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A Poisson Limit for Buffer Overflow Probabilities
Jin Cao, Kavita Ramanan

Abstract— A key criterion in the design of high-speed networks is the
probability that the buffer content exceeds a given threshold. We consider
n independent identical traffic sources modelled as point processes, which
are fed into a link with speed proportional to n. Under fairly general as-
sumptions on the input processes we show that the steady state probability
of the buffer content exceeding a threshold b > 0 tends to the corresponding
probability assuming Poisson input processes. We verify the assumptions
for a large class of long-range dependent sources commonly used to model
data traffic. Our results show that with superposition, significant multi-
plexing gains can be achieved for even smaller buffers than suggested by
previous results, which consider O(n) buffer size. Moreover, simulations
show that for realistic values of the exceedance probability and moderate
utilisations, convergence to the Poisson limit takes place at reasonable val-
ues of the number of sources superposed. This is particularly relevant for
high-speed networks in which the cost of high-speed memory is significant.

Keywords—Long-range dependence, overflow probability, Poisson limit,
heavy tails, point processes, multiplexing.

I. INTRODUCTION

Empirical studies of high-speed data networks (e.g. Ethernet
LAN’s [1] and wide-area networks [2]) have shown that network
traffic displays long-range dependence or self-similarity, thus
bringing into question the use of traditional traffic source models
such as on-off processes with exponential on-times, which are
short-range dependent. Since on-off processes with heavy-tailed
on-time distributions have been shown to exhibit long-range de-
pendent behaviour [3], they have been proposed as more real-
istic data network source models. The implications of this dis-
covery on network performance has been examined by several
authors (see [4] for a survey). In particular, in [5] it is shown
that when the queue is fed by on-off heavy-tailed sources, un-
der the appropriate scaling the tail of the queue distribution is
sub-exponential, rather than exponential as would be predicted
by an exponential source model. An important question that
arises in this context is whether this discrepancy in queueing
behaviour between short-range and long-range dependent traffic
models persists even when a large number of sources are mul-
tiplexed together. Some authors contend that even high levels
of aggregation would not mitigate the burstiness of long-range
dependent traffic [1], [2]. On the other hand, others have shown
that in the presence of multiplexing some smoothing does in-
deed take place [6], [7], [8], [9], [10], [11], [12]. For instance in
the context of traffic engineering for ATM multiplexers of VBR
video sources it is shown in [9] that long-term correlations do
not have a significant impact on the cell loss rate when ATM
buffers are of realistic dimensions. In [6], [7], [8], [10], [11],
[12] a system with n independent identical sources feeding into
a link with processing rate O(n) is considered and (under vari-
ous assumptions on the input processes) a large deviations anal-
ysis is used to show that the steady state probability of the buffer
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content exceeding a threshold equal to nb has an exponential tail
(rather than a polynomial one) in the asymptotic limit as n tends
to infinity. For the class of semi-Markov modulated fluid arrival
processes, e.g. on-off sources with general on-time and off-time
distributions, [11] also analyses the asymptotic (n→ ∞) decay
rate of the steady state probability of the buffer content exceed-
ing nb, in the limit as b → 0, and shows that in this regime
the decay rate depends on the on-time and off-time distributions
only through their means. Thus the above mentioned papers
provide evidence of statistical multiplexing gains when both the
threshold and link speed grow proportionally to the number of
sources multiplexed.

With the continual increase in link speeds in modern commu-
nication networks, the cost of high-speed memory is likely to
become a non-trivial factor in the design of data networks. For
example, 100 ms of buffering in a 40 Gbs system can be quite
expensive, and a typical switch is likely to have many 100 ms
buffers supported on different linecards. Therefore it is natural
to ask whether the buffer need actually grow proportionally to
the link speed in order to realise multiplexing gains, or whether
smaller buffers will suffice. In this paper we prove a strong
insensitivity result that addresses this question. Our result is
stronger than that in [11] and uses a different approach. Firstly,
we consider a scaling limit in which although the processing rate
is proportional to the number n of i.i.d. sources multiplexed, the
buffer size remains O(1). Given fairly general assumptions on
the source arrival distribution we show that the exceedance prob-
ability tends to the same value as if the source arrival distribution
were Poisson with the same mean. This result supports recent
statistical analysis of Internet data [13] and indicates that buffers
need not scale with the link speed in order to achieve significant
multiplexing gains. Secondly, we consider the actual probability
rather than just the logarithmic asymptote considered in [6], [7],
[8], [11], [12]. Knowledge of the prefactor usually allows one to
more accurately assess actual statistical multiplexing gains, and
design admission control policies that are neither too conserva-
tive nor too aggressive (see, for example, [14], [15]). Further-
more, we model the packet arrival processes as point processes
rather than fluid processes. This seems to better capture the be-
haviour of real packet traffic under multiplexing, especially on
the time scales relevant for overflows from O(1) buffers (see
Section V for further discussion of this issue).

The paper is organised as follows. In Section II we describe
the model and state our main result (Theorem 1). In Section III
we state our assumptions and prove the main limit theorem. In
Section IV we present some simulation results, and we conclude
in Section V with a discussion of the implications of our results
for network design.

