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Abstract

The substantial overhead of performing internal network monitoring motivates techniques
for inferring spatially localized information about performance using only end-to-end measure-
ments. In this paper, we present a novel methodology for inferring the queuing delay distri-
butions across internal links in the network based solely on unicast, end-to-end measurements.
The major contributions are: (1) we formulate a measurement procedure for estimation and
localization of delay distribution based on end-to-end packet pairs; (2) we develop a simple
way to compute MLEs using the Expectation-Maximization (EM) algorithm; (3) we develop a
new estimation methodology based on recently proposed nonparametric, wavelet-based density
estimation method; and (4) we optimize the computational complexity of the EM algorithm
by developing a new fast Fourier transform implementation. Realistic network simulations are
carried out using ns-2 to demonstrate the accuracy of the estimation procedure.

1 Introduction

Spatially localized information about network performance, such as link loss rates, queuing de-
lays and available bandwidths, plays an important role in isolation of network congestion and
detection of performance degradation. Routing algorithms, servicing strategies, security programs
and performance verification can benefit from monitoring techniques that report such information.
Monitoring can be performed internally, but it is impractical to directly measure traffic charac-
teristics at all internal devices for a number of reasons [1]. This has prompted several groups to
investigate methods for inferring internal network behavior based on “external” end-to-end network
measurements [1, 2, 3,4, 5, 6, 7, 8,9, 10]. This problem is often referred to as network tomography;
see [11] for an overview of work in this area.

Queuing delays are one of the most critical performance characteristics. Optimizing communi-
cation network routing and service strategies requires knowledge of the queuing delay at different
points in the network. Measuring end-to-end (source to receiver) delays using timestamps [8, 12, 13]
is relatively easy and inexpensive in comparison to internal measurements, although there are of

course measurement issues that must be addressed.



In this paper, we introduce a new methodology for network tomography, specifically, estimating
the probability distribution of the queuing delay on each link based on end-to-end unicast packet
pair measurements. Our approach employs unicast, end-to-end measurement of back-to-back pack-
ets. By back-to-back packets we mean two packets that are sent simultaneously by the source,

possibly destined for different receivers, but sharing a common set of links in their paths.

1.1 Contribution

Earlier inference methodologies focused on multicast routing. In multicast routing, packets are
delivered from sender to the receivers in one send operation. Along the path, probe packets are
duplicated as needed as the paths diverge [2, 6]. Although multicast methods show promise for
network performance inference, these techniques are often impractical in real networks. Many
routers do not support multicast traffic and, if they do, they treat the packets differently from
the majority of the traffic which is based on unicast routing. Therefore, inferences drawn from
multicast routing may poorly reflect the actual network performance as observed by most traffic.
However, the use of single unicast packets does not provide correlated measurements as do multicast
packets. This motivates the use of back-to-back (closely time-spaced) unicast packets, which mimic
the behavior of multicast packets to some degree.

Moreover, in this paper, we describe a nonparametric framework for the inference of internal
delay distributions based on unicast end-to-end measurement. By nonparametric we mean that
the number of parameters or the degrees of freedom diverges as a function of the number of delay
measurements [14]. Most work to date in network tomography is based on parametric models.
Parametric models assume that the measured traffic data depends on a finite number of param-
eters. For example, earlier work in delay distribution estimation has been based on discretized
(or quantized) delay measurements, with internal delay distributions modeled as discrete proba-
bility mass functions (pmfs) [1, 4, 5]. In this context, the parameters are simply the probabilities
associated with each pmf. It has been our experience, as well as that of others [15, 16], that no
sufficiently simple parametric model is capable of portraying the wide variety of internal delay dis-
tributions observed in practice, thus motivating the consideration of nonparametric or continuous
models. The complex nature of network delay distributions is evident in the simulated network
measurements and estimates depicted in Figure 1.

Our methodology offers several significant advantages over existing methods: (1) it utilizes uni-
cast measurement so that inferred performance reflects the experience of the majority of network
traffic; (2) the estimation procedure is nonparametric and very flexible, in that it is capable of
recovering densities from a broad range of function spaces including Bounded Variation (BV) func-
tions and Besov spaces, which include both smooth and piecewise smooth densities; (3) the use of
a Multiscale Maximum Penalized Likelihood Estimator (MMPLE) provides a computationally fast
method for balancing the bias-variance trade-off and has been shown to be nearly optimal for den-

sity estimation in the above-mentioned function spaces [17, 18]; (4) we develop a new fast Fourier
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Figure 1: (a) ns-2 delay measurements using 170 packets on link 9 for network depicted in Fig. 2. Hor-
izontal axis is (discretized) delay time and vertical axis denotes the number of occurrences of a particular
delay measurement. (b) Discretized pmf with 16 equal-width bins. (c) Discretized pmf with 64 bins. (d)
Nonparametric density estimate proposed in this paper obtained by direct estimation using link delays.
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transform based implementation of the Expectation-Maximization (EM) algorithm for the network
tomography problem which, in combination with MMPLE, leads to a worst-case overall complexity
of O(MN?%log N) where M is the number of links in the network and N is the number of packet
pair measurements. In general, the complexity is substantially less than this (see Section 3.4 for
clarification). We demonstrate the flexibility and accuracy of the nonparametric approach through

ns-2 [19] simulation.

