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Abstract—This paper presents new distributed power and ad-  The original algorithm proposed by Foschini and Miljanic
mission control algorithms for ad-hoc wireless networks in ran- (and the extensions cited above) requires that the channel gains
dom channel environments. Previous work in this area has focused between nodes in the ad-hoc network are constants. In some
on distributed control for ad-hoc networks with fixed channels. ti thi tion i bl the ti I. for ad
We show that the algorithms resulting from such formulations do Se_ Ing's ISassumption s reasqna easihetme scale fora {:\p-
not accurately capture the dynamics of a time-varying channel. tation is much faster than the time scale of the channel vari-
The performance of the network in terms of power consumption ability (e.g. stationary users, slowly-varying channels, and so
and generated interference, can be severely degraded when powerforth). This focus of the work presented in this paper is power
and admission control algorithms that are designed for determin- adaptation and admission control in an environment where the

istic channels are applied to random channels. In particular, some daptati d ch | iability ti | imil
well-known optimality results for deterministic channels no longer adaptation and channel variability time scales are similar (e.g.

hold. In order to address these problems we propose a new crite- When the network users are mobile).
rion for power optimality in ad-hoc wireless networks. We then We consider the same distributed power and admission con-
show that the optimal power allocation for this new criterion can  tro| problems in [3] and [1], but we permit the links be-
be found through an appropriate stochastic approximation algo-  ean network nodes to be time-varying stochastic processes.
rithm. We also present a modified version of this algorithm for ithin thi . | h f fth iqinal
tracking non-stationary equilibria, which allows us to perform ad- Wit |n.t . IS §Fattlf1g we ‘?Va uate the per ormance of the orlglna
mission control. Ultimately, the iterations of the stochastic approx- Foschini-Miljanic algorithm and show that it does not continue
imation algorithms can be decoupled to form fully distributed on-  to satisfy the minimum power optimality conditions (optimality
line power and admission control algorithms for ad-hoc wireless jn this case is in terms of expected transmitter powers). More-
networks with time-varying channels. over, we also show that the SIR targets of the Foschini-Miljanic
algorithm change dramatically in a random channel environ-

|. INTRODUCTION ment. In order to address these shortcomings we propose a new

Adaptive control of transmission power in wireless networkg/iteria for power optimality in wireless ad-hoc networks. We
allows devices to setup and maintain wireless links with min{nen show thata power allocation that satisfies our new optimal-
mum power while satisfying constraints on quality of serviclY Criteria can be so_lve@ by stochastic approximation. In order_
(QoS). The benefits of power minimization are not just if® address the admission control problem we propose a modi-
creased battery life. Effective interference mitigation can aldi§d version of the stochastic approximation algorithm for track-
increase overall network capacity by allowing higher frequend}d non-stationary network equilibria (i.e. users entering and
reuse. leaving the system). In both algorithms, the resulting stochastic

Typ|ca||y, power control and interference m|t|gat|on techapprOXimation iterations y|9|d fU”y distributed on-line power
niques are designed for wireless networks with cellular arctgontrol algorithms that converge to the optimal power alloca-
tectures. The benefit of such an architecture is that one digf for an ad-hoc network in a random channel environment.
assume a centralized controller has knowledge of the channel he rest of this paper is organized as follows. In the next
states for all users in the system. In this paper we considepestion we present a brief review of the formulation and results
fundamentally different architecture where there is no centr&t [3] and [1]. In Section 3 we evaluate the performance of the
ized controller to distribute power control commands or chaffoschini-Miljanic algorithm in a random channel environment.
nel information. Hence, the model we consider here is that b Section 4 we propose a new criteria for power optimality in
an ad-hoc wireless network with purely distributed control (w&ireless ad-hoc networks. Section 5 contains our proposed dis-
will clarify the details of this definition in the next section).  tributed stochastic approximation algorithm for power control.