II. DESCRIPTION OF THE MODEL AND MAIN RESULT

Consider n identical independent sources that send packets
to a server that has a deterministic processing rate nµ. We
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model the arrival of packets from source i as a point process
A(i), where A(i)

t represents the total number of packets emit-
ted by source i in the interval [0, t]. We assume that each
A(i) has the same distribution as a simple stationary point pro-
cess A that satisfies E[At] = λt for each t > 0 for some
λ ∈ (0, µ). Note that the usual stability condition λ < µ en-
sures that the queues do not grow unboundedly. The superposed
process An

.=
∑n
i=1A

(i) represents the aggregate arrival of
packets from all n sources. Packets that cannot be processed
immediately are stored in a buffer (which is assumed to be infi-
nite). Moreover we assume that each packet has the same size,
and without loss of generality set its processing time, assuming
it were served at rate µ, to be one. The buffer content, or equiv-
alently the unfinished work in the system, at time t is defined to
be the amount of time required to complete the processing of all
packets present in the system at time t. The steady state proba-
bility of the unfinished work exceeding a certain level b is used
as a surrogate for the steady state buffer overflow probability in
a buffer of size b. We let UAn denote the stationary unfinished
work in the system when the number of sources is n, the arrival
process of each source is distributed according toA and the pro-
cessing rate is nµ. Also, let Nλ denote the stationary Poisson
point process with rate λ, and let UNλ be the resulting unfin-
ished work process when Nλ is fed into a processor with rate µ.
Under the stability condition λ < µ, UAn and UNλ exist [16]
and are explicitly given by the relations

UAn = sup
t∈[0,∞)

[Ant − nµt] , UNλ = sup
t∈[0,∞)

[
Nλ
t − µt

]
. (1)

We now state our main result, which holds under general as-
sumptions on the distribution of the arrival process A of each
source that are stated precisely in Section III-A. The assump-
tions are shown to be satisfied by a large class of processes com-
monly used to model network traffic in Section IV-B.

Theorem 1: Suppose A satisfies Assumption 3 and let Nλ,
UAn and UNλ be as defined above. Then for any b > 0

lim
n→∞P(UAn > b) = P(UNλ > b). (2)

It is well known that the unfinished work UNλ for a Poisson
process has a steady state distribution of the form

P(UNλ > b) = 1− (1− ρ)eρbQ�b�(b− �b�), (3)

where �b� is the greatest integer less than or equal to b, ρ = λ/µ
is the utilisation of the queue and Qn(x), n ∈ IN, are poly-
nomials that can be calculated using numerically stable recur-
sion relations (see, for example, [17, p. 391]). Thus Theorem 1
shows that as the number of sources multiplexed increases, the
exceedance probability of the unfinished work of sources having
fairly general distributions approaches the corresponding prob-
ability assuming Poisson sources, which is known explicitly.

III. THE POISSON LIMIT THEOREM

In Section III-A we state the main assumption on the source
distribution (Assumption 3) and derive some important conse-
quences. In Section III-B we prove the main result, Theorem 1,
and in Section III-C we contrast the scaling used in this paper
with another more commonly used scaling.

A. Main Assumptions

For x ∈ IR and t ∈ [0,∞), define

Λ(x, t) .= sup
θ∈IR

[θx− t−1 log E[eθAt ]]. (4)

It is easy to verify (see [18, Lemma 2.2.5]) that

Λ(x, t) .= sup
θ∈[0,∞)

[θx− t−1 log E[eθAt ]], (5)

for x ≥ λ. Also, for x ∈ IR, we define the quantities

Λ1(x)
.= lim inf

t→0
Λ(x, t), Λ2(x)

.= lim inft→∞
tΛ(x, t)
log t

.

(6)
For any E ⊂ IR, D([0,∞) : E) denotes the space of right
continuous functions on [0,∞) with left limits taking values in
E, endowed with the Skorokhod J1 metric d(·, ·) (e.g. see [19,
p. 73]). Given a point process on IR for conciseness we use At
to denote A([0, t]) and note that At ∈ D([0,∞) : Z+). Then
A({t}) = At−lims↑tAs. Recall the definition of a simple point
process [20, Definition 3.3.II].

Definition 2: The point process A is said to be simple if
P(A({t}) ∈ {0, 1} for all t ∈ [0,∞)) = 1.

We now state our main assumptions on the process A.
Assumption 3: A is a simple stationary point process satisfy-

ing the following three properties.
1. There exists λ < µ such that E[At] = λt for t ∈ [0,∞).
2. There exists θ0 > 0 and K <∞ such that

lim
t↓0

t−1E
[
eθ0At1{At>K}

]
= 0. (7)

3. Λ2(µ) > 0.
The fact that A is simple reflects our modelling assumption

that all packets are of the same size, and that multiple packets
from a single source do not arrive simultaneously at the server.
The latter assumption is quite realistic, while the former is appli-
cable to ATM networks, where packet sizes are all of the same
size. (Our framework allows for generalisations to the case of
packets with variable sizes, but we do not consider them in this
paper.) Along with the fact that A is stationary and has finite
intensity λ, the fact that A is simple also implies that the prob-
ability of multiple packets arriving within an arbitrary small in-
terval of zero is exceedingly small (see Lemma 4). The second
assumption requires that the probability of many packets arriv-
ing in an arbitrary small interval [0, t] decays sufficiently fast as
the interval size t ↓ 0.

In the next two lemmas we establish some consequences of
Assumption 3 that will be used in the proof of the main result.

