the scope of this paper.
Notwithstanding this, using an early result of Claude Shannon
on edge colorability in graphs [20] cited also in [18] one
can show that if the capacity is reduced to 2/3 then clique
feasibility is sufficient to ensure feasibility in general graphs
without having to check the existence of odd holes. This bound
however becomes loose as the degree of the graph increases
(for example a clique of 101 vertices is colorable with 101
colors while the bound gives 150). As we will see later we do
not need to know the exact capacity of the cliques when we
adopt the non-cooperative game theoretic approach to solve
the problem.

B. Problem Formulation

We can formulate the bandwidth allocation problem in
MANETs based on the flow contention graph. For flow
contention graph G, assume the number of flows in the graph
is N . The set of flows is denoted as N= {1, · · · , N}. The rate
for flow i is defined as xi, i = 1, · · · , N . The set of maximal
cliques in G is denoted as M= {1, · · · ,M}. The capacity of
clique j is defined as cj , j ∈ M. One flow may belong to
several maximal cliques. These relations of belonging can be

described by matrix A as follows:

aj,i =
{

1, if flow i belongs to clique j , i ∈ N
0, if flow i does not belong to clique j , j ∈ M

The capacity constraints of the flows can therefore be
defined as:

Ax ≤ C (1)

where x = (x1, · · · , xN ) is the flow rate column vector and
C = (c1, · · · , cM ) is the clique capacity vector.

In addition, flow rates must take non-negative values:

xi ≥ 0, i = 1, · · · , N (2)

The set of flow rate vectors Ω that satisfy conditions (1)
and (2) is called a feasible set. The objective of the resource
allocation is to find a feasible flow rate vector that satisfies
some performance requirement, such as the fairness property.
According to [14], the concavity of a utility function can
guarantee fairness: if x1 > x2 and φ(x) is a strictly concave
function, then we have φ′(x2) > φ′(x1). When the system
wants to maximize the value of φ(x), a small value of x will
be favored. Therefore, if a strictly concave utility function of
the flow rates is defined and maximized, then the flow with the
smaller rate will be favored, which implies fairness. Following
this principle, defining a strictly concave utility function fi(xi)
for each flow, the objective of fair resource allocation in a
MANET can be described as:

maximize
N∑

i=1

wifi(xi) (3)

where wi(> 0) is a positive constant. The objective of
introducing wi(> 0) is to provide weighted fairness or service
differentiation. In general, each flow can use a different
utility function. However, if the flows choose the same utility
function, then wi can be treated as the user’s willingness to pay
[10]. According to (3), the flow with the larger value wi will be
favored, thus it can be used to achieve service differentiation.
In other words, this results in a weighted fairness, where wi

serves as the weight of flow i.
Equations (1),(2) and (3) form the system model of the

resource allocation problem in MANETs.

C. System Problem

Based on the above analysis, if we assume Q(i) to be the
set of cliques that include flow i, and S(j) be the set of flows
that form clique j, the resource allocation problem can be
formulated as a constrained maximization problem, which is
called system problem (primal problem) P defined as follows:

P : max
xi

∑
i

wifi(xi)

subject to:
∑

i∈S(j)

xi ≤ cj , j = 1, · · · ,M (4)

xi ≥ 0, i = 1, · · · , N
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To analyze this problem, let us first consider the feasible
set Ω. Since the constraints are linear inequalities, and flow
rates are non-negative and upper bounded by the capacity of
the clique, it can be shown that Ω is a nonempty, convex
and compact set. This is consistent with Theorem 5 proved
in [17], which confirms the correctness of the modeling.
Since the feasible set Ω is convex and compact, and by
construction, the objective function fi(xi) is strictly concave,
there is a unique maximizer for the maximization problem
[21]. However, though the objective function is separable in
xi, solving this problem requires coordination of possibly all
flows, which is not practical in MANETs. In order to derive
practical distributed algorithms, the relaxation of the primal
and dual problem of P are considered instead.

In this formulation, the utility function plays an important
role in the model, since it determines the targeted fairness ob-
jective. Let us consider some popular concave utility functions
that have been proposed in the literature. As discussed in [14],
a series of concave utility functions can be defined in terms
of flow rate x as:

fα(x) =
{

logx, if α = 1
(1 − α)−1x1−α, otherwise

(5)

The fairness property is determined by the parameter α. The
flow rate allocation will approach the system optimal fairness
as α → 0, to the proportional fairness as α → 1, to the
harmonic mean fairness as α → 2, and to the max-min fairness
as α → ∞.