Some of the earliest work on decentralized power control f§t Section 6 we address the problem of distributed admission
wireless networks was published by Foschini and Miljanic [3jontrol in a random channel environment. Numerical results
in 1993. Their proposed control algorithm (now well known ifre presented in Section 7 and we then conclude with a discus-
the wireless community as simply the Foschini-Miljanic algosion of future research.
rithm) provides for distributed on-line power control of ad-hoc
networks with user-specific SIR requirements. Furthermorq1
their algorithm yields the minimum transmitter powers that sat-
isfy the SIR requirements. This seminal work spawned a num-In [3] the authors formulate the wireless network as a collec-
ber of further publications [1], [9], [10] by various authors thation of radio links with each link corresponding to a transmitter
extended the original algorithm to account for additional issueand an intended receiver. Each transmitter is assumed to have
Of particular interest for this paper is the work in [1] that proa fixed channel gain to its intended receiver as well as fixed
vides a detailed analysis of active link protection and admissigains to all other receivers in the network. The quality of each
control for the underlying Foschini-Miljanic algorithm. link is determined by the signal to interference ratio (SIR) at

A REVIEW OF THE FOSCHINI-MILJANIC ALGORITHM



the intended receiver. In a network witfi interfering links we B. Link Protection and Admission Control for the Determinis-

denote the SIR for théth user as tic Channel
Gii P
R; = P S 1) In [1] the authors extend the above power control algorithm

to include active link protection and distributed admission con-
whereG;; > 0 is the power gain from the transmitter of therol. Active link protection provides a QoS “buffer” to active
jth link to the receiver of théth link, P; is the power of théth  links that protects them from new users powering up into the
transmitter, and}; is the thermal noise power at thth receiver. system. Distributed admission control permits new users to
Each link is assumed to have a minimum SIR requirememake local decisions regarding the stability of the network —
~; > 0 that represents thi&h user’s quality of service (QoS) thereby permitting a local admission control algorithm.
requirements. This constraint can be represented in matrix form et £ denote the set of links in the network. A linke

as L is considered active at time if R;(k) > ~; and inactive
(I-F)P >u with P >0, (2) if R;(k) < . Let A, and B, denote the sets of active and

whereP = (P, P,,..., P,)" is the column vector of trans- inactive links, respectively. Lét = 1+ ¢ for somee > 0 denote

mitter powers, the control parameter for active link protection. The new power

control algorithm operates according to the following iteration:

u—= (71771 Y272 ’YNUN)T 3)
is the column vector of noise powers scaled by the SIR con-"* | 6Pi(k) = 6%tV P(0), ifie By ]
straints and channel gain, alds a matrix with

F 0, ifi=j @) whereP;(0) is the initial power of theth transmitter.
Yo %7 if i Under this scheme the active links update their power accord-

ing to (6) but each user is aiming for an enhanced targét pf
The inactive users increase their power gradually as they try to
o gain entry into the system. The QoS buffer and the gradual rate
A. Key Results for the Deterministic Channel of power increase by new users allows the active links to main-
The matrixF has non-negative elements and, by assumptiaain their required levels of QoS. In [1] the authors show that

is irreducible (i.e. we do not have multiple disjoint networks}his scheme possesses a number of important properties:

Let pr- be the Perrpn-Frobenius eigenvaluerof Th(_en from ) once a link enters the active séf, it will remain active,

the Perron-Frobenius theorem and standard matrix theory [8 ) if all the QoS requirements for the set of linksare fea-

we have the following equivalent statements sible then eventually all links will become active in finite
1) pr<1 _ , time,

2) There exists a vectd? > 0 (i.e. P > 0 for all 7) such 3) if some of the links inB; are infeasible then all of the

that(I - F)P > u powers in the system will explode to infinity geometri-

withi,j € {1,2,...,N}.

3) (I—F) ' exists and is positive componentwise. cally fast,
Furthermore, if any_tlnf the above conditions holds we also have4) as the powers tend to infinity the SIR’s of each active user
thatP* = (I - F) 'u is the Pareto optimal solution to (2). will converge tov;, the SIR’s of each inactive user will
That is, if P is any other solution to (2) theR > P* com- saturate at some level less thgn

ponentwise. Hence, if the SIR requirements for all users can
be met simultaneously the best power allocatioRs so as to
minimize power consumption.

In [3] the authors show that the following iterative powe
control algorithm converges 8* whenpr < 1, and diverges
to infinity otherwise

In [1] the authors show that the above properties can be ex-
ploited to construct distributed admission control algorithms.