Lemma 4: Suppose A satisfies Assumption 3(1). Then

P(At = 1) = λt+ o(t) and P(At ≥ 2) = o(t). (8)

Moreover, if in addition A satisfies Assumption 3(2), then there
exists θ0 > 0 such that uniformly for θ ∈ [0, θ0]

lim
t→0

t−1 log E
[
eθAt

]
= −λ+ λeθ. (9)

Proof: The first property follows directly from [20, Propo-
sitions 3.3.I, 3.3.IV and 3.3.V]. For the second property, first let
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pt(k) denote P(At = k), k ∈ Z+, and let θ0 > 0 and K < ∞
be such that (7) is satisfied. Then note that E[eθAt ]− 1 is equal
to

pt(0)− 1 + pt(1)eθ +
K∑
k=2

pt(k)ekθ + E
[
eθAt1{At>K}

]
.

Using (8) this implies

E[eθAt ]− 1 = −λt+ λteθ + o(t) + E
[
eθAt1{At≥K}

]
.

Combining (7) with the last display one obtains uniformly for
θ ∈ [0, θ0]

lim
t→0

t−1
[
E

[
eθAt

] − 1
]
= −λ+ λeθ

and
lim
t→0

t−1
[
E

[
eθAt

] − 1
]2

= 0.

The fact that x− x2/2 ≤ log(1 + x) ≤ x for x ≥ 0 then yields
(9).

Lemma 5: Suppose A satisfies Assumption 3. Then
1. The functions Λ(·, t), t ∈ [0,∞), Λ1(·) and Λ2(·) are non-
negative non-decreasing functions on [λ,∞);
2. For every x ≥ µ, Λ1(x) > 0;
3. For any m ∈ Z+, m > 1, t ∈ [0,∞) and x ≥ λ, Λ(x, t) ≥
m−1Λ(x,m−1t).

Proof: The first property follows from [18, Lemma 2.2.5].
For the second property, observe that since Assumption 3 is
satisfied, from Lemma 4 we know that there exists θ0 > 0
such that (9) is satisfied uniformly for θ ∈ [0, θ0]. Choose
θ∗ ∈ (0,min[θ0, log(µ/λ)]). For x ≥ µ using (9) and the fact
that θx− λ(eθ − 1) is strictly increasing on [0, θ∗], observe that

Λ1(x) ≥ lim inf
t→0

[
θx− t−1 log E

[
eθAt

]]
θ=θ∗

≥ θ∗x− λ(eθ∗ − 1) > 0.

The third property can be deduced using the stationarity of A
and Holder’s inequality.

Corollary 6: Suppose A satisfies Assumption 3 and let
α(·) .= Λ(µ, ·). There exist τ > 1, δ1, δ2 > 0 such that

1) α(t) ≥ δ1 for t ∈ [0, τ ].
2) tα(t)/ log t ≥ δ2 for t > τ .

Proof: The two properties follow by setting x = µ in
Lemma 5(2), using Assumption 3(3) and Lemma 5(3), along
with elementary algebraic manipulations.

B. Proof of the Main Result

In this section we prove Theorem 1. The main intuition be-
hind the result is that under the given assumptions the most prob-
able time scale of exceedance of the threshold shrinks with in-
crease in the number n of sources multiplexed (see Theorem 8).
The fact that on the decreasing time scale the finite-dimensional
distributions of the aggregated arrival processes tend to a Pois-
son limit as n → ∞ [20, Proposition 9.2.VI] then suggests the
result in Theorem 1. The issue of relevant time scales is dis-
cussed in more detail in Sections III-C and V.

We introduce the scaled point process Bn defined by

Bnt
.= Ant/n for t ∈ [0,∞). (10)

Note that

UAn = sup
t∈[0,∞)

[Ant − nµt] = sup
t∈[0,∞)

[Bnt − µt] . (11)

Lemma 7: For x ≥ λ, n ∈ Z+ and t ∈ (0,∞), we have

P (Bnt > xt) ≤ e−tΛ(x,n−1t).

Moreover for α(·) = Λ(µ, ·) and c ≥ 0 one has

P (Bnt > µt+ c) ≤ e−tα(n−1t).
Proof: For θ ≥ 0, P(Bnt > xt) is no greater than

e−xtθE
[
eθB

n
t

]
= e−xtθ

(
E

[
eθAt/n

])n
= e

−t
(
xθ−nt−1 log E

[
e

θAt/n
])
.

Taking the infimum of the last term over θ ≥ 0, using (5) and
the fact that x ≥ λ we deduce that

P (Bnt > xt) ≤ e−tΛ(x,n−1t).

The second statement follows from the first by setting x = µ
and noting that P (Bnt > µt+ c) ≤ P (Bnt > µt).

For any process S, interval I ⊂ [0,∞) and b ∈ IR+ for con-
ciseness we introduce the notation

P̃S(I, b)
.= P

(
sup
t∈I

[St − µt] > b

)
. (12)

Theorem 8: Suppose A satisfies Assumption 3. Then for any
b, ε > 0, there exist T = T (b, ε) ∈ IR+ andN = N(b, ε) ∈ Z+,
such that for any n > N

P

(
sup

t∈[T,∞)

[Bnt − µt] > b

)
< ε.

Proof: Choose γ ∈ (0, b) so that s
.= γµ−1 < 1. For

l ∈ Z+ let tl
.= sl, and Il

.= [tl, tl+1). Then Lemma 7 and the
fact that b− γ > 0 and Bnt is non-decreasing in t yields

P̃Bn([tl, tl+1), b) ≤ P(Bntl+1
> b+ µtl)

= P
(
Bntl+1

> b− γ + µtl+1

)
≤ e−tl+1α(n−1tl+1).

