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Abstract— This paper presents new distributed power and ad-
mission control algorithms for ad-hoc wireless networks in ran-
dom channel environments. Previous work in this area has focused
on distributed control for ad-hoc networks with fixed channels.
We show that the algorithms resulting from such formulations do
not accurately capture the dynamics of a time-varying channel.
The performance of the network in terms of power consumption
and generated interference, can be severely degraded when power
and admission control algorithms that are designed for determin-
istic channels are applied to random channels. In particular, some
well-known optimality results for deterministic channels no longer
hold. In order to address these problems we propose a new crite-
rion for power optimality in ad-hoc wireless networks. We then
show that the optimal power allocation for this new criterion can
be found through an appropriate stochastic approximation algo-
rithm. We also present a modified version of this algorithm for
tracking non-stationary equilibria, which allows us to perform ad-
mission control. Ultimately, the iterations of the stochastic approx-
imation algorithms can be decoupled to form fully distributed on-
line power and admission control algorithms for ad-hoc wireless
networks with time-varying channels.

I. I NTRODUCTION

Adaptive control of transmission power in wireless networks
allows devices to setup and maintain wireless links with mini-
mum power while satisfying constraints on quality of service
(QoS). The benefits of power minimization are not just in-
creased battery life. Effective interference mitigation can also
increase overall network capacity by allowing higher frequency
reuse.

Typically, power control and interference mitigation tech-
niques are designed for wireless networks with cellular archi-
tectures. The benefit of such an architecture is that one can
assume a centralized controller has knowledge of the channel
states for all users in the system. In this paper we consider a
fundamentally different architecture where there is no central-
ized controller to distribute power control commands or chan-
nel information. Hence, the model we consider here is that of
an ad-hoc wireless network with purely distributed control (we
will clarify the details of this definition in the next section).

Some of the earliest work on decentralized power control for
wireless networks was published by Foschini and Miljanic [3]
in 1993. Their proposed control algorithm (now well known in
the wireless community as simply the Foschini-Miljanic algo-
rithm) provides for distributed on-line power control of ad-hoc
networks with user-specific SIR requirements. Furthermore,
their algorithm yields the minimum transmitter powers that sat-
isfy the SIR requirements. This seminal work spawned a num-
ber of further publications [1], [9], [10] by various authors that
extended the original algorithm to account for additional issues.
Of particular interest for this paper is the work in [1] that pro-
vides a detailed analysis of active link protection and admission
control for the underlying Foschini-Miljanic algorithm.

The original algorithm proposed by Foschini and Miljanic
(and the extensions cited above) requires that the channel gains
between nodes in the ad-hoc network are constants. In some
settings this assumption is reasonable as the time scale for adap-
tation is much faster than the time scale of the channel vari-
ability (e.g. stationary users, slowly-varying channels, and so
forth). This focus of the work presented in this paper is power
adaptation and admission control in an environment where the
adaptation and channel variability time scales are similar (e.g.
when the network users are mobile).

We consider the same distributed power and admission con-
trol problems in [3] and [1], but we permit the links be-
tween network nodes to be time-varying stochastic processes.
Within this setting we evaluate the performance of the original
Foschini-Miljanic algorithm and show that it does not continue
to satisfy the minimum power optimality conditions (optimality
in this case is in terms of expected transmitter powers). More-
over, we also show that the SIR targets of the Foschini-Miljanic
algorithm change dramatically in a random channel environ-
ment. In order to address these shortcomings we propose a new
criteria for power optimality in wireless ad-hoc networks. We
then show that a power allocation that satisfies our new optimal-
ity criteria can be solved by stochastic approximation. In order
to address the admission control problem we propose a modi-
fied version of the stochastic approximation algorithm for track-
ing non-stationary network equilibria (i.e. users entering and
leaving the system). In both algorithms, the resulting stochastic
approximation iterations yield fully distributed on-line power
control algorithms that converge to the optimal power alloca-
tion for an ad-hoc network in a random channel environment.