In distributed admission control a mobile user attempts to enter
[he network and, at some point, must decide if the network can

remain stable and satisfy the new user's QoS requirements. If
so, the user enters the network and joins the collection of active
P(k+1)=FP(k) + u, (5) links, otherwise the user leaves the system. The three general

. _ classes of admission control algorithms proposed in [1] can be
for k € {1, 2,3, .. } Furthermore, the above iterative algOTough|y characterized as:

rithm can be simplified into the following distributed version.

Let 1) time based drop out, which exploits above property two,
_ _ Y% 2) maximum power based drop out, which exploits property

for each linki € {1,2,...,N}. Hence, each link increases 3) saturation based drop out, which exploits property four.

power when its SIR is below its target and decreases povi2ue to space considerations we will not discuss the particu-
when its SIR exceeds its target. It is easy to show that (5) alads of each algorithm in detail. We will refer to these general
(6) are pathwise equivalent and hence the distributed versiorcoficepts in Section 6 when we discuss admission control in a
the power control algorithm also convergedtb. random channel environment.



I1l. THE FOSCHINI-MILJANIC ALGORITHM IN A RANDOM  Proof: See [4].
CHANNEL ENVIRONMENT

We now consider the performance of (5) and (6) when the Since the powers (and hence the SIRs) of all users are now
channel gaing7;; are allowed to vary with time. LeG = random variables, clearly we cannot meet the original QoS con-
(G(k) : k > 0) be a stationary ergodic sequence of rarsiraint that required?; > ; for i € {1,2,..., N'} with prob-
dom channel gain matrices. The elementsGof(k) denote gblhty one. In a random environment an appropriate first step
the channel gain from thgth transmitter to theth receiver at 1S 0 evaluate the expected value Bf or the expected value
time k. The sequencé takes values in a discrete or continu®f functions ofiz;. For the power control algorithm (10) in a
ous set ofV x N non-negative and irreducible matrices. Givef@ndom channel environment we have

this definition we create another sequence of random matrices ) )
F = (F(k) : k > 0) with elements Lemma 2: If the transmitter powers are updated according to

(10) or (11) and\r < 0 then

0, if i=j . )
F;i(k) :{ ’YGGEIEI)C) it (8) khng Ellog R;(k)] =log~; for all i € {1,2,...,N} (15)

and the random vector sequence- (u(k) : & > 0) where Proof: See [4].

T
u(k) = ( i e NN ) . (9)  Notice thatin a random channel environment the “target QoS
Gu(k)" Gao(k) G (k) levels” have changed. Rather than aim fyr= ~;, the random

For the sake of simplicity we assume the thermal noise pow&"sion of the power update algorithm aims 16flog /2;] =
termss; remain time-invariant. log~;. (Note thatlog E[R;] > E[log R;].) Moreover, we no

We now evaluate the properties of the “random version” g?nger have a definition of optimality for this scenario.

(5), which we define as
IV. A REFORMULATION OF POWER OPTIMALITY

When designing an adaptive power control algorithm for a
random channel environment we can develop an algorithm that
predicts channel behavior based on past observations and then
uses those predictions to update the transmitter powers. The re-
sulting sequence of transmitter powers will then be a random
process that potentially satisfies some QoS constraint. In this
with R; (k) now given by paper we will use a different approach for a number of reasons.

The most significant reason is that our design objective is a sim-
— Gii(k) P; (k) (12) ple, robust, andistributedalgorithm for controlling the trans-

i + 2 izy Gig (k)P (k) mitter powers in a random channel environment. Any power
) update algorithm that uses channel prediction will require each
Clearly the power vectdP (k) will not converge to some deter-nsmitter to learn something about the channels between other
ministic constant as it did in (5). Rather, in a random channglnsmitters and receivers. This violates our constraints on the

environment a statement regarding stability requires the powgkyjicity and distributed nature of the algorithm. Hence we

vector to converge in distribution to a well defined random varis g me the appropriate power control algorithm should aim for

able. In (5) the.key convergence condi'Fion is t.o require that the, optimal fixed power allocation.
Perron-Frobenius eigenvalyg: < 1. SinceF is now aran- ' qrqer to facilitate our construction of a power control al-
dom matrix process the key convergence condition is that thyjthm we develop a slightly modified version of the original
Lyapunov exponent < 0, whereAr is defined as QoS definition used by (5). Consider the original SIR require-
1 ment
Ap = lim o log [F(1)F(2) - F(k)]| (13) Ri(k) = Gii(k)Pi (k)

