Viterbi Algorithm for Intrusion Type Identification
in Anomaly Detection System

Ja-Min Koo and Sung-Bae Cho

Dept. of Computer Science, Yonsei University
Shinchon-dong, Seodaemoon-ku

Seoul 120-749, Korea
icicle@candy.yonsei.ac.kr,
sbcho@cs.yonsei.ac.kr

Abstract. Due to the proliferation of the infrastructure of communication net-
works and the development of the relevant technology, intrusions on computer
systems and damage are increased, resulting in extensive work on intrusion de-
tection systems (IDS) to find attacks exploiting illegal usages or misuses. How-
ever, many IDSs have some weaknesses, and most hackers try to intrude sys-
tems through the vulnerabilities. In this paper, we develop an intrusion detec-
tion system based on anomaly detection with hidden Markov model and pro-
pose a method using the Viterbi algorithm for identifying the type of intrusions.
Experimental results indicate that the buffer overflow is well-identified, while
we have some difficulties to identify the denial of service attacks with the pro-
posed method.

1 Introduction

As the worldwide proliferation in network environments, a variety of faster services
have become a reality. However, the higher the reliance on computers, the more cru-
cial security problems such as the overflow or manipulation by external aggression
occur. Korea Computer Emergency Response Team and Coordination Center
(CERTCC-KR) reports that hacking damages are significantly increased from 1998:
1,943 attempts in 2000, 5,333 attempts in 2001 and 15,192 attempts in 2002 [1]. In
addition, anyone who has little basic knowledge on hacking can easily intrude com-
puter system with tools for hacking, which will lead to the increase of the damage by
hacking in the near future. As demand and interest in intrusion detection are raised,
the most active effort in this area has mainly developed the system security mecha-
nisms like firewalls. Especially intrusion detection system (IDS) is one of them [2].
Intrusion detection techniques are divided into two groups according to the type of
data they use: misuse detection and anomaly detection. The former uses the knowl-
edge about attacks, and the latter uses normal behaviors [3].

The intrusion detection markets have been grown rapidly from 183 million dollars
in 2000 to 422 million dollars in 2002 [4], so that new products related with IDS are
released continuously. In 2001, there are 15 classes of IDS for commercial, 8 classes

K. Chae and M. Yung (Eds.): WISA 2003, LNCS 2908, pp. 97-110, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

98 J.-M. Koo and S.-B. Cho

of IDS for information, 58 classes of IDS for research and 12 classes of IDS are re-
leased to Korean market. Most of IDSs have been developed to improve the detection
rates, and they have some technical inertia such as inability of detecting the cause and
the path of intrusion. As a result, when intrusion is happened, even if an intrusion is
detected by IDSs, it takes long time to do appropriate actions. Moreover, it is hard to
get the data that include the type of attempted intrusion mainly in specific system.
Therefore, we cannot consider appropriate countermoves of how to cope with the
attacks.

In this paper, normal behaviors are modeled by using system call events included in
BSM (Basic Security Module) auditing data from Solaris. It checks the auditing data
for detecting the intrusion, and the Viterbi algorithm traces the state sequence of cur-
rent intrusion to compare with the sequences of known intrusions to determine the
type of intrusions.

2 Background

2.1 Anomaly Detection System
There are four representative approaches based on anomaly detection system such as
expert system approach, statistical approach, neural network approach and hidden

Markov model (HMM), and Table 1 summarizes them.

Table 1. Research of the representative anomaly detection system

o . Approach
Organization Name Period A B C D
AT&T Comp“g Watch 9671990 x
. NSM [6] 1989-1995 X
UC Davis GrIDS [7] 1995- X
IDES [8] 1983-1992 X
SRI International NIDES [9] 1992-1995 X
EMERALD [10] 1996- X
CS Telecom Hyperview [11] 1990-1995 X X
New Mexico Univ. C'Ware[?‘;r et Al 1999 X X
Yonsei Univ. Park and Cho [13] 2002 X

(A: Expert system; B: Neural network; C: Statistical approach; D: HMM)

First of all, statistical approach is the most widely used in IDS. It uses some infor-
mation such as login and logout time of the session, continuation of the resources and
so on. It detects the intrusion by analyzing the time of resources and pattern of the
command of normal users.