The rest of this paper is organized as follows. In the next
section we present a brief review of the formulation and results
of [3] and [1]. In Section 3 we evaluate the performance of the
Foschini-Miljanic algorithm in a random channel environment.
In Section 4 we propose a new criteria for power optimality in
wireless ad-hoc networks. Section 5 contains our proposed dis-
tributed stochastic approximation algorithm for power control.
In Section 6 we address the problem of distributed admission
control in a random channel environment. Numerical results
are presented in Section 7 and we then conclude with a discus-
sion of future research.

II. A R EVIEW OF THE FOSCHINI-M ILJANIC ALGORITHM

In [3] the authors formulate the wireless network as a collec-
tion of radio links with each link corresponding to a transmitter
and an intended receiver. Each transmitter is assumed to have
a fixed channel gain to its intended receiver as well as fixed
gains to all other receivers in the network. The quality of each
link is determined by the signal to interference ratio (SIR) at



the intended receiver. In a network withN interfering links we
denote the SIR for theith user as

Ri =
GiiPi

ηi +
∑

i 6=j GijPj
, (1)

whereGij > 0 is the power gain from the transmitter of the
jth link to the receiver of theith link, Pi is the power of theith
transmitter, andηi is the thermal noise power at theith receiver.

Each link is assumed to have a minimum SIR requirement
γi > 0 that represents theith user’s quality of service (QoS)
requirements. This constraint can be represented in matrix form
as

(I− F)P ≥ u with P > 0, (2)

whereP = (P1, P2, . . . , Pn)T is the column vector of trans-
mitter powers,

u =
(

γ1η1

G11
,
γ2η2

G22
, . . . ,

γNηN

GNN

)T

, (3)

is the column vector of noise powers scaled by the SIR con-
straints and channel gain, andF is a matrix with

Fij =
{

0, if i = j
γiGij

Gii
, if i 6= j

(4)

with i, j ∈ {1, 2, . . . , N}.

A. Key Results for the Deterministic Channel

The matrixF has non-negative elements and, by assumption,
is irreducible (i.e. we do not have multiple disjoint networks).
Let ρF be the Perron-Frobenius eigenvalue ofF. Then from
the Perron-Frobenius theorem and standard matrix theory [8]
we have the following equivalent statements

1) ρF < 1
2) There exists a vectorP > 0 (i.e. Pi > 0 for all i) such

that(I− F)P ≥ u
3) (I− F)−1 exists and is positive componentwise.

Furthermore, if any of the above conditions holds we also have
that P∗ = (I− F)−1u is the Pareto optimal solution to (2).
That is, if P is any other solution to (2) thenP ≥ P∗ com-
ponentwise. Hence, if the SIR requirements for all users can
be met simultaneously the best power allocation isP∗, so as to
minimize power consumption.

In [3] the authors show that the following iterative power
control algorithm converges toP∗ whenρF < 1, and diverges
to infinity otherwise

P(k + 1) = FP(k) + u, (5)

for k ∈ {1, 2, 3, . . .}. Furthermore, the above iterative algo-
rithm can be simplified into the following distributed version.
Let

Pi(k + 1) =
γi

Ri(k)
Pi(k), (6)

for each linki ∈ {1, 2, . . . , N}. Hence, each link increases
power when its SIR is below its target and decreases power
when its SIR exceeds its target. It is easy to show that (5) and
(6) are pathwise equivalent and hence the distributed version of
the power control algorithm also converges toP∗.

B. Link Protection and Admission Control for the Determinis-
tic Channel

In [1] the authors extend the above power control algorithm
to include active link protection and distributed admission con-
trol. Active link protection provides a QoS “buffer” to active
links that protects them from new users powering up into the
system. Distributed admission control permits new users to
make local decisions regarding the stability of the network –
thereby permitting a local admission control algorithm.