1.2 Related Work

Lo Presti et al. have outlined a framework for the inference of internal queuing delay distributions
based on multicast end-to-end measurement [1]. Multicast-based procedures for estimating low
order moments such as link delay variances have also been developed [20]. The multicast framework
has the advantage of scalability (each measurement probe provides some information about all links
in the considered network) and guaranteed, structured correlation between the delay measurements
at different receivers. However, multicast is not supported by all networks and there is evidence
that routers treat multicast packets differently from the unicast packets that make up the majority
of network traffic [6]. These concerns motivate the development of an inference framework based
on unicast measurement. However, an important new consideration arises in the unicast setting.
For a fixed measurement overhead, multicast measurement provides much more data than unicast.
This means that if the framework of [1] were adapted to unicast measurement, as suggested in [6],
it would need to perform with significantly less information available.

Lai and Baker [8] have implemented nettimer, a procedure that estimates link-level bandwidth.



Similar in nature to pathchar [21], it exploits the time-to-live field of packets to collect informative
measurements. nettimer generates accurate estimates of bandwidths (particularly when they are
small), although it requires a relatively large number of measurement packets. Theoretically, it
could be used to estimate queuing delays, but to our knowledge there has been no experimental
work exploring its performance. The number of measurement packets needed for estimation may
prove prohibitive given the short duration over which delay distributions are generally stable. It
would seem that network utilization would need to be low in order to achieve reliable estimates.

Shih and Hero have developed a method for estimation of the link delay cumulant generating
functions (CGFs) [22, 23]. The CGFs have the advantage of being additive over a path of several
links in contrast to the convolutional way in which link delay pmfs combine to form end-to-end delay
pmfs. Based on the disentangled CGFs, it is straightforward to reconstruct the delay distributions.
This technique has the benefit of imposing no discretization, but does not impose smoothness
constraints, leading to an ill-posed problem when data is limited. The chief disadvantage of the
technique is that in order for all links to be resolved, internal measurements must be available or
a tool such as nettimer must be used.

Coates and Nowak have described a sequential Monte Carlo-based internal delay estimation
framework in [4, 5]. This framework directly addresses the time-varying nature of network delay
behavior. In this approach, a fine-level of quantization can be imposed, and smoothness is incor-
porated through the adoption of a slowly-varying time-dependent Bayesian prior. However, the
parameters associated with the prior introduce a potentially undesirable parametric nature to the
estimation task.

Anagnostakis and Greenwald have explored the feasibilities of using existing network infras-
tructure in making delay measurements [24, 25]. They have also studied the differences in direct
measurements and indirect inference for determining the internal delays. The direct measurements
depend on the Timestamping mechanism of the ICMP protocol [26]. However, they did not eval-
uate the inaccuracy in ICMP timestamping mechanism and they have assumed both sender and
receivers are synchronized.

Recently, several studies have explored other forms of delay models [27, 16, 15]. The accuracy
complexity trade-off is the motivation for all these researches. Duffield et al. [16] have described
a varying bin size model for estimating the link delay distribution where the delay bin size is a
composition of fixed bin size models. The idea is that the smaller bins are used to capture the small
delay values. The larger bins are used to prevent explosion of the numbers of parameters and to
capture the delays experienced by slower links. The authors then relate the varying bin size model
to the fixed bin size model where the analysis takes place. The construction of varying bin size is
chosen a priori or based on the measurements.

In a recent paper by Shih and Hero [15], a finite mixture model is proposed to estimate the link
delay probability distribution functions. They model the delay with continuous Gaussian mixture
components and assume that the components in the link delay distribution have distinct means

and variances.



1.3 Paper Structure

The remainder of the paper is structured in the following manner. In Section 2 we describe the
measurement framework, modeling assumptions and implementation requirements. In Section 3
we describe the inference methodology, detailing the MMPLE procedure and EM algorithm. In
Section 4 we describe the results of ns-2 experiments designed to explore the performance of the

methodology. In Section 5, we make some concluding remarks.

2 Measurement Framework

Throughout this paper, we concentrate on networks comprised of a single source transmitting
measurement probes to multiple receivers. There is no difficulty extending the approach to mea-
surements made at multiple sources, although care must be taken that measurements are sufficiently
separated for independence assumptions to hold. We assume that the topology is fixed throughout
the measurement period, but straightforward extensions can account for changes in topology over
coarse time scales. The assumption of fixed topology implies every probe packet sent to a specific
receiver traverses the same path; i.e., the routes are unique, there are no route change during the
measurement period nor load-balancing in the routers.

For the networks we consider, standard network routing protocols force packets to follow a
specific route indicated by the routing table and they produce a tree-structured topology, with
the source at the root and the receivers at the leaves. A network with six receivers is depicted
in Fig. 2. The nodes between the source and receivers represent internal devices (e.g., routers,
switches, or other buffering elements). For simplicity, we will refer to all internal nodes as “routers.”
Connections between the source, routers, and receivers are called links. Each link between routers
may be a direct connection, or there may be “hidden” routers (where no branching occurs) along
the link that are not explicit in our representation. We adopt the notation that link ¢ connects
node i (below) to its parent node (above). We consider the situation where measurements can only
be made at the edge of the network and assume that the routing table (and thus topology) is fixed
and known for the duration of the measurement.