III. NON-COOPERATIVE GAME FRAMEWORK

We have shown that system problem P has a unique
solution in its feasible set. However, in order to obtain this
solution, cooperation between all flows is required. This will
incur high communication overheads, which will reduce much
of the available bandwidth of the system. According to the
theory of convex optimization, by considering the Lagrange
relaxation and dual problem, distributed iterative algorithms
can be derived to solve the system problem.

In this section, the Lagrange relaxation of the system
problem is defined. According to the definition, each flow
maximizes its own utility function in a selfish way. Thus
this problem is further modeled as a non-cooperative game.
It is shown that under the control of the derived distributed
algorithm, the system will converge to the unique Equilibrium
point.

A. Framework

Now consider the Lagrangian of system problem P , we
have:

L(x,λ) =
∑

i

wifi(xi) + λt(C − Ax), (6)

where λ is a vector of Lagrange multipliers.
Based on the Lagrangian defined in Equation (6), the

Lagrange relaxation of system problem P can be defined as
follows:

Q : maxxi

∑
i

Vi(xi) (7)

where

Vi(xi) = wifi(xi) −
∑

j∈Q(i)

∫ xi

0

λj(v)dv, (8)

and λj = pj(
∑

i∈S(j) xi) is defined as a function of the total
flow rates on clique j, which is a nonnegative, continuous,
convex and increasing function.

Problem Q can be modeled as a non-cooperative game (the
basic concepts of game theory can be found in [22]), since
each flow maximizes its own payoff Vi(xi) in a selfish way,
we refer to it as the MAC game. In this game, the players
are the flows (actually the sender nodes of the links). The
strategy space for a flow is the range of the flow rate, which
is determined by the capacity of the cliques. The strategy for
flow i can be defined as U i = {xi|0 < xi <= Ci

max}, where
Ci

max is the largest capacity of cliques that include flow i. The
strategy space for the game is U = U1 × · · · × UN , which
is equivalent to the feasible set Ω. The payoff function is the
function Vi(xi), which is a mapping from U1 × · · · × UN to
R.

A non-cooperative game settles at a so-called Nash equilib-
rium if one exists. In the MAC game, a vector of strategies
u∗ ∈ U is called a Nash equilibrium if no player can increase
its payoff by adjusting its strategy unilaterally. The Nash
equilibrium point is important in practical terms because if
one exists, then the game will converge to the equilibrium
point and thus the stability of the system is guaranteed. As
for the MAC game, we can prove the following result:

Theorem 3.1: The non-cooperative MAC game admits a
unique Nash equilibrium in its pure strategy space.

The proof of Theorem 3.1 is given in the Appendix.

B. Distributed Algorithm Based on Non-cooperative Game
Framework

The non-cooperative MAC game admits a unique Nash
equilibrium. To reach this equilibrium, each player can change
its strategy at a rate proportional to the gradient of its payoff
function with respect to its strategy, subject to constraints
[23]. Based on this principle, a distributed algorithm can be
described as follows:

dxi

dt
= θ1 − θ2

1
f ′

i(xi)

∑
j∈Q(i)

λj(t) (9)

where

λj(t) = pj(
∑

i∈S(j)

xi(t)) (10)

The algorithm described by Equations (9) and (10) is a
generalization of the algorithm presented in [12]. Actually if

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



we let fi(xi) = logxi, then this algorithm reduces to that
described by (5) and (6) in [12]. Intuitively, the algorithm
requires that (the node controlling) the link increases its
rate proportionally to wi and decreases it proportionally to∑

j∈Q(i) λj(t). Here θ1 is the increase factor, and θ2 is the
decrease factor. As discussed in [12], the term λj(t) in (9) and
(10) can be thought of as if resource j generates a continuous
stream of feedback signals at rate pj(y) when the total flow
passing through resource j is y. It can also be explained as
defining the price for resource j is pj(y) when the total flow is
y. In short,

∑
j∈Q(i) λj(t) reflects the network status perceived

by flow i.
In the rate control problem or in the routing problem

for a wired network, the network status can be explicitly
obtained from network switches or routers or measured by the
end hosts. However, in order to develop topology-transparent
algorithms for ad hoc networks, the network status can only
be measured by the hosts. By adopting similar techniques as
in [12], [13], it can be proved that the system under the control
of the distributed algorithm defined by (9) and (10) is globally
stable, and the algorithm will lead the system to the unique
equilibrium point. In addition, the algorithm can be generally
treated as an additive increase multiplicative decrease scheme.
Therefore the convergence speed is relatively high, and is
determined by the two control parameters.

