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Abstract

A storage model with self-similar input process is studied. A relation coupling together
the storage requirement, the achievable utilization and the output rate is derived. A
lower bound for the complementary distribution function of the storage level is given.
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1 Introduction

In a series of papers (e.g. Leland [8], Leland and Wilson [7], Fowler and Leland [4], Leland
et al. [9]), researchers from Bellcore have reported and analyzed remarkable Local Area
Network (LAN) traffic measurements challenging traditional data traffic modelling. The
Bellcore data are both very accurate and extensive in time, and their most striking feature
is the tremendous burstiness of LAN traffic at, practically, any timescale. More than that,
the statistical analysis has shown that the traffic is self-similar with a surprising accuracy

(see Leland et al. [9]).

Traditional traffic models based on the Poisson process or, more generally, on short-range
dependent processes, cannot describe the behaviour of actual LAN traffic as observed in
these measurements. Consequently, it becomes necessary to study storage systems with
long-range dependent input processes. The system considered in this paper is perhaps the
simplest of its kind.

In Section 2, we introduce a stochastic process V(t) as a model for the content of a stor-
age having self-similar input and being emptied at a constant rate. This is a continuous
model which does not describe the movement of individual packets, but it gives already
some new qualitative understanding of queueing phenomena in packet networks carrying
traffic originating from a large number of LANs. The simplicity of the model makes it also
mathematically attractive.



We present, essentially, two results for this model. A scaling law relating the storage re-
quirement, the service rate and the server utilization is derived in Section 3. A lower bound
for the complementary distribution function of the storage level is derived in Section 4.

Throughout this paper we denote by Z(t), t € (—o0,0), a normalized fractional Brown-
ian motion with self-similarity parameter (Hurst parameter) H € [%, 1). This process is
characterized by the following properties:

t) has stationary increments;
0) =0, and EZ(t) = 0 for all ¢;
Z(t)? = |t[* for all ¢;

has continuous paths;

distributions.

In the special case H = %, Z(t) is the standard Brownian motion.

Most of the results in this paper do not depend on the Gaussian character of Z(t) so that
they can be immediately generalized by replacing Z(t) by a more general self-similar process.

2 The fractional Brownian model

The object of our study is given in the following definition. The rest of this section is
devoted to explaining and motivating this model.

Definition 2.1 The stationary storage model with fractional Brownian net input is the
stochastic process V (t), where

V(t) =sup (A(t) — A(s) = C(t —s)), 1€ (—o0,) (2.1)

s<t

A(t) being the process
A(t) = mt 4+ \/amZ(t), t€ (—o0,00), (2.2)

and Z(t) a normalized fractional Brownian motion. The system has four parameters m, a,
H and C' with the following interpretations and intervals of allowed values: m > 0 is the
mean input rate, @ > 0 is a variance coefficient, H € [%, 1) is the self-similarity parameter
of Z(t), and C' > m is the service rate.

We start with some explanatory remarks on the definition. First, it should be mentioned
that although we have introduced a “traffic model” A(¢) and a constant leak rate C, it is



in fact mathematically relevant for V(¢) only that the net input process X (t) = A(t) — Ct
is of the form ¢; Z(t) — eot with ¢ > 0.

It is immediately seen that V/(¢) is indeed a stationary process. Its a.s. finiteness is shown
later in this section.

The formula (2.1) is similar to the well-known expression for the amount of work (or virtual
waiting time) in a queueing system with service rate C' and cumulative work arrival process
A(t). Benes [1] calls it “Reich’s formula”, referring to Reich [11]. Cf. also Harrison [5],
Section 2.2.

The choice of the process A(t) can be understood as an analogue to and a generalization
of a diffusion approximation for a Poisson process. Indeed, a Poisson process N(t) with
parameter m can be written in the form

N(t) = mt + M(1)

where M(t) is the martingale N(t) — mt. It is well known that (N(at) — amt)/\/am
converges towards the standard Brownian motion W(t) as & — oo (e.g., Theorem VIIL.3.11
of Jacod and Shiryaev [6]). This suggests the approximation of N(¢) by a diffusion process:

N(t) & mt + /mW(t). (2.3)

In the Brownian case f = 1 (with @ = 1 and C = 1), V(t) can thus be seen as a continuous
approximation of the M/D/1 queue. It is well known that this diffusion approximation
is asymptotically accurate as a heavy traffic limit. The definition (2.2) is obtained from
(2.3) by replacing the Brownian motion by a fractional Brownian motion and adding a
bit of flexibility with the constant coefficient a. The factor \/m is also motivated by the
superposition property presented in Proposition 2.2 at the end of this section.