Second, NIDES (Next-generation Intrusion Detection Expert Systems), sets a stan-
dard of the intrusion detection with the similarities between profiles of short time and

Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System 99

long time [9]. It can be widely applied and it has very high detection rate because of
processing based on the past data. However, it has some disadvantages such as insen-
sitive for the event sequence of specific behavior and limited to modeling the intrusion
behavior.

Third, neural network approach is similar to statistical one but it is easier to repre-
sent non-linear relationship. There is an example of Hyperview developed in CS Tele-
com, which consists of 2 neural network modules and an expert system module [11].
Neural network modeling is good at representing the non-linear relationship and
training automatically but the relationship modeled is usually in blackbox.

Finally, HMM proposed by C. Warender in New Mexico University is good at
modeling and estimating with event sequence of which is the underlying unknown. It
performs better to model the system than any others [12]. However, it takes long time
to train and detect intrusions. To overcome such disadvantages, we can extract the
events of changing the privilege before and after them, and we are able to model the
normal behavior with them. By using this method, we can reduce the time to model
and maintain good performance [13].

2.2 Intrusion Type

The main purpose of intrusion is to acquire the authority of roots, and buffer overflow
is one of the main vehicles to do that. An intruder uses the buffer overflow with a
general ID that is hardly used or has no password, and acquires the root privileges
with advanced techniques. Hence, we must analyze the type of intrusions to make the
host-based IDS to detect the intrusions. Intrusion types mainly used are classified by
Markus J. Ranum who developed the open software of firewall at first and CERTCC-
KR extended the intrusions into 10 classes [1]. Among these intrusions, prevalent are
4 types of intrusions such as buffer overflow, denial of service, setup vulnerability and
S/W security vulnerability.

* Buffer overflow: This intrusion type is one of the most difficult things to be dealt
with, because we have to understand the execution sequence of specific programs
and structures of memory, and memory or stack structures are dependent on oper-
ating system. However, anyone can download and use it easily, because source
codes of the buffer overflow and bugs of operating systems are opened at internet.
Consequently, this attack is widely used for hacking. Especially, in the case of root
program which sets the SETUID, someone can easily acquire the shell having the
authority of roots easily using buffer overflow [14]. There are three kinds of vul-
nerabilities of the buffer overflow.

- xlock vulnerability: It is program that locks local x display until a password is
entered. Due to in sufficient bound checking on arguments which are supplied by
users, it is possible to overwrite the internal stack space of thx lock program while
it is executing. By supplying a carefully designed argument to the xlock program,
intruders may be able to force xlock to execute arbitrary command. As xlock is

100 J.-M. Koo and S.-B. Cho

setuid root, this may allow intruders to run arbitrary commands with root privi-
leges.

- Ipset vulnerability: Solaris’s Ipset allows setting of printing configuration in
/etc/printers.conf or FNS. This product has been found to contain a security vul-
nerability that allows a local user to obtain root privileges.

- kems_sparc vulnerability: Solaris contains support for the Kodak Color Manage-
ment System (KCMS), a set of openwindows compliant API’s and libraries to
create and manage profiles that can describe and control the color performance of
monitors, scanners, printers and film recorders. It also allows obtaining root
privileges.

e S/W security vulnerability: This intrusion plays a major role in the bugs to cause
the failures of programs: security errors on programming and on execution.

e Setup vulnerability: It happens when we setup a specific system without consider-
ing security. Some intrusions are included in this class related with various kinds
of disadvantages of services provided by system. These can be used easily because
there is no need of execution codes for hacking.

* Denial of service: It is used to make a specific system not to provide services nor-
mally. This is different from the usual intrusions which acquire the authority of
system administrators. This attack inflicts a loss on specific host by exhausting all
the resources of system not to provide service completely [15].