1) Implementation Issues: Equation (9) describes a general
framework for developing distributed algorithms for MANETs.
Intuitively, the framework tells us that each flow should adjust
its flow rate based on the channel status it perceives.

As mentioned, we are more interested in the link level
fairness in MANETs. In a real implementation, the sender
of each link is responsible of controlling the rate on the link.
Therefore each sending node is associated with a flow rate
control parameter for each link. In contention based MAC
protocols, the size of the contention window can be chosen as
the control parameter. Furthermore, according to (9), the key
components of the algorithm include:

• Utility Function: The utility function is determined by the
objective of the fairness requirement. There is a trade-
off between the fairness and the channel utilization –
viz., the globally fairer is the scheme, the lower the
channel utilization is. Besides the series of concave utility
function defined by (5), other types of concave utility
functions may also be adopted [24].

• Global Parameters: The increase factor θ1 and the de-
crease factor θ2 are system-wide parameters. The choices
of the value of θ1 and θ2 are determined by both the
adopted utility function and the type of feedback signals
we can obtain or infer from the network. In general, they
depend on the type of network under consideration and
should be chosen by simulations.

• Feedback Signals: A mechanism is necessary in order to
obtain the network status. To implement topology-blind
and totally distributed algorithms, in which flows are not
allowed to exchange any information with each other,
the network status can only be measured or estimated

by mobile hosts. For example, this can be the collisions
encountered by flow i (which has been used in [1]), the
service time or the queuing delay [14] for a packet, or
the number of successful transmissions during a period of
time as in [24]. In other words, the feedback signals imply
the contention status of flow i with all its competitors.

As we can see, in order to implement these algorithms, the
capacity of cliques is not required to be known in advance.
The fairness objective of capacity allocation is approached in
a selfish way.

Since the derived algorithms do not depend on any informa-
tion sharing, they are suitable for MANETs with highly dy-
namic topologies. If the topology remains static, and the algo-
rithm converges, the fairness objective can be achieved. When
there are nodes joining or leaving the network frequently, the
equilibrium point keeps changing, and the algorithm will track
this point. The transient time is determined by the convergence
speed of the algorithm, as well as the frequency of topology
changes.

Algorithm 1 Distributed Fair MAC

States:
ti
packet, current packet length.

ti
unit, 4 way handshake duration. This is already available

in 802.11 in the outgoing NAV calculation
ki, the time interval in terms ti

unit.
ti
p, current frame time interval as seen by node i.

ni, the number of successful transmission.
wini, contention window.

Events:
Init:

ti
packet = 0 and ki = 1.

ti
unit = tRTS + tCTS + tACK + 3 ∗ tSIFS+

tDIFS + ti
packet.

ti
p = ki ∗ ti

unit.
Arm timer TP with time ti

p.
Channel Access:

Use current contention window wini to access channel.
If ( successfully received ACK packet )

ni = ni + 1.
Update ti

packet.
Update ti

unit.
Timer Event: (upon expiry of TP)

if (ni > 1)
if ( wini == CWmax )

ki = ki − ni + 1; ti
p = ki ∗ ti

unit

else wini = 2 ∗ wini ;
else

if ( ni == 0 )
if ( wini == CWmin )

ki = ki + 1; ti
p = ki ∗ ti

unit

else wini = wini/2 ;
endif

endif
ni = 0, and ti

p = ki ∗ ti
unit.

Arm a new timer event TP with time ti
p.