The basic measurement and inference idea is quite straightforward. Suppose two closely time-
spaced (back-to-back) packets are sent from the source to two different receivers. The paths to
these receivers traverse a common set of links, but at some point the two paths diverge (as the tree
branches). The two packets should experience approximately the same delay on each shared link
in their path. This facilitates the estimation of the delays occurring on each link.

We collect measurements of the end-to-end delays from source to receivers, and we index the
packet pair measurements by £k = 1,..., N. For the k-th packet pair measurement, let y; (k) and
y2(k) denote the two end-to-end delays measured. The ordering 1 and 2 is arbitrary; the indices are
randomly selected with no dependence on the order in which the packets were sent from the source.

This will be important in dealing with discrepancies between the delays experienced by the two



Figure 2: Tree-structured network topology used for ns-2 simulation experiments. Source (node 0) transmits
to 6 receivers (nodes 6-11). Link speeds in Mb/s are shown next to the links. Link ¢ connects node i to its
parent node, e.g. link 9 connects nodes 5 and 9.

packets on shared links, which will be discussed in greater detail in Section 2.1. In this paper, we
do not consider the case in which one or both of the packets is dropped (lost). We simply discard
packet pairs in which a loss occurs. However, it is possible to extend our approach to include losses.
Since we are interested in inferring queuing delay, our first step is to extract what we perceive as
the minimum delay (propagation + transmission) on each measurement path. The minimum delay
corresponds to the case in which all queues in the path are empty (i.e., no queuing delay). This
is estimated as the smallest delay measurement we acquire on the path during the measurement
period. We assume that the true minimum delay is observed over the measurement period. If this
is not the case, then queuing delay is systematically underestimated for links on the affected path.

Our goal is a nonparametric estimate of the delay distributions on each link. Clearly it is
impossible to completely determine an infinite dimensional density function from a finite number
of delay measurements, but we require that as the number of delay measurements increases so does
the accuracy of our estimation procedure. Thus, we adopt the following procedure. The end-to-end
delay measurements are binned, but the number of bins is chosen to be equal to or greater than
the number of delay measurements. We stress that this is not a parametric step. This means that
there is less than one measurement per bin, on average, and hence we do not lump or group delays
in an artificial, prescribed fashion. Thus, we place no prior restriction on the form of the density
estimator; the more measurements one has, the more one can resolve the structural nuances of the
delay densities.

In practice we choose the number of bins to be the smallest power of two greater than or equal
to the number of measurements (facilitating certain processing steps to be described later). We
upper bound the maximum delay on any one link by the maximum end-to-end delay along the
path(s) that include the link. Let dpax denotes the maximum path delay on any links, this upper

bound for a particular link and let K be the smallest power of 2 that is greater than or equal to the



number of measurement packets N. The bin width for the link is then set at dmax/(/ — 1). This
procedure is conservative, in that the estimated dpmax may be substantially larger than the true
maximum queuing delay. It may be preferable to use previous link-delay estimates or bandwidth
estimates from a procedure such as nettimer [8] to gauge the maximum delay on any link.

At this stage, each end-to-end measurement has been ascribed a discrete number between 0 and
(K —1). To illustrate our inference methodology in its simplest form, suppose that we send many
packet pairs to receivers 6 and 7 in Fig. 2 and measure the delays experienced by each packet.
Each measurement consists of a pair of delays, one being the delay to receiver 6 and the other the
delay to receiver 7. From these measurements, collect events where ‘0’ delay (a delay in bin zero) is
measured at receiver 6. Now, assuming that the delay is the same for both packets on the common
links (1 and 2 in this case), any “additional” delay observed to the receiver at 7 can be attributed to
link 7 alone. We can then build a histogram estimate of the delay pmf for link 7. This simple idea
can be extended and improved to obtain estimators for the delay distributions on all links which
take advantage of all the measured data (not just special cases like the one above). In Section 3 ,
we describe the large-scale inference procedure in detail.

The basic inference idea is simple. Suppose the network is stationary over each measurement
period, the delays are identical on shared links, and The true delay pmfs are strictly positive and
canonical (there is some mass in the zero delay bin). This implies the first packet has left the
queue before the second packet enters. The delay experienced by the second packet will not be
dependent on the delay of the first one. In addition, suppose that the link delays experienced by
an individual packet are independent of one another as in the multicast scenario. Then, based
on the identifiability analysis carried out for the multicast case [1], one can easily show that the
true distributions can be uniquely identified from such end-to-end measurements (as the number of
measurements tends to infinity). The issue about slightly different delays on shared link in practice
will be addressed in the following section. It is important to point out that unique identification is
not possible (in general) using single packet delay measurements; there are ambiguous cases that

cannot be resolved without multiple packet correlations [3].