Given T ∈ (0,∞) let L ∈ Z+ be such that T ∈ [tL, tL+1).
From the above display we infer that for some τ ∈ (0,∞) and
all n > L/τ , P̃Bn([T,∞), b) is less than or equal to

P̃Bn ([sL, s�nτ�), b) + P̃Bn ([s�nτ�, ∞), b)
≤ ∑�nτ�

l=L+1 e
−tlα(n−1tl) +

∑∞
l=�nτ�+1 e

−tlα(n−1tl).

By Corollary 6 there exist τ > 1, δ1, δ2 > 0 such that α(t) ≥ δ1
for t ∈ [0, τ ] and tα(t)/ log t ≥ δ2 for t ∈ [τ,∞). Therefore

�nτ�∑
l=L+1

e−tlα(n−1tl) ≤
�nτ�∑
l=L+1

e−tlδ1 <
∞∑

l=L+1

e−tlδ1 ,

which tends to zero as L→ ∞, and similarly∑∞
l=�nτ�+1 e

−tlα(n−1tl) ≤ ∑∞
l=�nτ�+1 e

−nδ2 log(n−1tl)

=
∑∞
l=�nτ�+1

(
ls

n

)−δ2n
≤ s−δ2nn

∫ ∞
τ
x−δ2ndx,
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which tends to zero as n → ∞. Thus we can choose L =
L(γ, b) andN = N(γ, b) such that for T = sL and n > N each
term in the last two displays is less than ε/2. This establishes the
lemma with T

.= sL.
We now prove the main theorem, Theorem 1.

Proof: From the superposition theorem for point processes
we know from [20, Lemmas 9.1.IV and 9.1.X and Proposition
9.2.VI] that Bn converges weakly to Nλ in D([0,∞) : IR+).
Using the continuous mapping theorem and the fact that the
projection operator FT , that maps f to supt∈[0,T ] [f(t)− µt],
is continuous for all T that are not jump points of f [21, The-
orems 5.1 and 15.1], we conclude that for a.e. T ∈ [0,∞)
FT (Bn) ⇒ FT (Nλ). By Portmanteau’s theorem [21, Theorem
2.1] for any b > 0

lim
n→∞ P̃Bn([0, T ], b) = P̃Nλ([0, T ], b) (13)

For T ∈ (0,∞) and b > 0, definitions (1), (10) and (11) yield

0 ≤ P(UAn > b)− P̃Bn ([0, T ], b) ≤ P̃Bn ([T,∞), b) ,

and likewise

0 ≤ P(UNλ > b)− P̃Nλ([0, T ], b) ≤ P̃Nλ ([T,∞), b) .

Theorem 8, along with the observation that Nλ
t has the same

distribution as
∑n
i=1N

λ
t/n for any n ∈ IN , shows that given any

ε > 0 for all large enough T and n the last terms in the above
two displays are less than ε/2. Since ε > 0 is arbitrary, using
(13) we conclude that for all b > 0

lim
n→∞ |P (UAn > b)− P (UNλ > b) | ≤ lim

ε↓0
ε = 0.

C. Comparison of Different Scalings

Recall the definition (10) of the scaled arrival processes Bn

and consider the sequence of exceedance probabilities associ-
ated with a sequence of thresholds bn, n ∈ IN . In this paper
we have considered the case when bn = b, n ∈ IN . Another
more commonly used scaling (see [6], [10], [11]) is bn = nb
for some b > 0. In this section we compare the mathematical
analysis of the limiting probabilities in these two cases. The
practical implications of these scalings is discussed in Section
V. Using the abbreviation (12) note that P̃Bn([0,∞), bn) is
clearly bounded by P̃Bn([0, T ], bn) + P̃Bn([T,∞), bn). Under
the scaling bn = b, the first term is the asymptotically dominant
term since, as shown in Theorem 8, the second term is arbitrarily
small for sufficiently large T and n. On the other hand, we show
below that under the scaling bn = nb the second term is asymp-
totically dominant. For n large enough such that nT−1b > λ,
from Lemma 7 we obtain

P̃Bn([0, T ], nb) ≤ P (BnT > nb) ≤ e−TΛ(nT−1b,n−1T ),

and hence

lim sup
n→∞

n−1 log P̃Bn([0, T ], nb) ≤ − lim inf
t→0

[tΛ(bt−1, t)].

(14)

Substituting the definition (4) of Λ(·, t) we have

lim inf
t→0

tΛ(bt−1, t) ≥ sup
θ∈IR

lim inf
t→0

[
θb− log E[eθAt ]

]
(15)

Suppose that in addition to Assumption 3 the process also sat-
isfies E[eθAt ] < ∞ for any θ > 0 and t ∈ [0, t0]. Then the
fact that At is right continuous with A0 = 0 and Lebesgue’s
bounded convergence theorem imply lim supt→0 log E[eθAt ] =
0. Together with (14) and (15), this shows that

lim sup
n→∞

n−1 log P̃Bn([0, T ], nb) ≤ − sup
θ∈IR

[θb] = −∞. (16)

However, previous results (e.g. [8], [7], [12], [11, Theorem 3.2])
show that under the above assumptions

lim
n→∞n−1 log P̃Bn([0,∞), nb) = −I(b) <∞, (17)

where I(b) .= inft>0 [tΛ(µ + bt−1)] is the exponential decay
rate of the exceedance probability. In contrast to the case bn = b,
here the asymptotic decay rate is a function of the arrival process
distribution. Also, (16) and (17) imply

lim
n→∞n−1 log P

(
sup

t∈[T,∞)

[Bnt − µt] > nb

)
= −I(b).