2) FMAC as An Example: Following the non-cooperative
game framework, a family of practical distributed algorithms
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can be developed for MANETs. There are already some
protocols proposed in the literature that fit within this frame-
work. For example, a Proportional Fair Contention Resolution
(PFCR) algorithm has been proposed in [1]. In PFCR, the
objective function is the logarithm utility function, the channel
status is measured by collisions perceived by a flow. Simu-
lations show that PFCR achieves good proportional fairness.
In this part, we take the FMAC [24] that fits to the non-
cooperative game framework (refer to [24] for details) as an
example to illustrate the effectiveness and correctness of the
framework.

As discussed, the utility function can be a general concave
function. In the FMAC, assume the flow rate for flow i is
xi in a time interval of length ti, the objective function is
defined as −(xi × ti − 1)2, which is a general concave utility
function. Intuitively, the objective is trying to let each flow
transmit exactly one packet in a time interval ti whose length
changes with the load of the network or the contention context.
The number of transmissions in time interval ti serves as the
feedback signal and can be measured by each flow. Each flow
adjusts either its contention window or the time interval and
tries to approach the optimal value (0) of the utility function.
The algorithm is shown in Algorithm 1.

IV. COOPERATIVE GAME FRAMEWORK

By considering the dual problem of the system problem, a
duality-based distributed algorithm is derived in this section. In
order to solve the dual problem, each flow should construct its
local flow contention graph by collecting flow information up
to one hop away, and decompose this local contention graph
into a set of maximal cliques. Since in this scheme, every
flow obtains information about all its competitors, flows tend
to cooperate with each other. This fits into a cooperative-game
framework.

A. Distributed Algorithm Based on the Dual Problem

The Lagrangian of system problem P defined by Equation
(6) has a similar form as that in [11]. Following the analysis
methodology provided in [11], the dual problem of the system
problem can be defined as:

D : minλ≥0d(λ)

where

d(λ) =
∑

i

max(wifi(xi) − xi

∑
j∈Q(i)

λj) +
∑

j

λjcj (11)

In (11), the term λj can be assumed to be the cost per
unit of bandwidth in clique j, j ∈ M. When the total offered
flow rate in clique j is

∑
i∈S(j) xi, the cost of the bandwidth

in clique j is λj(
∑

i∈S(j) xi). Alternatively, assuming a fixed
price λj , the optimal value of the flow rate can be computed
by solving the following problem for flow i:

maxxi
(wifi(xi) − xi

∑
j∈Q(i)

λj). (12)

Since function fi(xi) is strictly concave, the unique maximizer
for problem (12) exists, and can be computed as:

x∗
i = f

′−1
i (

∑
j∈Q(i) λj

wi
). (13)

The goal of any distributed algorithm based on the dual
problem is to search for the optimal value of λj for problem
D. A vector of flow rates can be computed by each link using
(13) independently for a given value of λ. According to the
duality theory, the obtained vector of flow rates is the optimal
value of the primal system problem. The motivation of solving
the dual problem is that this can be done distributively on each
clique, given the local flow information, and hence a global
state information exchange is avoided.

1) The Gradient Projection Algorithm: In [11], a dis-
tributed algorithm based on the gradient projection method
has been proposed to solve the dual problem. If we treat
the clique as the link and the flow as the source in the
flow control problem, a similar distributed algorithm can also
be derived. This algorithm is called the Cooperative Game
Framework based algorithm (CGF), which should include
two components: the link algorithm and the clique algorithm.
However, since unlike in wired networks where the router
can execute the algorithm on behalf of its links (equivalent
to cliques) the clique is just an abstract concept that has no
real existence or control entity. Therefore the clique algorithm
should also be taken in charge by the link flows that belong to
the clique (i.e. distributively). The detail of the CGF algorithm
is shown in Algorithm 2.

According to Algorithm 2, Equation (14) is used for a clique
to calculate the new price. Intuitively, it implies the basic
requirement of supply and consume: if the total offered flow
rate is less (respectively more) than the capacity of the clique,
the price decreases (respectively increases).