Let us then review some basic properties of the fractional Brownian motion Z(t), defined
at the end of Section 1. This process was used for modelling purposes already in the 1960’s
by Mandelbrot [10], who also gave its name. From the stationarity of the increments and
the Gaussian property it follows that the finite-dimensional distributions of the process are
determined by the mean and variance functions (properties (ii) and (iii)). The continuity
assumption then completes the characterization of Z(t).

It is now easy to see that Z(t) is a self-similar process, i.e.
Z(at), t € R, is identical in distribution to o Z(t), t € R,

for every a > 0. Indeed, by the above remarks it is sufficient to note that EZ(at)? =
o E7(t)? for any t. As a general reference to self-similar processes, see, e.g., articles in
the collection Eberlein and Taqqu [3].

For ¢, < t3 < t5 < t4 we have

Cov (Z(t2) — Z(t1), Z(ta) — Z(t5))

— % ((t4 — tl)QH _ (t3 — t1)2H + (t3 _ t2)2H _ (t4 _ t2)2H> '



In particular,
r(n) =gt Cov (Z(1),Z(n+1)—Z(n)) = H2H — 1)n_2(1_H) + O(n_(B_QH)),

which shows that in the case H > 1/2 the increments of Z(t) are positively correlated and
the process possesses long-range dependence in the sense that Y 5° r(n) = oo. (Note that in
traditional traffic models the increments either are independent or have exponentially fast
vanishing correlations.)

One might wonder whether the so strongly correlated stationary sequence Z(n + 1) — Z(n)
(often called fractional Gaussian noise) is ergodic — non-ergodicity would be an unpleasant
feature by a traffic model! In fact, the ergodicity of the fractional Gaussian noise follows
from the general result that any stationary Gaussian sequence with continuous spectral
measure is ergodic and weakly mixing — see, e.g., Cornfeld et al. [2], Theorem 14.2.1.

The a.s. finiteness of the process V() defined by (2.1) follows now from Birkhoff’s ergod-
ic theorem. Indeed, we have lim;_.., Z(t)/t = EZ(1) = 0 a.s., which together with the
assumption m < C' implies that

lim (A(t) — A(s) = C(t—s)) = —o0 a.s.

S§——00

Many features of the fractional Brownian motion are different from those of most stochastic
processes usually appearing in traffic models. It is indeed far from being a Markov process,
and it is not even a semimartingale. Therefore, most of the standard methods of storage
theory are not applicable. However, some insight into the properties of our model, being of
great interest in teletraffic theory because of the empirical results mentioned in Section 1,
can be obtained by simple means, as will be shown in the two remaining sections. We close
this section by noting a superposition property of our traffic model, which is easily verified.

Proposition 2.2 Consider the processes A;(t),7 =1,..., K, defined as
Az(t) =m;t + w/mz-aZi(t), teR,

where the m;s are arbitrary positive numbers, ¢ > 0 and the processes Z;(t) are independent
fractional Brownian motions with a common parameter H. Then the superposition

A(t) = Z A(t)

can be written as A(t) = mt + /maZ(t), where m = YK m; and Z(t) is a fractional
Brownian motion with parameter H.

Proposition 2.2 shows that the roles of the three parameters of the traffic model (2.2) can
be separated so that H and a characterize the “quality” of the traffic in contrast to the long
run mean rate m which characterizes its “quantity” alone.



3 Scaling laws

Some interesting properties of the fractional Brownian storage model V(¢) can be deduced
from the self-similarity assumption alone. Let us first shortly consider V(¢) as a stochastic
process at different time scales.

Theorem 3.1 Consider a process V(t) with parameters m, H, a and C as in Definition
2.1, and let @ > 0 be an arbitrary number. Then the process V(at) is distributed like o
times the corresponding process arising from a fractional Brownian model with the original
arrival process but with service rate m + o' =7 (C — m).

Proof We have

V(at) = sup (A(at) —Alas) = C - (at — as))

s<t

= sslilt) (ma(t —-3s)+ \/%(Z(at) —Z(as)) — Cal(t — 5))

=@ o' sup(ma'~H(t — 5) + Vma(Z(t) — Z(s)) — Ca'~H(t = 5))

s<t

= o sup (A(t) —A(s) = (m+a"(C —m))(t - 5))7

s<t

where =4y means that the whole processes are similar in distribution. a

Let us then analyze the distribution of V(0) (recall that V(t) is a stationary process). A
typical requirement in a telecommunications application would be that the probability that
the amount of work in system exceeds a certain level x is required to be at most equal to a
“Quality of Service parameter” €. (The value  is the substitute for the size of the storage
in our infinite storage model.) Thus, the following relation holds at the maximal allowed
load:

e=P(V>uz). (3.1)

Equation (3.1) can also be interpreted as defining a storage requirement x. Further, it
defines a hypersurface in the space of system parameters, separating the allowed parameter
combinations from unallowed ones. Now, the self-similarity of Z(¢) allows for deriving from
(3.1) a more explicit relation between the design parameters z (storage requirement), C
(service rate) and p = m/C (utilization) at the critical boundary. As an application, this
result gives us some insight into the management of teletraffic with long-range dependence.