Thus P̃Bn([T,∞), nb) is the dominant contribution to the ex-
ceedance probability under the scaling bn = nb.

Our comparison of different scalings highlights the impor-
tance of a critical time scale [9] for performance analysis, which
is loosely defined as the time scale beyond which the source be-
haviour does not significantly affect the exceedance probabil-
ity. For the scaling bn = b considered in this paper, the critical
time scale is inversely proportional to the number n of sources
superposed. This follows from Theorem 8 and the fact that
supt∈[T,∞)[Bnt −µt] = supt∈[T/n,∞)[Ant −nµt]. Thus as n in-
creases the characteristics of an individual source at the critical
time scale become less important, the effect of statistical mul-
tiplexing becomes the dominant factor, and the net behaviour
tends towards Poisson. However, with the scaling bn = nb, the
time scale of interest does not change with superposition. In this
case individual source behaviour still plays an important role.

IV. STUDY OF CONVERGENCE RATES VIA SIMULATION

We simulate the unfinished work process for a variety of rep-
resentative input source models in order to gauge the qualitative
dependence of the rate of convergence on parameters such as the
threshold level b and utilisation ρ of the link, as well as on the
source characteristics.

A. Models of the Arrival Processes

We consider five classes of arrival processes that are com-
monly used as models of network traffic sources. The differ-
ent classes exhibit key features of observed data network traf-
fic behaviour such as long-range dependence, asymptotic self-
similarity [1] and “burstiness” to different extents. Recall that a
stationary stochastic process X(t) is said to be long-range de-
pendent if there exists a constant H ∈ (1/2, 1), referred to as
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the Hurst parameter, such that Var(X(t)) ∼ O(t2H), while it
is said to be self-similar if the finite-dimensional distributions of
the time-changed and rescaled process θ−HX(θt) are the same
as the original process, i.e. θ−HX(θ·) fidi= X(·) for θ > 0. A
commonly used measure for burstiness of traffic is the index of
dispersion of counts (IDC) [22], [23]. Of special interest is the
limiting value I∞ of IDC associated with an arrival process At,
which is defined by I∞

.= limt→∞ Var[At]/E[At]. It is well
known that I∞ = 1 for a Poisson process and for a station-
ary renewal processes it is equal to the square of the coefficient
of variation (COV) of the inter-arrival distribution. A process
is considered more (less) bursty than Poisson if I∞ is greater
(smaller) than 1. I∞ also has the property that it is invariant
under the superposition of independent identical sources.

We now describe the five classes in detail. Classes 1), 2) and
5) are stationary renewal processes, and hence are completely
characterised by their inter-arrival time distributionZ. For Class
1) Z is Weibull with parameter α (i.e. Zα is exponential). The
inter-arrival distribution of HTTP packet traffic has been em-
pirically observed to be well modelled by the Weibull distribu-
tion [24], which is heavy-tailed for α ∈ (0, 1). For Class 2) Z
is inverse Weibull with parameter α (i.e. Z−α is exponential).
In this case Z has an asymptotic Pareto tail distribution with
tail parameter α, i.e. P(Z > z) = O(z−α) as z → ∞. For
Class 5 Z has a Gamma (or Erlang) distribution with parameter
α ∈ IN , (i.e. the sum of α i.i.d. exponentials). If α ∈ (1, 2), the
sources in Classes 2 and 5 are long-range dependent with Hurst
parameter (3−α)/2 and belong to the class of fractal point pro-
cess [25], which have I∞ = ∞.

Classes 3) and 4) belong to the category of what we refer to as
Poisson on-off point processes, each of which consists of an un-
derlying on-off process and a finite conditional mean arrival rate
κ. Packets arrive as a Poisson point process with rate κ during
an on-period, while no packets arrive during an off-period. The
ExponExpoff Class 3 sources have exponentially distributed on
and off periods. This model was used in [14] to study the queue-
ing behaviour of superposed ATM traffic. Class 4 are Paretoon-
Expoff sources, which have an exponential off-period distribu-
tion and on-periods that are Pareto with tail parameter α.

B. Verification of Assumption 3 for Traffic Models

We now verify Assumption 3 for the five classes of models
described in the last section.

Lemma 9: Any stationary renewal process A whose inter-
arrival distribution Z satisfies E[Z] = λ−1 > 0 has E[At] = λt
and satisfies Assumption 3(3). Moreover, if P(Z ≤ t) = O(tβ)
for some β > 0, then Assumption 3(2) is also satisfied. In par-
ticular, the arrival processes from Classes 1), 2) and 5) satisfy
Assumption 3.

Proof: The fact that E[Z] = λ−1 > 0 implies automati-
cally that for every t ∈ [0,∞), E[At] = λt.

Let L′ be the time to the first arrival, and suppose Ln is the
time interval between the nth and (n+1)th arrivals. Since At is
a stationary renewal process, {L′, Ln, n ∈ IN} are independent
and each Ln has the same distribution as Z. Thus for any φ > 0,

P(At ≥ n) ≤ P

(
n−1∑
i=1

Li ≤ t

)
≤ eφt

(
E[e−φZ ]

)n−1
. (18)

Since E[Z] = λ−1 > 0, Z is positive on a set of positive prob-
ability, and hence E[e−φZ ] ∈ (0, 1). So given any φ > 0 there
exists θ̃ > 0 such that c

.= eθ̃E[e−φZ ] < 1. Hence for θ ≤ θ̃ and
t ∈ [0,∞) using (18) we obtain

E[eθAt ] ≤
∞∑
n=0

P(At ≥ n)eθ̃n ≤ eφt
∑∞
n=0 c

n

E[e−φZ ]
<∞. (19)