Let L denote the set of links in the network. A linki ∈
L is considered active at timek if Ri(k) ≥ γi and inactive
if Ri(k) < γi. Let Ak andBk denote the sets of active and
inactive links, respectively. Letδ = 1+ε for someε > 0 denote
the control parameter for active link protection. The new power
control algorithm operates according to the following iteration:

Pi(k + 1) =

{
δγi

Ri(k)Pi(k), if i ∈ Ak

δPi(k) = δ(k+1)Pi(0), if i ∈ Bk

, (7)

wherePi(0) is the initial power of theith transmitter.

Under this scheme the active links update their power accord-
ing to (6) but each user is aiming for an enhanced target ofδγi.
The inactive users increase their power gradually as they try to
gain entry into the system. The QoS buffer and the gradual rate
of power increase by new users allows the active links to main-
tain their required levels of QoS. In [1] the authors show that
this scheme possesses a number of important properties:

1) once a link enters the active setAk it will remain active,
2) if all the QoS requirements for the set of linksL are fea-

sible then eventually all links will become active in finite
time,

3) if some of the links inBk are infeasible then all of the
powers in the system will explode to infinity geometri-
cally fast,

4) as the powers tend to infinity the SIR’s of each active user
will converge toγi, the SIR’s of each inactive user will
saturate at some level less thanγi.

In [1] the authors show that the above properties can be ex-
ploited to construct distributed admission control algorithms.
In distributed admission control a mobile user attempts to enter
the network and, at some point, must decide if the network can
remain stable and satisfy the new user’s QoS requirements. If
so, the user enters the network and joins the collection of active
links, otherwise the user leaves the system. The three general
classes of admission control algorithms proposed in [1] can be
roughly characterized as:

1) time based drop out, which exploits above property two,
2) maximum power based drop out, which exploits property

three,
3) saturation based drop out, which exploits property four.

Due to space considerations we will not discuss the particu-
lars of each algorithm in detail. We will refer to these general
concepts in Section 6 when we discuss admission control in a
random channel environment.



III. T HE FOSCHINI-M ILJANIC ALGORITHM IN A RANDOM

CHANNEL ENVIRONMENT

We now consider the performance of (5) and (6) when the
channel gainsGij are allowed to vary with time. LetG =
(G(k) : k ≥ 0) be a stationary ergodic sequence of ran-
dom channel gain matrices. The elements ofGij(k) denote
the channel gain from thejth transmitter to theith receiver at
time k. The sequenceG takes values in a discrete or continu-
ous set ofN x N non-negative and irreducible matrices. Given
this definition we create another sequence of random matrices
F = (F(k) : k ≥ 0) with elements

Fij(k) =

{
0, if i = j

γiGij(k)
Gii(k) , if i 6= j

, (8)

and the random vector sequenceu = (u(k) : k ≥ 0) where

u(k) =
(

γ1η1

G11(k)
,

γ2η2

G22(k)
, . . . ,

γNηN

GNN (k)

)T

. (9)

For the sake of simplicity we assume the thermal noise power
termsηi remain time-invariant.

We now evaluate the properties of the “random version” of
(5), which we define as

P(k + 1) = F(k)P(k) + u(k). (10)

The distributed version of this algorithm is identical to (6)

Pi(k + 1) =
γi

Ri(k)
Pi(k), (11)

with Ri(k) now given by

Ri(k) =
Gii(k)Pi(k)

ηi +
∑

i 6=j Gij(k)Pj(k)
. (12)

Clearly the power vectorP(k) will not converge to some deter-
ministic constant as it did in (5). Rather, in a random channel
environment a statement regarding stability requires the power
vector to converge in distribution to a well defined random vari-
able. In (5) the key convergence condition is to require that the
Perron-Frobenius eigenvalueρF < 1. SinceF is now a ran-
dom matrix process the key convergence condition is that the
Lyapunov exponentλF < 0, whereλF is defined as

λF = lim
k→∞

1
k

log ||F(1)F(2) · · ·F(k)||. (13)

See [6] for more details on Lyapunov exponents and the con-
vergence properties of products of random matrices. We have
the following lemma

Lemma 1: If the transmitter powers are updated according to
(10) or (11),λF < 0, and

E [log(1 + ||u(k)||)] < ∞ (14)

then the power vectorP(k) ⇒ P(∞). If λF > 0 thenP(k) →
∞ a.s.