It can be proved that under the appropriate value of a step
size, for any initial feasible flow rate x0 and price λ0

j , any
accumulation point (x∗, λ∗) generated by the algorithm is
primal-dual optimal. This conclusion shows that Algorithm 2
will lead the system to the primal-dual optimal point, which
is unique. Therefore, the system is globally stable. Define
Q̄ = maxi∈N |Q(i)| as the largest number of cliques that
contain the same link. Denote S̄ = maxj∈M|S(j)| as the
maximal size of cliques. Let δ̄ be the upper bound of function
−f ′′(x), then the range of the step size can be defined as in
[11]:

0 < γ <
2

δ̄Q̄S̄
,

In addition, the step size determines the convergence speed:
the larger the value of the step size, the faster the convergence
of the algorithm.
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Algorithm 2 Cooperative Game Framework based Algorithm
The algorithm is executed by each flow (the sender node) round by
round, and can be described in the following steps:

1) Initially, flow i chooses a feasible flow rate xi(0).
2) Flow i collects its local flow information, constructs its local

flow contention graph, and decomposes it into a set of cliques
Q(i).

3) Initial price λj(0) is set for each clique in Q(i). The initial
price is a global parameter of the system.

4) In round k, flow i calculates a new flow rate according to
Equation (13).

5) Flow i disseminates the new flow rate information to all
contending flows in one hop.

6) In round k + 1, clique j calculates a new price according to
Equation (14).

λj(k + 1) = max


0, λj(k) + γ(

∑
i∈S(j)

x∗
i − cj)


 (14)

where γ is the step size, cj is the capacity of clique j,∑
i∈S(j) x∗

i is the total flow rate of clique j in the previous
round.

7) If the flow contention graph has changed (e.g., due to mobility),
go back to (2), otherwise go back to step (4).

2) Implementation Issues: In order to implement this algo-
rithm practically, the following issues need to be considered:

• To be able to calculate the new price for a clique, each
flow needs to exchange the flow rate information with all
its contending flows. This can be done by periodically
broadcasting the flow information to all of the one-hop
neighbors. Each broadcast costs only one packet per link.
Eventually, since the wireless channel is a broadcast
environment, a gross time granularity implementation
may require nodes to periodically broadcast a single
packet that carries information about all the flow rates
under the node’s control.

• The local flow contention graph is reconstructed when-
ever the topology of the flow contention graph changes.

• The algorithm is synchronous. This can be done by
associating a round number with the flow information
in the broadcast message.

• As discussed before, the clique capacity should be re-
duced by a factor for all cliques to avoid the problem of
non schedulability (in the case of the max-min fairness).

Note that though the algorithm depends on the information
of the local flows, the algorithm can adapt to the dynamics of
the topology. Since if the local information is not correct or
complete, the calculated flow rate would not be optimal. Then
either collisions increase, or bandwidth utilization decreases.
However, if the running time of the algorithm in one round is
smaller than the time scale in which topology changes occur,
which is a very reasonable assumption when considering QoS,
then the flow rate will track the optimal value.

In a real implementation, the local flow information col-
lection algorithm is very important to the convergence speed
of the algorithm. The step size determines in how many

rounds the algorithm will converge provided no changes occur
in the topology. However, in each round, since the flow
rate information needs to be disseminated, the time to finish
this procedure determines how long the round is. In order
to accelerate the convergence speed, it is suggested to use
dual channel protocols where an under-loaded (high priority)
control channel can be used to collect flow information and a
data channel is used to vehicle data packets.

V. SIMULATION AND NUMERICAL RESULTS

Both the FMAC and CGF algorithm have been implemented
in NS2 [25]. In this section, some simulation results are
presented for these two algorithms. The numerical results are
also introduced to illustrate the effect of system parameters on
the CGF algorithm.

In order to investigate the performance of the CGF al-
gorithm, firstly the simulation and numerical analysis are
conducted on a simple scenario, which is shown in Fig. 5. In
addition, simulations for both the CGF and FMAC algorithm
are also conducted on a more realistic topology scenario
generated randomly. In the random scenario, 20 flows are
uniformly distributed in a square area of 1000×1000m2. The
flow contention graph of the random scenario is shown in
Fig. 6. In our simulations, the channel bandwidth is set to
11Mbps. Each source generates constant bit traffic with the
same rate R. The packet size is fixed and set as 1024byte. All
simulations are run to 400s, which is long enough to measure
the performance of the algorithms.