Now we use methods similar to those used in [10, Proposition
3.1] to prove Assumption 3(3). Pick β > 0 and for t ∈ (0,∞)
define θt

.= β log t/t. Then note that

Λ2(µ) ≥ tθtµ/ log t− lim sup
t→∞

log E[eθtAt ]/ log t, (20)

which is equal to βµ − lim supt→∞ log E[eθtAt ]/ log t. Since
θt ↓ 0 as t ↑ ∞, by (19) E[eθtAt ] is finite for all sufficiently
large t. Choose C ∈ (λ, µ), recall that �Ct� is the least integer
greater than or equal to Ct and note that

E[eθtAt ] =
∑∞
n=0 P(At = n)eθtn

≤ tCβ +
∑∞
n=�Ct� P(At ≥ n)eθtn.

(21)

For φ ∈ [0,∞) define g(φ) .= eφC
−1
E[e−φZ ], and

note that g is differentiable with derivative g′(φ) =
eφC

−1 (
C−1E[e−φZ ]− E[Ze−φZ ]

)
. Therefore g(0) = 1 and

g′(0) = C−1 − λ−1 < 0, and so there exists φ0 > 0 such that
g(φ0) < 1. To bound the summation on the right side of (21),
now let d

.= E[e−φ0Z ] and dt
.= eθtE[e−φ0Z ], and observe that

dt → d as t ↑ ∞, and d < 1. Using this observation along with
(18) and the fact that θt = β log t/t, we conclude that for all
sufficiently large t,∑∞

n=�Ct� P(At ≥ n)eθtn

≤ eφ0t
∑∞
n=�Ct�(E[e

−φ0Z ])n−1eθtn

= eφ0td−1(1− dt)−1d
�Ct�
t

= d−1(1− dt)−1g(φ0)�Ct�eφ0(t−C−1�Ct�)e�Ct�βt
−1 log t

≤ d−1(1− dt)−1tCβeβt
−1 log t.

Substituting this into (21) we infer that the quantity
lim supt→∞ log E[eθtAt ]/ log t is less than or equal to

lim sup
t→∞

Cβ log t+ log(1 + d−1(1− dt)−1eβt
−1 log t)

log t
,

which is equal to Cβ. Together with (20) this establishes the
required inequality Λ2(µ) ≥ (µ− C)β > 0.

Finally, if P(Z ≤ t) ≤ Mtβ for some M < ∞, β > 0, then
elementary calculations lead to the inequality P(At = k) ≤
(Mtβ)k−1. Thus given any θ > 0 and K ≥ 2/β + 1 for t ∈
[0, (e−θ/M)1/β ],

E
[
eθAt1{At≥K}

] ≤ ∞∑
k=K

ekθ(Mtβ)k−1 ≤ eKθMK−1t2

1− eθMtβ
,

which shows that Assumption 3(2) is satisfied. The last state-
ment follows because the Weibull distribution satisfies P(Z ≤
t) = O(tβ) with β = α and the inverse Weibull and Gamma
distributions satisfy it with β = 1.
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TABLE I

DESCRIPTION OF FIVE SOURCE ARRIVAL MODELS IN THE SIMULATION (MEAN ARRIVAL RATE = 5.45).

Class Name Description and Parameters I∞
1 Weibull inter-arrival time ∼ Weibull(α = 0.5) 5
2 InvWeibull inter-arrival time ∼ Inverse-Weibull(α = 1.5) ∞
3 ExponExpoff on period ∼ Exp(1), off period ∼ Exp(10), rate κ = 60 100.2
4 ParetoonExpoff on period ∼ Pareto(α = 1.5), off period ∼ Exp(10), rate κ = 60 ∞
5 Gamma inter-arrival time ∼ Gamma(α = 5) 0.2

Lemma 10: Any Poisson on-off process with a finite con-
ditional mean rate κ satisfies Assumptions 3(2). Moreover,
if the on-time and off-time distributions Ton and Toff satisfy
E(T 1+ζ

on ) < ∞ for some ζ > 0, and E(Toff ) < ∞, then As-
sumption 3(3) is also satisfied. In particular, Classes 3) and 4)
satisfy Assumption 3.

Proof: Let Y be the underlying on-off process associated
with the Poisson on-off process, so that Yt ∈ {0, 1} for t ∈
[0,∞) and It

.=
∫ t

0

Yt dt represents the cumulative on-time in

the interval [0, t]. Note that for every t ∈ [0,∞) It ≤ t and
At | It is a Poisson random variable with mean κIt. Thus for
any t ∈ [0,∞) and θ ∈ IR

E
[
eθAt1{At≥2} | It

]
= e(e

θ−1)κIt − (eθ − 1)κIt − 1.

Since It ≤ t and ex−x− 1 is increasing for x > 0, this implies

E
[
eθAt1{At≥2} | It

] ≤ e(e
θ−1)κt − (eθ − 1)κt− 1,

which is o(t) as t ↓ 0. Taking the expectation of both sides of
the above display with respect to It and observing that the right
hand side is independent of It, yields Assumption 3(2). Note
that a similar argument could be used to show that E[eθAt ] <∞
for t ∈ [0,∞), θ ∈ IR.