= ' i + 2 izy Gig (k)P (k)
See [6] for more details on Lyapunov exponents and the CAlld re-write it as
vergence properties of products of random matrices. We have

P(k+1) = F(k)P(k) + u(k). (10)

The distributed version of this algorithm is identical to (6)

Pk +1) = Rj(ik)l%;(k), (11)

R;(k)

the following lemma Gii(k)Pi (k) — ~vimi — i Z Gy, (k)P;(k) > 0. (17)
i#]
Lemma 1: If the transmitter powers are updated according to
(10) or (11),\r < 0, and Further suppose we want this constraint to hold in expected
value. If we re-write the set of constraints for all €
E [log(1 + [Ju(k)|])] < oo (14) {1,2,...,N} in matrix form and assume a fixed power allo-

cationP, we have
then the power vectdP (k) = P(o0). If Ap > 0thenP (k) —

o a.s. I-F)P-a>0 (18)



where QoS conditions (17) are feasible. Furthermorey#f> 1 then

o 0, fori=j 19 P (k) — oo.
T g EE]} for i#£j "’ (19) It is interesting to note that the convergence conditions for

this algorithm do not require that all possible value¥dfave
andii = E[u]. If p5 < 1 then from the arguments presented, . — 1. Recall that in the deterministic channel cage> 1
in [3] we know there exists a Pareto optimal ved®r= (I —  corresponded to an unstable system with powers increasing to
F)~'a, such that for any other vectd? that satisfies (18) we infinity. In the random channel case it is possible for the wire-
haveP > P* componentwise. less network to operate in an unstable environment for some
We now have two critical questions to answer. First, how dg;ction of time and still remain stable on average.
we design an algorithm that converges to the optimal solution ofjngly, we can construct a distributed version of the full-

(18)? Second, will this algorithm hiistributed? The answer is jnformation stochastic approximation algorithm (22). Let
not obvious. Notice that a distributed algorithm must iteratively

solve an expected value matrix equation without observations P;(k + 1) = (24)
of all the (random) elements of the matrix procEssThis issue Gii (k) By ()
is addressed in the next section. Pi(k) — ay, (Gu(k)ﬁi(k) - %) ,

V. ADISTRIBUTED PARETO-OPTIMAL ALGORITHM IN
THE RANDOM CHANNEL ENVIRONMENT

Our goal is to develop a distributed power control algorithmtheorem 1: The components ofP(k) from the full-
that converges t&*. Recall that in the original algorithm (6) information algorithm (22) are equivalent (on each sample path)
for deterministic channels, each receiver provided feedbacktoefthe individual transmitter powers determined by the dis-
its SIR to the appropriate transmitter and this was all that wasbuted algorithm (24). Hence, all of the convergence results
required for the distributed algorithm to converge. As we witind properties of the full information algorithm also apply to
see in this section, in the random channel environment we the distributed algorithm.
quire slightly more information at each transmitter. In addition
to the SIR at the intended receiver we assume each transmiitesof: The proof follows immediately from element by ele-
also has knowledge of the channel gain to the receiver. Thaént analysis oP (k).
is, theith transmitter has knowledge & (k) andG;; (k) when

selectingP; (k +1). o _ _ VI. ADMISSION CONTROL FOR THERANDOM CHANNEL
As a first step towards a distributed algorithm we first con- ENVIRONMENT

sider a centralized solution of . L .
In any stochastic approximation problem, appropriate selec-
I-F)P*—a=0, (20) tion of the step size sequenegis critical in order to ensure ro-
bust performance. The three conditians — 0, 22:1 an —
00, ande;:1 a,? < oo, provide a sequence that is (initially)
_ N large enough to move our estimd®eclose to equilibrium and
gP)={I-F)P-a (21) (eventually) small enough to remove noise from the estimate.
then we can view the solutid?* of (20) as the zero of the func- While these properties of the step size ensure a.s. convergence
tion g(P). Of course, the centralized controller of the networkf P(k) — P*, we are faced with a significant complication —
might not have access ¥ and1, just random observations ofthe algorithm is non-stationary.
the matrix sequencE and vector sequenae Hence, finding  This non-stationarity makes it quite difficult to construct an
a solution to our optimality equation is equivalent to estima&dmissions control algorithm from a stochastic approximation
ing the zero of the functiop(P) when we only have access toalgorithm. For example, suppose we ggt= 1/k and further
noisy estimates of(P). Therefore, one possible iterative estisuppose that a new user attempts to enter the system at time
mation procedure is a version of the Robbins-Monro stochastic= 10%. At this point, all of the current active users will have
approximation algorithm [7]. We will define our centralizedsettled close to the equilibri2* and will not be able to respond
power control algorithm as follows. Left(k) be our estimate quickly to the interference from the new user since their step