A. Cooperative Game Framework

For the CGF algorithm, the utility function introduced in (5)
is adopted. In our implementation, in order to make sure the
flow contention graph is consistent, the carrier sense range
is set to be the same as the transmission range, and the
flow contention graph is constructed accordingly. The dual
channel MAC is emulated over a single channel, by assigning
a higher priority to control messages. This is different from
adopting a pure dual channel and is expected to produce lower
performance than a pure dual channel model. The normalized
capacity of cliques have been reduced to 0.6, and all flows use
the same value of wi(= 1).

1) Numerical Results: In the numerical analysis, the topol-
ogy of the network is assumed to be static, and the local
flow contention graph has been constructed for each flow and
remains stable. For the simple scenario, Fig. 7(a) shows the
allocated normalized capacity against the time for different
step size. As we can see, the system converges under the
control of the CGF algorithm. It also shows that the larger
the step size, the faster the convergence. In Fig. 7(b), different
utility functions are used. The system converges under the
control of the algorithms with different utility functions. In
the equilibrium, the flow in the most competitive environment
(flow 2) are allocated more capacity under the harmonic mean
fairness (α = 2) than in the proportional fairness (α = 1).
This verifies the correctness of the algorithm.
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Fig. 6. The flow contention graph of the random scenario

2) Simulation Results: The simulation results for the simple
scenario are shown in Fig. 8 and 9. Fig. 8(a) shows the global
fairness index [26] of the network under the control of the
DCF and CGF with different fairness objectives (by adjusting
parameter α). It is shown that when the channel is not saturated
(flow rate is low), there is no fairness problem with the
network. When the traffic is high, the network faces the
fairness problem. The CGF algorithm can achieve the fairness
objectives. As seen from the figure, the larger the value of α,
the globally fairer the algorithm is. Note that when α = 1, the
fairness index of the CGF is smaller than that of 802.11 DCF.
However, if we calculated the proportional weighted fairness
index [2], as shown in Fig. 8(b), the system is fairer under
the control of the CGF algorithm. This shows that the system
indeed achieves the proportional fairness when α is set to 1.
Use the same approach, we can show that the system can
achieve the harmonic mean fairness when α is set to 2 and
so on. Fig. 8(c) shows the global fairness index evolves with
the time. As we can see the global fairness index converges,
which implicates the convergence of the system under the
control of both algorithms. Fig. 9(a) shows individual average
throughput. It can be seen that flow 2, which faces the most
competitive environment, achieves more throughput under the
control of the CGF algorithm. Fig. 9(b) shows while the CGF
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Fig. 7. Numerical results for the CGF algorithm (simple scenario)

achieves the fairness objectives, it does not sacrifice too much
aggregate throughput.

B. Non-cooperative Game Framework

Fig. 10 shows the simulation results for the random scenario
under the control of the FMAC algorithm compared with the
DCF and CGF algorithm. It can be seen from Fig. 10(a) that
the FMAC algorithm achieves much better global fairness
compared with the CGF and DCF. However it loses much
aggregate throughput, which is shown in Fig. 10(b). This
shows that there is a tradeoff between the fairness objective
and the aggregate throughput. Since the CGF algorithm aims
to achieve local proportional fairness, it still maintains larger
aggregate throughput, while meeting its fairness objective. The
global fairness index used is close to the max-min fairness and
therefore it is normal that when α increases the global fairness
increases as well. Fig. 11 shows how the fairness index evolves
with the time, and verifies that the system converges under the
control of the algorithms.
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Fig. 8. Fairness index (simple scenario)
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Fig. 9. Throughput (simple scenario)

Note that the DCF is not fair because the protocol does
not adopt a concave utility function approach. In the DCF,
the action of the binary exponential backoff is to reset the
contention window upon each success and to double it on
failure. The DCF behavior can be modeled by a game where
each node tries to maximize its own rate, which is a monotonic
non concave function. Therefore the node that is the most
immune to interference (hidden from its competitors) always
achieves a much higher rate than those of the others.