2.3 Solaris Basic Security Modules

Unix system provides the log information of wtmp, utmp and sulog in some directories
such as /var/log/message or /var/adm/. It has some advantages to obtain easily when-
ever we want but some weak points. For example, when intruders succeed to intrude
they can delete their log files. Due to this reason, we use the audit data of system call
level to detect intrusions: Basic Security Module (BSM) which is provided by Sun
Microsystems.

The algorithms presented in this paper which operate on audit data use logs pro-
duced by the BSM of the Solaris operating system. Each event generates a record,
where the record is composed of different types of tokens depending on the event and
the type of data needs to be included in the record.

The user audit ID is a useful piece of information included in the audit records of
all events which can be attributed to a specific user. It is a unique identification num-
ber assigned to every user when they login and inherited by all processes descended
from the login shell. This number allows an intrusion detection system to easily iden-
tify which user caused a specific event, even if that user has changed identities
(through the su command, for example).

Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System 101

The log files are initially written in a binary format by the auditing process. Sun
provides a tool, named praudit, which reads the binary log files and produces a human
readable ASCII equivalent. This ASCII representation is what the algorithms working
with the BSM data use. While having to convert to ASCII text slows down the algo-
rithms somewhat, it makes coding and debugging much easier. Furthermore, once an
algorithm has been prototyped and found promising, extending it to directly read the
binary files would eliminate the praudit text conversion overhead [16]. Figure 1 shows
the audit data record of BSM.

token ID recordlength structure ver no event ID event ID modifier Record Date
header 102 2 AUE_OPEN_R Jul, 5, 2003,
‘ token 1D ‘ ‘ path ‘
‘ path ‘ ‘ Jetc/group ‘
§ token 1D file access mode/type owner user ID owner group 1D file system ID inode ID device ID
=
=6 attribute 100644 root sys 8388632 8388632 0
token ID user audit ID effective user ID | | effective group ID real user ID real group 1D process ID
subject uucp root root root root 320
‘ token ID ‘ ‘ system call error state ‘ ‘ system call retum value ‘
[ewum || success I 5 \

Fig. 1. BSM audit data record

3 Proposed Method

An IDS based on HMM collects and abridges normal auditing data, and it makes
normal behavior models for a specific system. And then it detects intrusions with
auditing data to detect the intrusions from it. Finally, to identify the type of intrusions,
we analyze the state sequences of the system call events using the Viterbi algorithm.

Figure 2 shows the entire system structure. The proposed method consists of 4
parts: normal behavior modeling, intrusion detection, state sequence analysis and
identification of the intrusion types.

Normal Behavior Modeling Intrusion Detection State Identification

Sequence Analysis!

Normal Normal Analyze Identify Standard
audit data Behaw_or Normal the state = intrusion State
Modelling Behavior sequence type Sequence |

. Intrusion Detection Viterbi
Audit data " Detection " Algorithm

Fig. 2. System structure

dentifed
intrusion
type

102 J.-M. Koo and S.-B. Cho

3.1 Intrusion Detection

The basic log files can be easily obtained without any significant effort, but mostly it
is hard to locate any evidence of privilege acquisition when buffer overflow attacks
are attempted, and after a successful intrusion the attacker can easily erase his or her
traces from those essential log files [17]. Because of the drawback, system call level
audit data are used [12].

Especially, Sun Microsystems’ BSM provides adequate representation of the be-
havior of programs, because any privileged activity that might be generated by a pro-
gram is captured by BSM. Usually, audit trail from BSM consists of several measures.
A system call, one of the measures from BSM, can be either perfectly normal or dan-
gerous depending on situations. For example, the program attacked by buffer overflow
generates system call events that are significantly different from the events generated
at normal situation. Thus, we can detect intrusions effectively by building the model of
normal system call events and noting significant deviation from the model. In this
paper, we use the audit data of system call events from BSM.

3.1.1 Normal Behavior Modeling

In this paper, we use HMM to model the system auditing data, which is widely used
for speech recognition or image recognition. HMM can be applied to model the se-
quence of system call events because it is very useful for modeling the sequence in-
formation [18].