2.1 Model Assumptions

There are several assumptions in the framework that are worthy of discussion. Firstly, we assume
spatial independence of delay. Delay on neighboring links is generally correlated to a greater or
lesser extent depending on the amount of shared traffic. In the ns-2 [19] experiments discussed
in Section 4, weak correlation of delays is observed. In the presence of weak correlation, our
framework is able to derive good estimates of the delay distributions. As the correlation grows
stronger, we see a gradual increase of bias in the estimates. We also assume temporal independence
(successive probes across the same link experience independent delays). Temporal dependence was
observed in [1] and in our experiments; indeed it is exploited in [5]. As in [1], the maximum

likelihood estimator we employ remains consistent in the presence of temporal dependence, but the



convergence rate slows. It practical situations, dependencies are usually weak and do not have a
dramatic effect on the performance of the estimator. Ignoring dependencies can also be interpreted
and analyzed as a case of Besag’s pseudolikelihood approach [28].

Finally, our framework hinges on an assumption that packets in a pair experience a common
delay on shared links. If the delays are identical on shared links, then the difference between the
two delay measurements can be attributed solely to the delays experienced on unshared links in the
two paths. This is the key to uniquely determining the delays on a link-by-link basis. However, in
practice the two packets may experience slightly different delays on shared links due to the fact that
one packet precedes the other in the common queues and additional packets may intervene between
the two. The nature of this delay differential is exposed in Fig. 3, which shows the histogram of the
difference between the end-to-end delays of two closely-spaced packets sent to the same receiver over
the Internet. This histogram is constructed from back-to-back packet pair measurements using the
netdyn tool [13]. Ideally, the delays should be identical, but we see a small discrepancy between
the two. The second packet in the pair typically experiences a slightly greater delay. However,
recall that the ordering of the packets was arbitrary in our recording process. In effect then, the
discrepancies between the delays on shared links adds an approximately zero mean error to the
difference between the two end-to-end measurements. We clearly see the symmetric zero-mean
nature in the empirical data shown in Fig. 3, and we have observed similar behavior in all our
measurements and simulations. This “noise” produces a smoothing (or blurring) in the inferred
delay pmfs. Nonetheless, because the errors are roughly zero mean, we can still use the estimated
delay pmfs to obtain approximately unbiased estimates of the expected delay (Fig. 3b) on each link
or the locations of modes in the density, for example. The errors could also be directly modeled,
but our experimentation suggests that these errors are relatively insignificant in the overall process,
due to the greater variability caused by the limited number of probes that can be used in practical

situations.
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Figure 3: (a) End-to-end delay histogram (packets sent from Rice University to Michigan State University).
(b) Difference between delays of the two packets in packet pairs. Measurements were made using the netdyn
tool.




2.2 Measurement Requirements

The delay inference framework requires knowledge of the (logical) topology of the network and the
capability to perform one-way delay measurements. We perform the construction of the topology
using a modified, lightweight version of traceroute [29, 30]. Alternatively, it is possible to deter-
mine the topology using the end-to-end unicast measurement and inference procedure we recently
proposed in [31]. Collection of one-way delay measurements requires that the receivers cooperate
with the source and the precision of the system timing [32].

We do not necessarily require that clocks at the source and receivers be synchronized, but we
do require that the disparity between clocks remain very nearly constant over the measurement
period. In this way we can be sure that subtracting the estimated minimum delay does not induce
bias in our estimates. A further difficulty lies in clock resolution. Clocks must be precise enough
to ensure that time measurement errors are insignificant relative to the scale of the time delays of
interest. Deployment of Global Positioning System (GPS) devices allows these clock difficulties to be
avoided, as it provides synchronized measurements to within tenths of microseconds. Alternatively,
delay measurements can be adjusted using algorithms developed to detect and compensate for
clock adjustments and rate discrepancies [33, 34, 32]. In this paper, we assume that synchronized

measurements are available.

3 Delay Distribution Inference

We commence with the description of our inference framework by formalizing our measurement and
modeling notation. Let p; = {p;o...,pi,k—1} denote the probabilities of a delay of 0,1,..., K —1
time units, respectively, on link i. We denote the packet pair measurements y = {y;(k), y2(k)}o_;.

In general, only a relatively small amount of data can be collected over the period when delay
distributions can be assumed approximately stationary. A natural estimate would be the maximum
likelihood estimates (MLEs) of p = {p;}, the collection of all delay pmfs. However, if a large number
of bins is used (i.e., high-resolution delay estimates), then the problem is ill-posed and the MLE
tends to overfit to the probe data (see Fig. 1(a)), producing highly variable estimates that do
not accurately reflect the delay distribution of the traffic at large. High variance manifests itself
in irregular, noisy-looking estimates [35]. One way to reduce this irregularity is to maximize a
penalized likelihood (see Fig. 1(d)). We replace the maximum (log) likelihood objective function
L(p) = logl(y|p) with an objective function of the form:

L(p) — pen(p) (1)

where pen(p) is a non-negative real-valued functional that penalizes the irregularity (or complezity)
of p. A small value of pen(p) indicates that p is a smooth, regular function; a large value indicates
that p is irregular and complex function. The maximization of this penalized log-likelihood involves

a trade-off between fidelity to the data (large L(p)) and smoothness or simplicity (small pen(p)).