VI. CONCLUSIONS

In this paper, we have studied the problem of fair bandwidth
sharing between nodes at the link level in MANETs through a
game theoretic approach. A contention graph has been adopted
to capture the contention relations between links, and each
maximal clique is treated as a “channel resource”. The band-
width allocation problem has been modeled as a constrained
maximization problem, the primal problem. To guarantee that
the maximizer of such problem achieves the fairness property,
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Fig. 10. System performance (random scenario)
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Fig. 11. Convergence of the global fairness index (random scenario, R =
8192kbps)

the utility function has been chosen to be a strictly concave
function. To solve the primal directly, system wide cooperation
may be needed, which is not desirable. Therefore, by consid-
ering the relaxation of the primal, namely, the unconstrained
problem, a non-cooperative game framework has been derived.
It is proved that the non-cooperative game has a unique
Nash equilibrium. A distributed algorithm based on the non-
cooperative game framework has been proposed. It is shown in
the paper that the algorithm will lead the system to this unique
Nash Equilibrium. Another alternative, by considering the
dual problem, a distributed algorithm has been proposed. This
algorithm requires some local cooperation which translates
into the exchanges of link information between nodes up to
one hop in the flow contention graph. It has been shown that
the algorithm will converge to the optimal point of the primal
problem. Some examples of MAC protocols drawn from the
open literature have been used to show how they fit within one
of the two frameworks, and both simulations and numerical
results are given to illustrate the effectiveness and correctness
of the two frameworks.
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APPENDIX

The following results follow the proof methodologies pro-
vided in [13], [23].

Lemma 1: The feasible set Ω is a nonempty, convex and
compact set.

Proof: It has been shown that the feasible set of the flow
rate vectors can be described as:

Ω = {x|Ax ≤ C,x ≥ 0}
Define the maximal size (the number of flows in the clique)
of a clique as S̄, the minimal capacity of the clique as
Cmin. If each flow chooses the flow rate Cmin

S̄
, and let

x̄ = (Cmin

S̄
, · · · , Cmin

S̄
). It is obvious that x̄ is a feasible flow

rate vector. This shows that Ω is an nonempty set. Assume
the maximal capacity of cliques is Cmax. The flow rate of
each flow can not exceed Cmax. Therefore, the set Ω can be
bounded. Now Assume x1 and x2 are two feasible flow rate
vectors, we have

λx1 + (1 − λ)x2 ≤ A(λx1 + (1 − λ)x2) ≤ C

This result shows that Ω is a convex set. In conclusion, we
can see that Ω is nonempty, and it is a convex and compact
set.

With the help of Lemma (1), we can prove the following
result.

Theorem 1.1: The non-cooperative game MAC admits a
unique Nash equilibrium in its pure strategy space.

Proof: Lemma (1) shows that the strategy space for the
MAC game is a nonempty, convex and compact set. Consider
the objective function Vi(xi) for player i, we have:

V ′′
i (xi) = wif

′′
i (xi) −

∑
j∈Q(i)

λ′
j (15)

Since fi(xi) is strictly concave, we have f ′′
i (xi) < 0. And

λj is a convex function, therefore λ′
j ≥ 0. Based on these

two conditions, we can see from Equation (15) that V ′′
i (xi) <

0, hence Vi(xi) is a strictly concave function. According to
Theorem 1 in [23], these conditions are sufficient to insure
that the non-cooperative game admits a Nash Equilibrium in
its pure strategy space.

Now define a weighted nonnegative sum of the function
Vi(x) as

σ(x, r) =
N∑

i=1

riVi(x), ri ≥ 0 (16)

The pseudo-gradient of σ(x, r) can be defined as

g(x, r) =




r1 � V1(x)
r2 � V2(x)

...
rN � VN (x)




Denote Bij = ri
∂2V(x)

∂xi∂xj
. The Jacobian with respect to x of

g(x, r) can be computed as:

G




B11 B12 . . . B1N

B21 B22 . . . B2N

...
. . .

...
BN1 BN2 . . . BNN




where

Bij =




ri(wif
′′
i (xi) −

∑
k∈Q(i) λ′

k) < 0 j = i

−ri

∑
k∈P

∂λk

∂xj
< 0 j �= i, P �= ∅

0 j �= i, P = ∅
where P = Q(i) ∩ Q(j). It can be shown that matrix G

can be decomposed as the sum of a negative definite diagonal
matrix and a set of semi-negative definite matrices as in [13].
Therefore G is negative definite. It follows that G + Gt is
also negative definite for positive vector r(ri > 0). According
to Theorem 6 in [23], σ(x, r) is diagonally strictly concave.
Therefore according to Theorem 2 in [23], the equilibrium
point of the MAC game with respect to x is unique.
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