An HMM 1 is described as 4&(A,B,I]). An HMM is characterized by a set of states
0, a set of possible observation symbols V, a number of observation symbols M, state
transition probability distribution A, observation symbol probability B and initial state
distribution 17 [19]. The set of all system call events in audit data corresponds to that
of possible symbol observations V, and a number of events correspond to M. The
length of observation sequence T corresponds to the length of windows. The type of
HMM that we use is a left-to-right model, which is known for modeling temporal
signals better than any other models [20].

This phase is to model the normal behavior, which determines HMM parameters to
maximize P(O) with which input sequence O, because no analytic solution is known
for it, by an iterative method called Baum-Welch reestimation [18]. Figure 3 shows an
example of the left-to-right model of HMM.

Fig. 3. Left-to-right model of HMM with 4 states

Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System 103

3.1.2 Intrusion Detection

Given J, forward procedure can be used to calculate the probability P(O}) with which
input sequence O is generated out of model Ausing forward variables [19]. The prob-
ability is used to decide whether normal or not with a threshold. Forward variable
a,(i) denotes the probability at which a partial sequence O,, O,,--,0; is observed and

stays at state g;.
a,(i)=P(0,,0,,---,0,,s,=i| 1) (1)

According to the above definition, ¢, (i) is the probability with which all the sym-

bols in input sequence are observed in order and the final state reached at i. Summing
up a, (i) can be calculated by the following procedure [18][19].

* Step 1. Initialization:

o, () =mb,(0) 2
* Step 2. Induction:
ar+l(j)=|:ZN: at(i)a,‘jj|bj(0t+l)’ ISIST ’ (3)
* Step 3. Termination:
N
PO|A)=2 a; () @)

i=1

Finally, if calculated value P(O|) calculated log scale is smaller than the threshold, we
decide that intrusion is occurred.

3.2 Intrusion Type Identification

3.2.1 Sequence Analysis with Viterbi Algorithm

The detected intrusion at the previous phase triggers to analyze the current state se-
quence of events. To identify the type of intrusions, we must know the state sequence,
but HMM does not provide the state sequence explicitly. However, we can estimate
the state sequence of the most probable ones using the Viterbi algorithm which finds
the most-likely state transition path in a state diagram, given a sequence of symbols
[20, 21]. It has been applied to speech and character recognition tasks where the ob-
servation symbols are modeled by HMM [22, 23]. The Viterbi algorithm can be easily
combined with other information in real-time. In this paper, we apply the Viterbi algo-
rithm to find optimal state sequence. Figure 4 shows the result of the Viterbi algorithm
based on the HMM in Figure 3.

104 J.-M. Koo and S.-B. Cho

Fig. 4. Process of the viterbi algorithm

In left-to-right model of HMM, transition can only take place in a left to right man-
ner and just one state can be skipped, thus only state transition a;;, a;.; and a;».
For example in Figure 3, because we must start the state having the highest initial state
distribution, we can do in state 1 at time 1 and transit with the highest transition prob-
abilities among state 1, 2, 3 and 4 at time 2.

The procedures of Viterbi algorithm are as follows.

* Step 1: Initialization

0,(i)y=n.b,(0,), 1<i<N

v, (@()=0)
01(i) is the probability that symbol O, occurs at time =1 at state i. The variable
w{(j) stores the optimal states. In Figure 2(a) can be seen above (i) assigns a

number which is beside each state. In Figure 2(a), 6;(1)=3, §;(2)=2, 6,(3)=2 and
01(4)=2.

« Step 2: Recursion
6,(j)=max [J,_()a;]1b,(0,), 2<t<T,1£j<N
W,(j) = arg max [8, ,(i)a,1b,(0,), 2<1<T,1<j<N ©)

o((i) denotes the weight accumulated when we are in state 7 at time ¢ as the algo-
rithm proceeds, and w,(j) represents the state at time #-1 which has the lowest cost
corresponding to the state transition to state j at time ¢. In Figure 2(a), d,(1)=5,
02(2)=7, 0,(3)=6 and 6,(4) is not defined. Therefore, y,(2)= 2.