Proof: See [4].

Since the powers (and hence the SIRs) of all users are now
random variables, clearly we cannot meet the original QoS con-
straint that requiredRi ≥ γi for i ∈ {1, 2, . . . , N} with prob-
ability one. In a random environment an appropriate first step
is to evaluate the expected value ofRi or the expected value
of functions ofRi. For the power control algorithm (10) in a
random channel environment we have

Lemma 2: If the transmitter powers are updated according to
(10) or (11) andλF < 0 then

lim
k→∞

E[log Ri(k)] = log γi for all i ∈ {1, 2, . . . , N} (15)

Proof: See [4].

Notice that in a random channel environment the “target QoS
levels” have changed. Rather than aim forRi = γi, the random
version of the power update algorithm aims forE[log Ri] =
log γi. (Note thatlog E[Ri] ≥ E[log Ri].) Moreover, we no
longer have a definition of optimality for this scenario.

IV. A R EFORMULATION OF POWER OPTIMALITY

When designing an adaptive power control algorithm for a
random channel environment we can develop an algorithm that
predicts channel behavior based on past observations and then
uses those predictions to update the transmitter powers. The re-
sulting sequence of transmitter powers will then be a random
process that potentially satisfies some QoS constraint. In this
paper we will use a different approach for a number of reasons.
The most significant reason is that our design objective is a sim-
ple, robust, anddistributedalgorithm for controlling the trans-
mitter powers in a random channel environment. Any power
update algorithm that uses channel prediction will require each
transmitter to learn something about the channels between other
transmitters and receivers. This violates our constraints on the
simplicity and distributed nature of the algorithm. Hence we
assume the appropriate power control algorithm should aim for
an optimal fixed power allocation.

In order to facilitate our construction of a power control al-
gorithm we develop a slightly modified version of the original
QoS definition used by (5). Consider the original SIR require-
ment

Ri(k) =
Gii(k)Pi(k)

ηi +
∑

i 6=j Gij(k)Pj(k)
≥ γi, (16)

and re-write it as

Gii(k)Pi(k)− γiηi − γi

∑

i6=j

Gij(k)Pj(k) ≥ 0. (17)

Further suppose we want this constraint to hold in expected
value. If we re-write the set of constraints for alli ∈
{1, 2, . . . , N} in matrix form and assume a fixed power allo-
cationP̄, we have

(I− F̄)P̄− ū ≥ 0 (18)



where

F̄ij =

{
0, for i = j

γi
E[Gij ]
E[Gii]

for i 6= j
, (19)

andū = E[u]. If ρF̄ < 1 then from the arguments presented
in [3] we know there exists a Pareto optimal vectorP̄∗ = (I −
F̄)−1ū, such that for any other vectorP that satisfies (18) we
haveP ≥ P̄∗ componentwise.

We now have two critical questions to answer. First, how do
we design an algorithm that converges to the optimal solution of
(18)? Second, will this algorithm bedistributed? The answer is
not obvious. Notice that a distributed algorithm must iteratively
solve an expected value matrix equation without observations
of all the (random) elements of the matrix processF. This issue
is addressed in the next section.

V. A D ISTRIBUTED PARETO-OPTIMAL ALGORITHM IN

THE RANDOM CHANNEL ENVIRONMENT

Our goal is to develop a distributed power control algorithm
that converges tōP∗. Recall that in the original algorithm (6)
for deterministic channels, each receiver provided feedback of
its SIR to the appropriate transmitter and this was all that was
required for the distributed algorithm to converge. As we will
see in this section, in the random channel environment we re-
quire slightly more information at each transmitter. In addition
to the SIR at the intended receiver we assume each transmitter
also has knowledge of the channel gain to the receiver. That
is, theith transmitter has knowledge ofRi(k) andGii(k) when
selectingPi(k + 1).