We will describe a specific choice of penalty functional in Section 3.2. Before moving to that,
however, we will quickly formulate the basic likelihood function and motivate the adoption of an

EM algorithm for optimization.

3.1 Likelihood Function

Under the assumption of spatial independence, the likelihood of each delay measurement
{y1(k),y2(k)} is parameterized by a convolution of the pmfs in the path from the source to re-
ceiver. With our modeling constraint that packets in a pair experience the same delay on shared

links, the likelihood of the two measurements made by the k-th packet pair is:

Uyi(k),y2(k)lp) =
chk Npik (W1(k) = 7) pae (y2(k) — 7). (2)

The range of the summation is determined by the ranges of the pmfs p.x, p1 and py ;. The
pmf p. is the convolution of the pmfs of the links on the shared path of the two packets, e.g.
Pek = p1*p2 for a 6-7 pair in Fig. 2 (with * denoting convolution). The pmf p; ; (resp. py ) is the
convolution of the pmfs on the links traversed only by the packet that measures y; (k) (resp. y2(k)).
The joint likelihood I(y|p) of all measurements is equal to a product of the individual likelihoods:

I(ylp) = H Wy (k), y2(k)|p). (3)

The presence of convolved link pmfs in the likelihood of each measurement (2) results in an
objective function that cannot be maximized analytically. The maximization of the likelihood
function requires numerical optimization, and an Expectation-Maximization (EM) algorithm [36]
is an attractive strategy for this purpose. Before giving the details of the algorithm, we briefly
review the multiscale maximum penalized likelihood estimate (MMPLE) nonparametric density

estimation procedure employed in our framework.

3.2 MMPLE Density Estimation

Here we briefly outline the MMPLE density estimation procedure developed in [17, 18]. To intro-
duce the idea, we consider a case where the link delays have been directly measured. Let z;(k),
k=1,...,N;, denote a set of delay measurements for a particular link ;. We assume that these
measurements are independent and identically distributed according to a continuous delay density
p(t), where without loss of generality we assume that ¢ € [0, 1] (for convenience of exposition we take
the maximum delay to be unity). Define a discrete pmf via p; ; = f(ﬁ/_}l(/K p(t)dt, 7 =0,...,K —1,
where K is the smallest power of two greater than or equal to NN;. It follows that the number of
measurements falling in the interval [%, %], denoted m; ;, is multinomially distributed [14], i.e.,

{m;} ~ Multinomial(N;; {p;;}). The MMPLE estimator maximizes the following criterion with

10



respect to {p; ;}:
log Multinomial(Vi; {pi,;}) — pen({pi ;}), (4)

where

pen({pis}) = 3 log(Vi) x #: 9

where #; is the number of non-zero coefficients in the discrete Haar wavelet transform of the pmf
{pi,j}- This number reflects the irregularity and complexity of the pmf — the larger the value of
#i, the more “bumps” in the pmf. There are two important features of the MMPLE: (1) the global
maximizer can be computed in O(K) operations; (2) the MMPLE is nearly minimax optimal in
the rate of convergence over a broad class of function spaces [17, 18].

Computing the MMPLE is very similar to standard wavelet denoising methods. Finding the
optimal solution to (4) involves computing the Haar wavelet transform of the pmf and thresholding
(“keeping” or “killing”) each Haar wavelet coefficient according to a generalized likelihood ratio
test (GLRT). Due to the multinomial form of the likelihood, the GLRTSs involve binomial statistics
(instead of the usual Gaussian statistics involved in standard wavelet denoising problems). The
physical interpretation of each GLRT is simple: if the magnitude of the wavelet coefficient is
sufficiently large, then that coefficient is left unaltered, otherwise it is set to zero. In detail, the

MMPLE estimator is computed according to the four steps below.

i. Compute the (unnormalized) Haar scaling coefficients of the sequence {m;;} as follows. For

scales £ =0,...,log, N;

2[

£ § : 14

Si,j = mi,]‘_i_le, k:O,,NZ/Q —1.
=1

Note that {m; ;} the scaling coefficients at scale £ = 0.
4. Form the “multiscale coefficients”

¢ 41 -1 —1
Pij = Sioj/(Siaj + Sigjt1):

Note that sf,j = sf,gjl- + sf,g} 41~ Therefore, the scaling coefficients at scale £ — 1 can be

constructed from the scaling coefficients at scale ¢ along with the multiscale coefficients at
scale £ according to

1 _ 4 8 -1 IR,
i2; = PigSij and 55 = (1—p;;)s;;. (6)

s
The multiscale coefficients are closely related to the usual Haar wavelet coefficients. Specifi-
cally, the (unnormalized) Haar wavelet coefficient
y2 _ —1 —1
ni T %25 T Si2g4l
4 l
= (2pi,j - 1)3z',j .

W,

11



Note, in particular, that if pf,j =1/2, then w; ; = 0.