and we have

(a centralized solution assumes knowledge of Htfk)’s). If
we write

for the solution to (20) at timé&, then size is quite small. Moreover, if we enforce some form of ac-
A A ) tive link protection in this scenario then the new user will have
Pk+1)=Pk)—arg (P(k)) + akek, (22) to wait an arbitrarily long time to become active. In general, the

problem of admission control is fundamentally different from
where a, is the algorithm step-size satisfying, — 0, the problem of finding a fixed equilibrium. In a network where

Zf;zl ay, — 00, ande;:1 an? < oo. The error term is users are allowed to enter and leave, the equilibri2mbe-
comes a time-varying process. Hence, our goal in admissions
€ = (F ~Fk)P(k) + (@ - u(k)) . (23) control is to develop an algorithm that tracks the equilibrium

procesP* while maintaining our required QoS (17).
In [4] we show, under appropriate regularity conditions on To this end, we propose a modified version of our stochastic
the channel proces&, thatP(k) — P* ask — oo if the approximation algorithm that usedigedstep size rather than



a decreasing step size. As in Section lll, suppose we have tweguired for a new user to either enter the system or determine
sets of links: the active linkgly, and the inactive linkg,, that that the system is unstable and leave. For the random channel
are attempting to gain access to the system. Let case discussed in this paper we can at best provide probabilis-
tic bounds. For example, the time based dropout algorithm will

Pi(k+1) = (29) permit a new user to enter the system if, after a certain amount

. . §7iGii(k)]5i(k) of time, the useestimateghat its QoS requirements are be-
Pi(k) —a | Gu(k)Pi(k) — R—(k:) ) ing met. Therefore, in the deterministic channel environment a
o ' user knows w.p. 1 if its QoS requirements are met, whereas in a
ifi € Ag random channel environment the user must base its admission
control decision on a sample average of its QoS requirements.
Pi(k + 1) = max [aa(k‘f‘l—Ti)Pm (26) Similar formulations exist for the maximum power dropout and
R saturation dropout rules in a random channel environment. We
. ( ~ 07:Gii (k)P (k) )] reserve the detailed proofs of these methods for [4] due to space
R; (k) constraints. The significant admission control issue stemming
ifi € B, from these results is that in a random channel environment a

new user can make ancorrect admission control decision.
where0 < a < 1is the fixed step size?, is the initial power of Specifically, a new user cannot make a “probability one” ad-
a user when it attempts to enter the system Bnig that time mission decision unless it is allowed to observe the network for
at which the new user begins transmission. In this scheme, @iginfinite amount of time. Therefore, since we want users to
active links adjust their powers according to a fixed step si}@in the network quickly, once a user joins the set of active links
stochastic approximation algorithm. The inactive links perforrds it will be required to continue monitoring its QoS require-
the same algorithm steps but their maximum power is capp@@nts and voluntarily drop out of the network if it determines
atad**D=Ti P, to protect the QoS of the active links. that the system is unstable.

We first compare the performance of the fixed step size al-Finally, it should be noted that the appropriate choice: of
gorithm to that of the decreasing step size algorithm (assumiisghot obvious. In most publications on fixed step size stochas-
no users enter or leave the system). Notice that the fixed stigpapproximation algorithma is chosen by heuristic methods.
size algorithm provides a geometric weighting of recent esfihe tradeoffs that must be evaluated are the rate at which the
mates with the weight tending to zero for the oldest estimatedgorithm responds to changes in the equilibrium pBin{(cor-
Further note that for a fixed step size we do not satisfy two e#sponding to large) and minimization of the impact of noise
the conditions that guarantee a.s. convergence, naipely 0  (corresponding to smadl). We investigate this issue further in
andeL:l an,? < co. Hence, the fixed step algorithm only pro{4] where we provide some heuristic as well as rigorous meth-
vides weak convergence to a random variable rather than £és for determining.
convergence. Specifically, in [4] we prove that if the QoS re-
quirements for all users are feasible then under (25) we have VIl
P(k) = P, whereP is a stationary random variable that satis- _ o )
fies E[||P* — f)m = O(a). Therefore, under a fixed step size Consider an ad-hoc network consisting of four mobile de-

algorithm we will never converge to the optimal fixed poweYices. Further assume that the fourth device does not attempt to
levels although we will come close in expectation. enter the network until timé& = 2000. In the first numerical