As a first step towards a distributed algorithm we first con-
sider a centralized solution of

(I− F̄)P̄∗ − ū = 0, (20)

(a centralized solution assumes knowledge of theF(k)’s). If
we write

g(P̄) = (I − F̄)P̄− ū (21)

then we can view the solution̄P∗ of (20) as the zero of the func-
tion g(P̄). Of course, the centralized controller of the network
might not have access tōF andū, just random observations of
the matrix sequenceF and vector sequenceu. Hence, finding
a solution to our optimality equation is equivalent to estimat-
ing the zero of the functiong(P̄) when we only have access to
noisy estimates ofg(P̄). Therefore, one possible iterative esti-
mation procedure is a version of the Robbins-Monro stochastic
approximation algorithm [7]. We will define our centralized
power control algorithm as follows. Let̂P(k) be our estimate
for the solution to (20) at timek, then

P̂(k + 1) = P̂(k)− akg
(
P̂(k)

)
+ akεk, (22)

where ak is the algorithm step-size satisfyingan → 0,∑k
n=1 an →∞, and

∑k
n=1 an

2 < ∞. The error term is

εk =
(
F̄− F(k))P̂(k) + (ū− u(k)

)
. (23)

In [4] we show, under appropriate regularity conditions on
the channel processG, that P̂(k) → P̄∗ as k → ∞ if the

QoS conditions (17) are feasible. Furthermore, ifρF̄ > 1 then
P̂(k) →∞.

It is interesting to note that the convergence conditions for
this algorithm do not require that all possible values ofF have
ρF < 1. Recall that in the deterministic channel caseρF > 1
corresponded to an unstable system with powers increasing to
infinity. In the random channel case it is possible for the wire-
less network to operate in an unstable environment for some
fraction of time and still remain stable on average.

Finally, we can construct a distributed version of the full-
information stochastic approximation algorithm (22). Let

P̂i(k + 1) = (24)

P̂i(k)− an

(
Gii(k)P̂i(k)− γiGii(k)P̂i(k)

Ri(k)

)
,

and we have

Theorem 1: The components ofP̂(k) from the full-
information algorithm (22) are equivalent (on each sample path)
to the individual transmitter powers determined by the dis-
tributed algorithm (24). Hence, all of the convergence results
and properties of the full information algorithm also apply to
the distributed algorithm.

Proof: The proof follows immediately from element by ele-
ment analysis of̂P(k).

VI. A DMISSION CONTROL FOR THERANDOM CHANNEL

ENVIRONMENT

In any stochastic approximation problem, appropriate selec-
tion of the step size sequenceak is critical in order to ensure ro-
bust performance. The three conditionsan → 0,

∑k
n=1 an →

∞, and
∑k

n=1 an
2 < ∞, provide a sequence that is (initially)

large enough to move our estimateP̂ close to equilibrium and
(eventually) small enough to remove noise from the estimate.
While these properties of the step size ensure a.s. convergence
of P̂(k) → P∗, we are faced with a significant complication –
the algorithm is non-stationary.

This non-stationarity makes it quite difficult to construct an
admissions control algorithm from a stochastic approximation
algorithm. For example, suppose we setak = 1/k and further
suppose that a new user attempts to enter the system at time
k = 104. At this point, all of the current active users will have
settled close to the equilibriaP∗ and will not be able to respond
quickly to the interference from the new user since their step
size is quite small. Moreover, if we enforce some form of ac-
tive link protection in this scenario then the new user will have
to wait an arbitrarily long time to become active. In general, the
problem of admission control is fundamentally different from
the problem of finding a fixed equilibrium. In a network where
users are allowed to enter and leave, the equilibriumP∗ be-
comes a time-varying process. Hence, our goal in admissions
control is to develop an algorithm that tracks the equilibrium
processP∗ while maintaining our required QoS (17).