* Step 3: Termination
pP* = max [0, (s)]
S, * = arg max [J, (s)] 7

sES
At the final time T, there are N probabilities J,, t=1, 2, ---, N. The highest probability
among these probabilities becomes the candidate for the optimal state sequence. Sy

Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System 105

stores the corresponding state. Now, the final task is to backtrack to the initial state
following the variable named y; .

* Step 4: Backtracking
St*:lptﬂ(sr*-v-l)a ZZT—I,T—Z,"',l (8)

When step 4 is finished, we can get the optimal state sequence ‘1-2-3-4-4-4’ as
shown in Figure 4.

3.2.2 Intrusion Type Identification

After backtracking, the similarity is compared between the average state sequence for
every intrusion type and the state sequence of current intrusion using Euclidean dis-
tance. The formula is as follows.

d=1 Z(-xi_y,')z (9)

By assigning the analyzed state sequence of current intrusion to x;, and doing the
state sequence of every intrusion type to y;, we calculate the Euclidean distance d. The
smaller the value is, the higher similarity is. Hence, the intrusion type that we have
found has the least value d.

Table 2. The state sequence of intrusions of buffer overflow
(A: xlock, B: Ipset, C: kems_sparc)

1 2 3 4 5 6 7 8 9 10
A 0 2 4 6 8 10 12 14 16 17
B 0 2 2 2 4 6 8 10 12 14
C 0 2 4 6 8 10 11 13 15 17

Table 3. The similarity with actual intrusion

Distance
A — actual 1.732
B — actual 9.381
C — actual 0

Table 2 shows the state sequence of each type of intrusions. For instance, if the
state sequence of current intrusion is “0-2-4-6-8-10-11-13-15-17” the similarity be-
tween kems_sparc and actual intrusion becomes 0, between xlock and actual intrusion
is 1.732, and between Ipset and actual intrusion is 9.381 as shown in Table 3. Actual
intrusion is identified as kcms_sparc intrusion, because the Euclidean distance is
smaller than anything else.

106 J.-M. Koo and S.-B. Cho

4 Experimental Results

4.1 Experimental Environments

We have collected normal behaviors from six users for 2 weeks using Solaris 7 oper-
ating system. They have mainly used text editor, compiler and program of their own
writing. In total 13 megabytes (160,448 events are recorded) of BSM audit data are
used. Main types of intrusions are used: Buffer overflow gets root privileges by abus-
ing systems’ vulnerability. Denial of service is a kind of intrusions which disturbs to
provide the service well. These are the main intrusions which are subject to happen in
host based systems. The attack types and the number of attempts are shown in Table 4.

Table 4. Intrusion types and the number of trials

Attack Category Intrusion Type Count
OpenView xlock Heap Overflow 9

Buffer Overflow Lpset —r Buffer Overflow Vulnerability 7
Kcms_sparc Configuration Overflow 4

Process creation 9

Denial Of Service Exhausting the memory 7
Fill the Disk 9

4.2 Results

We conduct experiments of the HMM with different number of states and observation
lengths. Table 5 shows the result of the HMM-based IDS, and we experiment with the

Table 5. The performance of HMM-based IDS (no. of states is 20)

Detection

Length Threshold F-P Error
Rate
10 -9.43 100% 2.626
15 -9.43 100% 3.614
10 -14.42 100% 1.366
15 -14.42 100% 2.718
10 -16.94 100% 0.789
15 -16.94 100% 2.618
10 -18.35 100% 0.553
15 -18.35 100% 2.535
10 -19.63 100% 0.476
15 -19.63 100% 2.508
10 -20.83 100% 0.372

15 -20.83 100% 2473

Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System 107

threshold value of -20.83 which minimizes the false-positive error rate. The state sym-
bol sequence of each intrusion type is as shown in Figure 5, where their values are

from 30 runs.

State symbol

Time

Fig. 5. State transition with 20 states and observation length of 10 (A:xlock, B: Ipset, C:

kems_sparc, D: processe creation, E: fill the disk, F: exhausting the memory)

We make experiments to identify the intrusion type with auditing data for detecting
the intrusion. Table 6 and Table 7 show the results.