719. Compute the test statistic

th; = staf [log(pl;) —10g(1/2)] +sfa)sr [log(l — pf;) —log(1/2)]
and “threshold” the multiscale coefficients according to

5oL, = { 1{{2, .if tf,j < 1/2log N;
pijs ift;; > 1/2log N;

iv. Construct the MMPLE estimate by recursively applying (6) beginning with s;?lg2 Ni—1 and
using the thresholded multiscale coefficients {§ (pf’ ;)} in place of the original coefficients. The
resulting scale £ = 0 scaling coefficients are the desired elements of the MMPLE estimator
{Pij}-

The near minimax optimality implies that the rate at which the estimator converges to the
true continuous density (as a function of the number of measurements N;) cannot be significantly
improved upon. More complicated and computationally intensive procedures will not significantly
outperform the MMPLE. The optimization is carried out by performing a set of K independent
generalized likelihood ratio tests. In all results in this paper we employ a translation-invariant
version of the MMPLE, in which multiple MMPLEs are computed with K different shifted ver-
sions of the Haar wavelet basis and the resulting estimates are averaged. This produces a slight

improvement over the basic MMPLE and can be efficiently computed in O(K log K') operations.

3.3 EM Algorithm

The MMPLE methodology can be employed in the tomographic delay estimation case by simply

adopting the penalized likelihood criterion:

tog 1(ylp) — 3 5 loB(Ne) x #:, ”)
i
where NN; denotes the number probe packets passing through link 7 and #; denotes the number
of non-zero Haar wavelet coefficients in the delay pmf p; of link . Unfortunately, the penalized
likelihood function cannot be maximized analytically due to the convolutional relationship between
link delay pmfs and end-to-end measurements y.

The first step in developing an EM algorithm is to propose a suitable complete data quantity
that simplifies the likelihood function. Let z;(k) denote the delay on link 4 for the packets in the
k-th pair. Let z; = {z;(k)} and z = {2;}. The link delays z are not observed, and hence z is called
the unobserved data. Define the complete data © = {y, z}. Note that the complete data likelihood

12



may be factorized as follows:

l(z|p) = f(y|z)g(z|p),

where f is the conditional pmf of y given z (which is a point mass function since z determines y),
and g is the likelihood of z. The factorization shows that [(x|p) x g(z|p), since f(y|z) does not
depend on the parameters p. Next note that the likelihood

p) =[[»r;"
i

where m; ; = Z,]c\;l 1,,(k)=; is the number of packets (out of all the packet pair measurements) that
experienced a delay of j on link ¢; here 14 denotes the indicator function of the event A. Therefore,

we have
(z|p) Hpm”,

and, if the m; ; were available, then the MLE of p; ; would be simply

mq ,J

Ek 0 mzlc

Pij = (8)
Similarly, given the m; ; we could directly apply the MMPLE described above (see [17, 18, 37| for
implementation details).

The EM algorithm is an iterative method that constructs and utilizes a complete data likelihood
function to maximize the original likelihood function. By suitable modification, it can be used to
maximize a penalized log-likelihood objective function like ( 7), whilst preserving the advantage of
the O(K) computational simplicity of the MMPLE technique.

When a modified EM algorithm is used to maximize a penalized log-likelihood function, it
alternates between computing the conditional expectation of the complete data log likelihood given
the observations y and maximizing the sum of this expectation and the imposed complexity penalty
(—pen(p)) with respect to p. Notice that, ignoring constant terms, the complete data log likelihood
is linear in m:

log l(x|p) o Z m; jlog p; ;.
03

Thus, in the E-Step we need only compute the expectation of m = {m; ;}.

E-Step: Let p(™ denote the value of p after the r-th iteration. Then

) = Epe[miglyl,

N;
> lew=ly|
k=1

= Epo

N;
= I;Ep(r) [l{zi(k):j}|y] ?
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N;

= Z Ep('r') I:]-{zz-(k;):j}lyl (k),yg(k)] )
k=1

N;
= 3P (zlk) = jlyr (), y2()) )
k=1

Thus, the conditional expectation of m can be computed by determining the conditional
probabilities above for each packet pair measurement. A fast message-passing algorithm for

this calculation is described in the next section.

M-Step: In the penalized case (7), apply the MMPLE algorithm described in Section 3.2 with
the conditional expectation {7%1(,?} in place of {m; ;}. In the case of unpenalized maximum

likelihood estimation, simply substitute {T?LEZ)} in place of {m; ;} in equation (8).

3.4 Fast Fourier Transform based EM Algorithm

The expectation step of the EM algorithm poses the major portion of the computational burden
of the optimization task. It can be performed using a message passing (or upward-downward)
procedure [38]. The message passing procedure is based on a factorization of the likelihood function.
According to (9), our task for each measurement in the r-th iteration of the EM algorithm is to
compute p") (z; = j|y1,y2) (we have dropped the measurement index k for notational ease). In the
1980’s, Pearl [39] and Spiegelhalter [40] independently developed the message passing methodology,
an exact probability propagation algorithm for inferring the distributions of individual variables in
singly-connected graphical models (factor graphs). The basic idea of the algorithm is that each node
in the graph propagates its information (a measurement or current pmf estimate in this case) to
every other node. Each node then combines all the messages it receives to compute the distribution
of its variable.