To this end, we propose a modified version of our stochastic
approximation algorithm that uses afixedstep size rather than



a decreasing step size. As in Section III, suppose we have two
sets of links: the active linksAk, and the inactive linksBk that
are attempting to gain access to the system. Let

P̂i(k + 1) = (25)

P̂i(k)− a

(
Gii(k)P̂i(k)− δγiGii(k)P̂i(k)

Ri(k)

)
,

if i ∈ Ak

P̂i(k + 1) = max
[
aδ(k+1−Ti)P0, (26)

P̂i(k)− a

(
Gii(k)P̂i(k)− δγiGii(k)P̂i(k)

Ri(k)

)]
,

ifi ∈ Bk

where0 < a < 1 is the fixed step size,P0 is the initial power of
a user when it attempts to enter the system andTi is that time
at which the new user begins transmission. In this scheme, the
active links adjust their powers according to a fixed step size
stochastic approximation algorithm. The inactive links perform
the same algorithm steps but their maximum power is capped
ataδ(k+1)−TiP0 to protect the QoS of the active links.

We first compare the performance of the fixed step size al-
gorithm to that of the decreasing step size algorithm (assuming
no users enter or leave the system). Notice that the fixed step
size algorithm provides a geometric weighting of recent esti-
mates with the weight tending to zero for the oldest estimates.
Further note that for a fixed step size we do not satisfy two of
the conditions that guarantee a.s. convergence, namelyan → 0
and

∑k
n=1 an

2 < ∞. Hence, the fixed step algorithm only pro-
vides weak convergence to a random variable rather than a.s.
convergence. Specifically, in [4] we prove that if the QoS re-
quirements for all users are feasible then under (25) we have
P̂(k) ⇒ P̃, whereP̃ is a stationary random variable that satis-
fiesE[||P∗ − P̃||] = O(a). Therefore, under a fixed step size
algorithm we will never converge to the optimal fixed power
levels although we will come close in expectation.

The obvious question is “why should we prefer this fixed step
size to the decreasing step size?” The answer lies in the ability
of the fixed step size algorithm to track a time-varying equilib-
rium. In [4] we prove that when a new user attempts to enter
the system, (25) and (26) converge geometrically fast to the new
power equilibrium, provided the QoS requirements for all users
are feasible. This rate of convergence is in stark contrast to that
of the standard stochastic approximation algorithm which can
take an arbitrarily long time to converge to the new equilibrium
due to its decreasing step size (see the Numerical Results sec-
tion for an example). Moreover, this fixed step size algorithm
permits active link protection and admission control. In [4] we
prove, under appropriate regularity conditions onG, that the
QoS requirements for the active links are protected under (25)
and (26). That is, as a new user attempts to enter the system the
expected value bounds in (17) are maintained.

We also show that the admission control algorithms proposed
in [1] and reviewed in Section 2 can be modified to fit into this
stochastic approximation framework. Specifically, the algo-
rithms proposed in [1] provide deterministic bounds on the time

required for a new user to either enter the system or determine
that the system is unstable and leave. For the random channel
case discussed in this paper we can at best provide probabilis-
tic bounds. For example, the time based dropout algorithm will
permit a new user to enter the system if, after a certain amount
of time, the userestimatesthat its QoS requirements are be-
ing met. Therefore, in the deterministic channel environment a
user knows w.p. 1 if its QoS requirements are met, whereas in a
random channel environment the user must base its admission
control decision on a sample average of its QoS requirements.
Similar formulations exist for the maximum power dropout and
saturation dropout rules in a random channel environment. We
reserve the detailed proofs of these methods for [4] due to space
constraints. The significant admission control issue stemming
from these results is that in a random channel environment a
new user can make anincorrect admission control decision.
Specifically, a new user cannot make a “probability one” ad-
mission decision unless it is allowed to observe the network for
an infinite amount of time. Therefore, since we want users to
join the network quickly, once a user joins the set of active links
Ak it will be required to continue monitoring its QoS require-
ments and voluntarily drop out of the network if it determines
that the system is unstable.