Table 6. Result when state is 20 and observation length is 10

A B C D E F Rate
A 8 1 - - - - 88%
B - 6 1 - - - 86%
C - - 4 - - - 100%
D - - - 3 - 6 33%
E - - - 4 - 3 0%
F - - - 2 1 6 86%
Table 7. Average of results
Attack Trial Correct Incorrect Rate
Buffer Overflow 20 18 2 90%
Denial of Service 25 9 16 36%
Total 45 27 18 60%

A, B, C, D, E and F are the type of intrusions such as xlock Heap overflow, Ipset
overflow, kems_configure buffer overflow, processes creation, fill the disk intrusion
and exhausting the memory, respectively. Columns indicate the type of intrusions that
we use actually and rows indicate the identified type of intrusions from experiments.

As a result, buffer overflow such as xlock, Ipset and kems_sparc intrusion are iden-
tified effectively. On the other hand, it is hard to identify the specific intrusion type of

108 J.-M. Koo and S.-B. Cho

denial of service. The state sequence is analyzed to find the reason. In case of having
the low identification rate for the intrusions of denial of service is relatively low, be-
cause their state sequences are very identical.

The proposed method makes mistakes for processes creation to exhaust memory
over 60%. Also, it misses filling the disk to process creation and exhausting memory
over 40% and 50%, respectively. We calculate the similarity among three kinds of
intrusions with Euclidean distance. We use the standard state sequence for calculating
the similarity for every intrusion type. The distance value is 0 between exhausting the
memory and filling the disk, and the one is O between exhausting memory and proc-
esses creation, and the last is O between filling the disk and processes creation. Three
values of Euclidean distance are 0, so that we discover that three intrusion types are
very similar.

Similarly, the number of states, one of the most important variables, has an effect
on identifying the intrusion type. We carry out the experiments with different number
of states to 5, 10, 15 and 20, respectively. However, we cannot identify the type of
intrusions, because the state sequence is identical when the number of states is 5, 10
and 15. On the other hand, the state sequences are different for every intrusion type in
case of the number of states is 20.

5 Concluding Remarks

In this paper, we have proposed a method to identify the type of intrusions in the
anomaly detection system based on HMM. The proposed process calculates the
Euclidean distance to compare the similarity between the standard state sequence and
current state sequence which are obtained by using Viterbi algorithm when intrusion
occurs. Experiments are executed in the intrusion detection system based on HMM
with 100% intrusion detection rates. We change the number of states from 5 to 30 and
the length of observation symbols from 10 to 20 in the experiments. As a result, the
system detects all the intrusions when the number of states is more than 20.

However the deviation of identification rates is very extreme for the type of intru-
sions. Especially, identification rates of intrusions belonging to denial of service are
very low, because the state sequence among three intrusion types — processes crea-
tion, exhausting the memory and filling the disk — are identical. In addition, the num-
ber of states which is one of the most important variables has an effect to identify the
type of intrusions. The proposed system needs more than 20 states. Moreover, it has
difficulty to identify various types of intrusions of denial of service. Therefore, we
must investigate to identify types of intrusions with HMM in smaller number of
states.

Acknowledgement. This research was supported by University IT Research Center
Project.

Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System 109

References

10.

11.

12.

13.

14

15.

16.

17.

18.

19.

CERTCC-KR, Korea Computer Emergency Response Team and Coordination Center,
http://www.certcc.or kr, 2003.

H. S. Vaccaro and G. E. Liepins, “Detection of anomalous computer session activity,” In
Proc. of IEEE Symposium on Research in Security and Privacy, pp. 280-289, 1989.

T. F. Lunt, “A survey of intrusion detection techniques,” Computers & Security, vol. 12,
no. 4, pp. 405418, June 1993.

IDC, Plugging the Holes In eCommerce: The Market for Intrusion Detection and Vulner-
ability Assessment Software, 1999-2003.