Figure 4 depicts an example of the type of graphical model that arises in the delay inference
procedure. This factor graph is used for evaluation of the pmf estimates in the r + 1-th iteration of
the EM algorithm. In this factor graph, the nodes labeled d; correspond to the nodes of the tree
(r)

that are involved in measurement to nodes 6 and 7 in the example network. The nodes p; ’ contain
the delay pmf estimates that were generated in the previous iteration of the algorithm. The nodes
labeled z represent the complete data, that is, the unobserved individual link delays.

We will briefly illustrate the operation of message passing algorithm by considering how it
behaves when acting on a measurement made by a packet pair destined for nodes 6 and 7 in the
example network. The message passing algorithm can be divided into two stages. In the upward
stage, starting at the leaves, information is passed via messages from node to node until the root
is reached. In the downward stage, information from the root is passed via messages from node
to node until the leaves are reached. Individual nodes then combine the upward and downward

messages they received to generate marginal pmfs for their values.
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Figure 4: The factor graph used in the message-passing algorithm for a measurement made by a packet
pair sent to nodes 6 and 7 in the network of Fig. 2. Measurements are available at nodes 6 and 7; the nodes
pgr) contain current pmf estimates; and node ¢, indicates the convolutional relationship between nodes d,,
dy and zp.

At a leaf node (dg or d7) in Figure 4, the upward message is simply a delay pmf that has a
one in the bin of the delay measurement being processed and zeros everywhere else. The upward
message from zg is the previous pmf estimate for link 6. At node ¢ g this message is convolved with
the message from the leaf node dg, and the result is passed up to the branching point ds. A similar
process occurs from leaf node 7. At node ds, the upward messages from the two lower branches are
multiplied together and the resultant message is passed up. The convolution procedure continues
up the shared branch until the root node is reached. In the downward stage, the initial message
from the root contains the information that the delay at the root is zero: it is a delay pmf with one
in the zero bin and zeros elsewhere. Messages are passed down, with convolution exactly as before.
At the branching node dz, the message passed down to node ¢ is the product of the downward
message from c; 2 and the upward message from cp 7. At the end of the two stages, the each node
z; multiplies the upward message, the downward message, and its distribution from the previous
EM iteration to obtain pz(-rﬂ)(zi = jly1(k),y2(k))-

A straightforward implementation of this message passing procedure, as first proposed in [4],
has a computational complexity of O(LK?) per measurement and iteration of EM, where L is the
maximum path length in the network and K is the number of bins. Recall that K is the smallest
power of two greater than or equal to N. For each measurement, the act of passing a message within
the algorithm involves the evaluation of a number of summations, which can be cast as convolutions.
These convolutions involve vectors of maximum length LK, where L is the maximum path length in
the network. Implementation of the convolutions in the Fourier domain reduces the computational
complexity from O(LK?) to O(LK log K) per measurement and iteration of EM. This reduction
can be substantial when N (and hence K) is reasonably large.
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4 Simulation Experiments

In order to verify the performance of our estimation methodology, we conducted ns-2 [19] simulation
experiments using the network depicted in Fig. 2. Interior links in the network have higher capacity
(5-10 Mb/sec) and propagation delay (50 ms) than the edge links (0.5-2 Mb/sec and 10 ms). Queues
are FIFO (droptail) with space for 35 packets. Node 0 generates a 19.2 Kbit/s probing stream
comprised of UDP packet-pair probes (60 bytes each). Packet-pair sending times are generated
according to a Poisson process; the mean time-spacing is 50 ms. The probe-stream requires less
than 1% of any link’s capacity. Background traffic is composed of a mixture of long-lived data-
source TCP (FTP) connections, exponential on-off sources using UDP, and multiple short-duration
TCP connections. Averaged over the simulations, link utilization ranges between 10 and 60 percent,
and loss rates ranged from 0 to 2 percent; typical values for certain real networks.

The network was simulated for multiple two minute measurement periods; from within each
measurement period, 25 seconds (inference period) was isolated for analysis. This time duration
corresponds to 500 packet-pairs (assuming no probes are lost). Throughout the inference period,
queue lengths in the network were determined at a fine time scale by monitoring the arrivals of
every packet at each queue. A “true” pmf for each link was formed by calculating delays from
queue lengths and link capacities, quantizing and forming a histogram. When generating this true
pmf, so much data is available that the quantization can be very fine (constructing an excellent
estimate of the delay density) without affecting estimation stability.

In Fig. 5, we show the results of one experiment, comparing the true pmfs to the nonparametric
MMPLE estimator and the MLE estimator of [4] using a 16-bin discretized pmf (16 bins was found to
give the best performance among unpenalized estimators; see discussion below). We display results
for the lower bandwidth links because for our experimental set-up, queuing delay was concentrated
in these links. We display the results of representative links that provide a meaningful indication
of performance. There is substantial mass in the tails of these pmfs and we can evaluate how
well the pmf estimates generated by our proposed methodology estimates match the tails; network
performance hinges critically on the tail probabilities of queues [41, 42]. In the higher bandwidth
links, there is much less mass in the pmf tails 8(a). For these links, both the MLE and MMPLE
estimates match the true pmf where probability mass is concentrated, but there is insufficient
information to closely match the tails. We calculated the MLE for a variety of bin sizes, but show
the bin size that achieved the best fit to the true pmf (in this case 16 bins). The nonparametric
estimator was calculated from K = 512 bins.