To prove Assumption 3(3), first note that for any ε > 0, there
exists γε > 0 such that eθ < 1 + (1 + ε)θ for θ ∈ (0, γε). Also
note that if θt

.= β log t/t for some β > 0, θt → 0 as t → ∞.
Thus for all t sufficiently large so that θt ∈ (0, γε), by the above
inequality

E[eθtAt ] = E[e(e
θt−1)κIt ] ≤ E[e(1+ε)κθtIt ],

≤ eεκθttE[eκθtIt ] = tεκβE[eκθtIt ].

Therefore

Λ2(µ) ≥ βµ− lim supt→∞ log E[eθtAt ]/ log t
≥ βµ− lim supt→∞ log E[eθtκIt ]/ log t− εκβ.

Sending ε ↓ 0 we conclude that

Λ2(µ) ≥ βµ− lim sup
t→∞

log E[eθtκIt ]
log t

. (22)

However from the assumptions on the on-time and off-time
distributions, the proof of Proposition 3.3 of [26] shows that
for any C ∈ (λ, µ) there exist positive K and α such that
P(It > Ct) ≤ Kt−α. Then by Proposition 3.1 of [10], it fol-
lows that there exists β > 0 such that the right hand side of
(22) is strictly greater than 0. This establishes Assumption 3(3).
The last statement holds since the exponential and Pareto dis-
tributions satisfy the assumptions on the on-time and off-time
distributions.

C. Simulation Results

We simulate representative examples from each of the five
classes described in Section IV-A with specific parameter val-
ues as summarised in Table I. All arrival processes have the
same mean packet arrival rate λ = 5.45 and equal packet sizes.
In order to provide an intuitive feel of the relative burstiness of
the the five arrival point processes that were simulated, in Fig-
ure 1 we have used Trellis graphics [27] to illustrate a sample
realisation of each example in the time period [0, 91.5], which
contains approximately 500 packets. The illustration suggests
that the Poisson arrival process (top panel) is more regular than
Classes 1-4 (bottom 4 panels), which appear to have more clus-
tered arrivals.

Figure 2 plots the buffer exceedance probability (in the log10

scale) against buffer size b = 0, . . . , 100 for processes from
the five models (see Table I), and compares them with the un-
finished work distribution UNλ for the Poisson process. We
consider three different degrees of superposition, namely n =
1, 100, 1000, and two utilisation levels ρ = 0.3 and ρ = 0.7.
(Note that the processing time per packet is given by ρ/λ.) Each
panel has six curves – the five shaded lines represent the five
models, and the thicker black line represents the Poisson ar-
rival process. When n = 1, as expected the steady state un-
finished work distributions corresponding to the different arrival
processes are very different. The two Poisson on-off models
show a greater exceedance probability in comparison with the
others, and all curves with the exception of the Gamma pro-
cess have an exceedance probability larger than that of Poisson.
This is not surprising since Classes 1-4 are burstier than Poisson.
However, as n increases, the difference between these curves
decreases (n = 100) and eventually all the curves converge
to that of Poisson (n = 1000). At lower utilisations, conver-
gence seems to be achieved at lower values of n. For example,
when ρ = 0.3 almost complete convergence is achieved for all
classes for n = 100, while for ρ = 0.7 it takes n = 1000 for
convergence to occur. Notice that although the commonly used
burstiness measure I∞ of the arrival processes does not change,
the queueing behaviour changes drastically with superposition.
Also notice that even though I∞ is infinite for both InvWeibull
and ParetoonExpoff, at n = 100 they both show smaller buffer
exceedance probabilities (at least for buffer sizes between 0 and
100) than ExponExpoff, which has a finite I∞. In fact, the
buffer exceedance probability for the InvWeibull is quite close
to Poisson even for n = 1, particularly for low utilisations. This
indicates that the limiting IDC I∞ is a rather poor metric for
measuring the impact of the burstiness of superposed processes
on queueing behaviour for small buffers.
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Fig. 1. A realisation of the fi ve arrival processes in the simulation.
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the fi ve models.

For each of the five representative examples, Figure 3 plots
the absolute normalised difference of the logarithm of the ex-
ceedance probability from that of the Poisson process against
the square root of the number of superpositions n, once again
for two utilisation levels (0.3 and 0.7). Let pAn(b) be the prob-
ability of exceeding a threshold size b for the superposed arrival
process An, and let pNλ(b) be the corresponding probability for
the Poisson process. Then the normalised error is defined as

| log10 pAn(b)− log10 pNλ(b)|
supn∈IN | log10 pAn(b)− log10 pNλ(b)| . (23)

In the simulation the supremum in the denominator, i.e. the max-
imum of the absolute error is estimated using the observed val-
ues from 1 ≤ n ≤ 1000. This maximum is mostly achieved
at small values of n. The three panels represent three different
buffer sizes, namely b = 1, 3, 6, with the five lines representing
the five models. Notice that there are no curves for InvWeibull
and Gamma at utilization 0.3 and buffer size 6. This is because
the exceedance probability from these arrival processes are very
small (on the order of 10−6) and our simulation does not give
enough accuracy for small probabilities. This makes the nor-
malising quantity in (23) unstable. The normalising quantity in
(23) is larger for larger buffer sizes, and is smaller for higher
utilisations. Overall, convergence to the Poisson limit for large
buffers and high utilisation seems to take place at higher values
of n (see both Figures 2 and 3). Between different classes of
arrival processes the convergence seems fastest for InvWeibull
and Gamma and slowest for Weibull. The slow convergence

for Weibull may be related to the propensity of the Weibull dis-
tribution to create short inter-arrivals for α < 1. Indeed it can
be shown that as t goes to zero, the Weibull arrival process with
shape parameter α satisfies P(At ≥ 2) = O(t1+α). However,
for the other models P(At ≥ 2) = O(t2).