Theorem 3.2 Assuming (3.1), the following equation holds:
L—p  ~m-tym _a-mym :
—C cx = const, (3.2)

where the constant at the right hand side depends on H, @ and € but not on p, C or x.



Proof Note first that V(0) is distributed like its time-reversed counterpart sup,~q(A(t) —
Ct). Consider now the function

i(a.8) = P (sup(2(0) = 30) > 2.
>0
By the self-similarity of Z(t) we have

e, 9) = P (spl2( ) = 21> o) = ol T ),

>0

so that

where the function

>0

fly)=q(ly)="P (sup(Z(t) —yt) > 1)

is obviously strictly decreasing for y > 0, f(0) =1 and f(o0) = 0. Thus we may write

>0 vam vam

() ), s

Substituting p = m/C we obtain the desired equation

e:P(V>:c):P<sup[Z(t)—C_mt] g )

1—0p 1 _ _
S CCH=H L O=H)H — g1/ CH) g e). (3.4)

In the Brownian case H = 1, (3.4) reduces to

Ll & = const. (3.5)
P
In this traditional case (a heavy traffic approximation of the M/D/1 queue) we may roughly
say that reducing the relative free capacity 1 — p by half costs doubling the storage size.
The service rate ' has disappeared from the equation, which means that it has nothing to
do with relative utilization.

With H > 1/2 the situation is different. Let us first fix C' and solve the storage requirement
x as a function of p:

z = z(p) = const - pt/CA=H) (1 _ p)=H/(A-H) (3.6)

It is seen that when H is high (the Bellcore measurements mostly give for H values in the
region (0.8,0.9)), a substantial increase in utilization, say again halving the free capacity,
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requires a tremendous amount more storage space. Thus we have a new argument for the
widely accepted view that for connectionless packet traffic the utilization factor cannot be
practically improved by enlarging the buffers more and more.

Now, however, the absolute service rate C' also effects the relative utilization p. Fixing x,
we can solve C from (3.4) and get

C = C(p) = const - p/FH=1) (1 - p)_H/(H_%). (3.7)

The important practical consequence of equation (3.7) is that transmission links with higher
capacity can be used with higher utilization without increasing the buffers. The intuitive
reason for this is the improved multiplexing efficiency. (Note that by Proposition 2.2, “in-
creasing the amount of traffic” means increasing the parameter m, or p = m/C.)

4 A lower bound for the storage level

The following theorem gives a lower bound for the complementary distribution function of
the fractional Brownian storage process. This bound turns out to be asymptotically (in a
logarithmic sense) exact for the Brownian model, but we have, regrettably, no estimate for
its accuracy in the general case. In this section we keep the service capacity fixed, choosing
the units so that ' = 1.

Theorem 4.1 Let V(t) the stationary process of Definition 2.1. Then

P040>$>25(v%%-C;fUH<1fH>PH), (4.1)

where ®(y) = P (Z(1) > y) is the residual distribution function of the standard Gaussian
distribution.

Proof  Let us reverse the time as in the proof of Theorem 3.2, denote V' = V(0) and
consider the lower bound

/ _ —((1=m)t+z .

where the equality follows from the self-similarity of Z(¢). It is seen by differentiating that
the maximum in (4.2) is obtained at

Hzx

O ma—my

yielding the assertion of the theorem. O



Using further the approximation

D(y) ~ (27) (L +y) " exp(—y®/2) ~ exp(—y*/2), (4.3)

we obtain the logarithmically asymptotical lower bound

1?Z%XP (A(t) >t + ) ~exp (— [Qam(ll— e ((1 — mgl — H)) ] : xQ(l_H)) . (4.4)

The tail behaviour of the storage level in the fractional Brownian model is thus in the best
case Weibullian: P (V > z) ~ exp(—vy2”?) with 3 < 1. The value of the self-similarity
parameter H has a tremendous significance for the storage requirement, showing how mis-
leading the traditional models are when the real traffic is self-similar.

For the Brownian case H = 1/2, a = 1, the expression (4.4) reduces to the exponential
distribution

1 —m
max P(A(t) >t 4 x) ~exp <_ZT : ”C) ) (4.5)

which is the well-known heavy traffic asymptotics of the M/D/1 system. It is interesting to
note that the lower bound approximation (4.2) and approximation (4.3) happen to cancel
out each other so that (4.5) gives in fact ezactly P (V > z) for the Brownian model. (See
Takécs [13], Chapter 6; in Roberts [12], this result is easily proven using the standard result
on the maximum of a Brownian motion with negative drift.)
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