In Fig. 6, we plot the magnitude of the L; error norm between the true pmf and the MMPLE
for the links in the network, as averaged over 25 simulations. Also shown are the results for the
MLE for medium (64 bins) and large (16 bins) bin sizes. The L; error norm is simply the sum of
the absolute difference between the estimated pmf and the true pmf over the K bins. As discussed
in [14, 43], the L; error criterion is a common measure of the performance of a density estimate.

The advantage of such as a measure as opposed to a mean-squared error criterion is that more
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Figure 5: Comparison between true pmfs (solid) and estimated pmfs (dashed). Top panel shows true pmf
and MMPLE (calculated using 512 bins); bottom panel shows true pmf and MLE (calculated using 16 bins).
16 bins is determined as the bin size at which the MLE obtains the best fit. (a) Link 5. (b) Link 7. (¢) Link
9.
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Figure 6: L; error criterion averaged over 25 simulations (means and standard deviation) for link 5, 7 and
9. Solid line is MMPLE, dashed line is MLE (16 bins), dotted line MLE (64 bins).

attention is paid to the tails of the distributions. It also enjoys several theoretical advantages over
other measures [43].

As is evident from the two figures, the MMPLE technique generates estimates which are smooth,
close fits to the true pmfs. In order to introduce some degree of smoothness, MLE estimates must
be calculated using a large bin size, resulting in an inability to capture the finer details of a pmf.

In order to illustrate the performance of the algorithm in a larger network, we also simulate a
20-receivers scenario as shown in Fig. 7. The packet probing rate from the source, as well as the
composition of background traffic remains the same as in the first scenario. The link loss rates
range from 0 to 2 percent, and the link utilization varies between 0 and 60 percent, averaged over
20 simulations. We use the same inference window of 25 seconds. If we assume there is no packet
loss, then there are a total of 500 packet pairs. However as the number of total measurements
remains unchanged while the number of receivers increases, the number of measurements obtained
for each link reduces. In Fig. 8 and in Fig. 9, we show the results and performance of the algorithm.

Fig. 10 compares the delay cumulative distribution function (cdf) obtained by estimation based
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on direct measurement with the delay cdf estimated using the MMPLE technique and the probe

measurements for a representative link in the network.

Figure 7: A larger tree-structured network topology used for ns-2 simulation experiments. Source (node 0)
transmits to 20 receivers (nodes 19-38). Link speeds in Mb/s are shown next to the links.
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Figure 8: Comparison between true pmfs (solid) and estimated pmfs (dashed). Top panel shows true pmf
and MMPLE (calculated using 512 bins); middle panel shows true pmf and MLE (calculated using 64 bins);
bottom panel shows true pmf and MLE (calculated using 512 bins). 512 bins is determined as the bin size
at which the MLE obtains the best fit. (a) Link 1. (b) Link 20. (c¢) Link 31.

When the amount of probing that can be performed is limited, we believe that the most sub-
stantial source of error is the intrinsic variability in probe measurements. Another potential source
of error is the discrepancy between the delays experienced by the two packets in each pair on their
common path. We therefore examined the extent and effect of the delay discrepancy; with 512
bins, the overwhelming majority of the discrepancy was concentrated in 0-3 bins, with a maximum
value of 16 bins. The effect of these discrepancies on the quality of the estimates is relatively minor
when such a small amount of data is available for inference. If we directly measure the delays

experienced by probes on each link (which can be done in our simulation), the estimates we obtain
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Figure 9: L, error criterion averaged over 20 simulations (means and standard deviation) for some termi-
nating links. Solid line is MMPLE, dash-dot line is MLE (512 bins), and dotted line is MLE (256 bins).
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Figure 10: The cdf estimates obtained from direct measurement (solid) to the tomographic one (dotted).
(a) Link 1. (b) Link 20. (¢) Link 31.

are very similar to those obtained by our tomographic procedure.

5 Conclusions

In this paper, we introduce a new nonparametric methodology for network delay tomography based
on unicast end-to-end measurement. Our approach takes advantage of the correlation between
the delay experienced by back-to-back packet pairs. We pose the network tomography problem
as a maximum penalized likelihood estimation, and develop a fast Fourier Transform based EM
algorithm for computing our estimates. The complexity is reduced to O(M N2 log N), where M is
the number of links in the tree and IV is the number of probes.

One of the key features of the framework are its flexibility (the ability to capture fine details
and smooth regions) and the introduction of a complexity penalization that allows smooth, accu-
rate estimates to be generated even when the amount of data is very small. The basic MMPLE
framework developed here could be extended to the multicast approach suggested in [6] and may

also be applicable in time-varying contexts like those considered in [4, 5]. We demonstrate the
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accuracy of the estimation procedure using network-level simulator ns-2.
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