V. IMPLICATIONS FOR NETWORK DESIGN

In this paper we have proved a strong insensitivity result for
the unfinished work of superposed point processes, in the limit
as the number of sources, and proportionally the processing rate,
goes to infinity. Specifically, we show that the actual steady state
probability (and not just the logarithmic asymptote) of the un-
finished work exceeding a fixed positive threshold tends to the
corresponding probability assuming the arrival processes were
Poisson. Simulations suggest that at moderate utilisations, for
a large class of traffic models convergence is achieved at rea-
sonable levels of superposition, say when several hundreds of
sources are multiplexed.

Our result supports recent statistical analysis of Internet traf-
fic [13], [24]. In [13], [24], Internet traces collected at a cor-
porate research site and several universities are studied. These
sites typically have a few hundred to a few thousand simulta-
neous streams during a busy period. The empirical results in
[13], [24] suggest that with increase in the number of superposi-
tions the packet arrival process tends toward Poisson and packet
sizes tend toward independence. An open-loop queueing study
was also carried out in [24] using traces from the corporate re-
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search site with different degrees of superposition. It was shown
that when the utilisation is kept fixed, the effect of the long-
range dependence of network traffic diminishes and the steady
state exceedance probabilities (assuming an infinite buffer) tend
to the Poisson limit. This is to be contrasted with the study in
[28], where a single Ethernet LAN trace is used to demonstrate
the impact of long-range dependence on queueing performance,
with almost no reference to the degree of superposition. In short,
our results suggest that with increase in the amount of superpo-
sition, the effect of long-range dependence on queueing reduces
even more markedly than suggested by previous results.

As discussed in Section III-C, our results differ from previous
ones with respect to the type of scaling considered. In our analy-
sis the buffer size is O(1), so that the time scale of interest is in-
versely proportional to the number n of sources superposed (see
Theorem 8), and hence proportional to the mean packet inter-
arrival time. When n increases, this inter-arrival time decreases,
while the packet inter-arrivals from an individual source remains
the same. Thus on that time scale the characteristics of an indi-
vidual source become less important, the packet inter-arrivals
tend to look more Poisson-like, and the steady state exceedance
probability also tends to that of Poisson. Our asymptotic anal-
ysis is valid for a whole range of magnitudes of the exceedance
probability, and not just for small probabilities, as is often the
case in large deviations analyses. Previous analyses [6], [7],
[12], [8], [10], [11] consider a different limiting regime, where
the buffer size is O(n), in which case the time scale of interest
does not change with superposition. Those results show that the
logarithm of the exceedance probability decreases exponentially
with n, and the decay rate depends on the distribution of the ar-
rival process. Moreover, the nature of their analysis implies that
the results are valid only in a regime where exceedance proba-
bilities are small. (Note that [10] also provides estimates of the
prefactor.)

The different scalings have important practical implications
for network design. Both our analysis as well as that of [6],
[7], [12], [8], [10], [11] show that statistical multiplexing gains
obtained from superposing many sources are significant even
when individual sources have long-range dependent behaviour.
This is particularly applicable to traffic in the core of a network,
where a high level of aggregation takes place. However the re-
sults of [6], [7], [12], [8], [10], [11] only show that multiplex-
ing gain (i.e. an exponential decay rate) can be achieved when
the buffer size increases proportionally to the number of sources
multiplexed. Our results suggest that for high speed systems
(assuming that the characteristics of the individual sources do
not change) relatively small buffers may be adequate in order to
achieve the same loss rate. Specifically, this implies that a sys-
tem design with a linear increase in the buffer size may be overly
conservative. As mentioned in the introduction, this is particu-
larly relevant in cases where the cost of high-speed memory is
high.

Another important observation is that since the critical time
scale decreases with superposition for our scaling, a fluid ap-
proximation of the processes may no longer be valid to study
O(1) buffer overflows. We model our packet arrival processes
as point processes because this perspective seems to reflect more
accurately the discrete nature of packet arrivals in routers and

switches. Some authors have considered models in which time
is discretised and the arrival process is represented in terms of
the accumulated workload over each discrete interval. This ap-
proach appears to be too crude to study O(1) buffer overflows,
especially if the size of the discretised interval is kept fixed with
increase in the degree of superposition since in that case the ac-
cumulated workload tends to infinity.

It is well known that the superposition of n suitably scaled
i.i.d. simple stationary point processes on the positive real line
converges weakly to a Poisson process as n ↑ ∞ [20]. Thus
the main result of this paper can be viewed as a continuity result
for the mapping that takes the arrival processes into the steady
state buffer content process, i.e. the reflection mapping on the
nonnegative real line. This is the viewpoint taken in [29], where
the analysis here is generalised to the case of marked point pro-
cesses to model the more realistic case when packets are of dif-
ferent sizes. It is also shown in [29] that the packet size pro-
cess tends towards independence with increase in the number
of sources multiplexed. In future work, one would like to gain
more insight into the dependence of the convergence rates on
various parameters of the system, in order to develop a useful
heuristic for sizing buffers in a network to smooth burstiness ef-
fects. In this paper we have used the probability of exceeding a
level b as a proxy for the overflow probability in a finite buffer of
size b. It would be worthwhile to see how accurate this approxi-
mation is in practice. Finally, here we have considered only the
steady state unfinished workload distribution. There are other
quantities of interest such as the waiting time and queue length
processes that may also be of interest.
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