C. Dowel and P. Ramstdet, “The computer watch data reduction tool,” In Proc. of the 13"
National Computer Security Conference, pp. 99-108, Washington DC, USA, October 1990.
T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood and D. Wolber, “A network secu-
rity monitor,” In Proc. of the 1990 IEEE Symposium on Research in Security and Privacy,
pp. 296-304, Los Alamitos, CA, USA, 1990.

S. Stanford-Che, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C.
Wee, R. Yip and D. Zerkle, “GrIDS-A graph based intrusion detection system for large
networks,” In Proc. of the 19" National Information Systems Security Conference, vol. 1,
pp. 361-370, October 1998.

T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali and P. G. Neuman, “A real-
time intrusion-detection expert system (IDES),” Technical Report Project 6784, CSL, SRI
International, Computer Science Laboratory, SRI International, February 1992.

D. Anderson, T. F. Lunt, H. Javits, A. Tamaru and A. Valdes, “Detecting unusual program
behavior using the statistical components of NIDES,” NIDES Technical Report, SRI Inter-
national, May 1995.

P. A. Porras and P. G. Neumann, “EMERALD: Event monitoring enabling responses to
anomalous live disturbances,” In Proc. of the 20" National Information Systems Security
Conference, pp. 353-365, Baltimore, Maryland, USA, October 1997.

H. Debar, M. Becker and D. Siboni, “A neural network component for an intrusion detec-
tion system,” In Proc. of 1992 IEEE Computer Society Symposium on Research in Security
and Privacy, pp. 240-250, Oakland, CA, May 1992.

C. Warrender, S. Forrest and B. Pearlmutter, “Detecting intrusion using calls: Alternative
data models,” In Proc. of IEEE Symposium on Security and Privacy, pp. 133—-145, May
1999.

S.-B. Cho and H.-J. Park, “Efficient anomaly detection by modeling privilege flows using
hidden Markov model,” Computers & Security, vol. 22, no. 1, pp. 45-55, 2003.

. D. Larochelle and D. Evans, “Statically detecting likely buffer overflow vulnerabilities,” In

Proc. of USENIX Security Symposium, pp. 177-190, August 2001.

F. Lau, S. H. Rubin, M. H. Smith and L. Trajkovic, “Distributed denial of service attacks,”
2000 IEEE International Conference on Systems, Man and Cybernetics, pp. 2275-2280,
2000.

S. E. Webster, “The development and analysis of intrusion detection algorithms,” S. M.
Thesis, Massachusetts Institute of Technology, June 1998.

S. Axelsson, “Research in intrusion detection system: A survey,” Chalmers University of
Technology, 1999.

L.R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proc. of IEEE, vol. 77, no. 2, pp. 257-286, February 1989.

L. R. Rabiner and B .H. Juang, “An introduction to hidden markov models,” IEEE ASSP
Magazine, vol. 3, no. 1, pp. 4-16, 1986.

110 J.-M. Koo and S.-B. Cho

20. G. D. Forney Jr., “Maximum-likelihood sequence detection in the presence of intersymbol
interference,” IEEE Transactions on Information Theory, vol. 18, no. 30, pp. 363-378,
May 1972.

21. G. D. Forney Jr., “The viterbi algorithm,” Proc. of IEEE, vol. 61, no. 3, pp. 268-278,
March 1973.

22. L. R. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, Chapter 6, Prentice
Hall, Englewood Cliffs, New Jersey, 1993.

23.J. Picone, “Continuous speech recognition using hidden markov models,” IEEE ASSP
Magazine, vol. 7, no. 3, pp. 2641, July 1990.

	1 Introduction
	2 Background
	2.1 Anomaly Detection System
	2.2 Intrusion Type
	2.3 Solaris Basic Security Modules

	3 Proposed Method
	3.1 Intrusion Detection
	3.1.1 Normal Behavior Modeling
	3.1.2 Intrusion Detection

	3.2 Intrusion Type Identification
	3.2.1 Sequence Analysis with Viterbi Algorithm
	3.2.2 Intrusion Type Identification

	4 Experimental Results
	4.1 Experimental Environments
	4.2 Results

	5 Concluding Remarks