Finally, it should be noted that the appropriate choice ofa
is not obvious. In most publications on fixed step size stochas-
tic approximation algorithmsa is chosen by heuristic methods.
The tradeoffs that must be evaluated are the rate at which the
algorithm responds to changes in the equilibrium pointP∗ (cor-
responding to largea) and minimization of the impact of noise
(corresponding to smalla). We investigate this issue further in
[4] where we provide some heuristic as well as rigorous meth-
ods for determininga.

VII. N UMERICAL ANALYSIS

Consider an ad-hoc network consisting of four mobile de-
vices. Further assume that the fourth device does not attempt to
enter the network until timek = 2000. In the first numerical
example we will assume every link in the system is an indepen-
dent exponential random variable where the expected value of
the gain matrix

E[G] =




1 .0375 .02 .03
.0375 1 .04 .04
.02 .04 1 .05
.03 .04 .05 1


 . (27)

We assume thatγi = 5 andηi = 1 for each transmitter. For this
setup we haveρF̄ = .55 with all four users active, so we should
expect the power control algorithms to be fairly stable. The plot
in Figure 1 shows the power of the first transmitter for the same
channel sample path using (11), (24), and (25) as the power
control algorithms. Note that the power axis is on alogarithmic
scale. Clearly the stochastic approximation algorithms provide
better power stability and consumption than (11). Note that the
fixed step size algorithm does not converge to a constant and
therefore does achieve the optimal equilibrium point.
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Admittedly, independent exponential fading is probably the
worst case channel for (11). Suppose we now allow the chan-
nel to have memory. We will model a channel gain matrix with
memory ofM timeslots as

G(k + M) =
1
M

Giid +
1
M

M−1∑

i=1

G(k + i), (28)

whereGiid is a matrix with independent exponential elements
with mean (27). This type of memory model is highly favor-
able for (11) as the amount of “randomness” in each iteration
of the channel decreases with1/M . The plot in Figure 2 shows

the power comparison for a channel withM = 20, which is a
substantial amount of memory. While (11) performs much bet-
ter in this case, the stochastic approximation algorithms are still
preferred.

Now consider the impact of the fourth user powering up into
the system at timek = 2000. Figure 3 plots the power of users
1 and 4 operating under the fixed step size and decreasing step
size stochastic approximation algorithms (with link protection).
Although the fixed step size algorithm does not provide a.s.
convergence to the optimal equilibrium, it does providesub-
stantially fasteraccess times for new users. This trade-off will
likely be acceptable for non-stationary systems with frequent
entries and exits of users.

VIII. C ONCLUSION

We have presented an evaluation of the Foschini-Miljanic
power control algorithm in a random channel environment. The
analysis shows that their proposed algorithm does not meet its
intended QoS requirements nor does it perform well in terms
of power consumption. In order to address these issues we pro-
posed a new criteria for power optimality in wireless ad-hoc
networks. We then showed that the optimal power allocation
could be discovered through a stochastic approximation algo-
rithm. Moreover, the structure of this stochastic approximation
algorithm yielded an optimal fully distributed on-line algorithm
for controlling transmitter powers in an ad-hoc network. In ad-
dition, we presented a fixed step size version of the optimal
stochastic approximation algorithm that provides only weak
convergence rather than a.s. convergence to the power equi-
librium. However, the fixed step size algorithm provides much
better response to time-varying power equilibria (i.e. users en-
tering and exiting the system). In [4] we will present the proofs
withheld from this short paper. We will also provide detailed
numerical analysis of the active link protection and admission
control protocols proposed in Section 4.
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