The obvious question is “why should we prefer this fixed stef@mple we will assume every link in the system is an indepen-
size to the decreasing step size?” The answer lies in the abif§nt exponential random variable where the expected value of
of the fixed step size algorithm to track a time-varying equilighe gain matrix
rium. In [4] we prove that when a new user attempts to enter
the system, (25) and (26) converge geometrically fast to the new 1 0375 .02 .03
power equilibrium, provided the QoS requirements for all users E[G] = 'ng 34 '24 8;1 . (27)
are feasible. This rate of convergence is in stark contrast to that ’ ’ ’
of the standard stochastic approximation algorithm which can 03 04 .05 1
ke e o e o Comvere o e UYL s i 5y 1 forch s, Fort
: oo : . se‘fup we have = .55 with all four users active, so we should
tion for an example). Moreover, this fixed step size algorithm

. o . o expect the power control algorithms to be fairly stable. The plot
permits active link protection and admission control. In [4] we P P 9 y P

prove, under apprapriate regularity conditions @ that the ih Figure 1 shows the power of the first transmitter for the same
QoS requirements for the active links are protected under ( annel sample path using (11), (24), and (25) as the power

X cantrol algorithms. Note that the power axis is dogarithmic
:Qdéft?d Iglit(;sﬁoisn?j:?:v(lljs)e ;?étfnrgfgfatiﬂee;ter the systemstcge_ Clearly the stochastic approximation algorithms provide
\F/)Ve also show that the admission control algc;rithms proposbgtter power stability and consumption than (11). Note that the
. . . . = . fiked step size algorithm does not converge to a constant and
in [1] and reviewed in Section 2 can be modified to fit into th'ﬁwerefore does achieve the optimal equilibrium point
stochastic approximation framework. Specifically, the algo- '

rithms proposed in [1] provide deterministic bounds on the time

. NUMERICAL ANALYSIS



Fig 1: Transmit Powers for the Standard Foschini-Miljanic Algorithm
5 and the Two Proposed Stochastic Approximation Algorithms
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the power comparison for a channel withh = 20, which is a
substantial amount of memory. While (11) performs much bet-
ter in this case, the stochastic approximation algorithms are still
preferred.

Now consider the impact of the fourth user powering up into
the system at timé = 2000. Figure 3 plots the power of users
1 and 4 operating under the fixed step size and decreasing step
size stochastic approximation algorithms (with link protection).
Although the fixed step size algorithm does not provide a.s.
convergence to the optimal equilibrium, it does provéild-
stantially fasteraccess times for new users. This trade-off will
likely be acceptable for non-stationary systems with frequent
entries and exits of users.

VIIl. CONCLUSION

We have presented an evaluation of the Foschini-Miljanic
power control algorithm in a random channel environment. The
analysis shows that their proposed algorithm does not meet its
intended QoS requirements nor does it perform well in terms
of power consumption. In order to address these issues we pro-
posed a new criteria for power optimality in wireless ad-hoc
networks. We then showed that the optimal power allocation
could be discovered through a stochastic approximation algo-
rithm. Moreover, the structure of this stochastic approximation
algorithm yielded an optimal fully distributed on-line algorithm
for controlling transmitter powers in an ad-hoc network. In ad-
dition, we presented a fixed step size version of the optimal
stochastic approximation algorithm that provides only weak
convergence rather than a.s. convergence to the power equi-
librium. However, the fixed step size algorithm provides much
better response to time-varying power equilibria (i.e. users en-
tering and exiting the system). In [4] we will present the proofs
withheld from this short paper. We will also provide detailed
numerical analysis of the active link protection and admission
control protocols proposed in Section 4.
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