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ABSTRACT
In order to control and manage highly aggregated Internet
traffic flows efficiently, we need to be able to categorize flows
into distinct classes and to be knowledgeable about the dif-
ferent behavior of flows belonging to these classes. In this
paper we consider the problem of classifying BGP level pre-
fix flows into a small set of homogeneous classes. We argue
that using the entire distributional properties of flows can
have significant benefits in terms of quality in the derived
classification. We propose a method based on modeling flow
histograms using Dirichlet Mixture Processes for random
distributions. We present an inference procedure based on
the Simulated Annealing Expectation Maximization algo-
rithm that estimates all the model parameters as well as
flow membership probabilities - the probability that a flow
belongs to any given class. One of our key contributions is
a new method for Internet flow classification. We show that
our method is powerful in that it is capable of examining
macroscopic flows while simultaneously making fine distinc-
tions between different traffic classes. We demonstrate that
our scheme can address issues with flows being close to class
boundaries and the inherent dynamic behaviour of Internet
flows.

Categories and Subject Descriptors
I.5.1 [Computing Methodologies]: Pattern Recognition—
Models; C.2.m [Computer Systems Organization]: Com-
puter Communication networks—Miscellaneous

General Terms
Algorithms, Measurement.
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Flow classification, Internet traffic, parameter estimation.
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The Internet today is a large highway that is traversed
everyday by packets from millions of users throughout the
world. These packets together create flows that are inter-
twined at gateways and routers to create larger and larger
aggregated flows as they travel deeper into the network. The
goal of traffic engineering in IP networks is to manage these
aggregated flows such that they traverse the network effi-
ciently, problem-free and with high performance (i.e., low
delay, low loss, etc). A variety of mechanisms are used to
manage traffic flows such as load balancing, routing policies,
traffic shaping, etc. It is useful to have some knowledge of
the statistical and dynamic behavior of the flows in order to
best manage them. This general goal has motivated a good
deal of research on Internet traffic characterization [16, 7,
12].

Before implementing any traffic control, a network opera-
tor needs to specify which flow granularity level will be the
controllable entity. Flows can be defined using a wide vari-
ety of parameters such as the type of source or destination
(user, subnet, etc), the protocol controlling the flow (TCP,
UDP, HTTP, etc), or the application sourcing or sinking
the flow. Flows at each level of aggregation consist of lower
level entities (packets, connections, sessions, etc) that may
have specific characteristics that are related to the source,
destination and path traversed by a flow. These flows are
bundled and intertwined via different queueing and multi-
plexing elements from a variety of devices (firewalls, gate-
ways, routers, etc) to create aggregated flows. Such highly
aggregated flows appear not only in backbone carrier net-
works, but also in Tier-2 networks, corporate networks of
companies with thousands of employees, and campus net-
works.

Aggregated flows can be rather complex and hard to char-
acterize. They will typically exhibit macroscopic behavior
that may not be trivially related to lower level behavior.
In order to keep the management of highly aggregated flows
relatively simple, it is useful to focus on the macroscopic be-
havior and to classify traffic into a small number of classes.
By characterizing each class one can then have a better un-
derstanding of how to treat different traffic classes. The
idea of separate treatment for different traffic classes has
been considered in a number of environments such as Diff-
Serv, IntServ, ATM networks, or load balancing policies for
heavy flows [13]. Traffic classification is also applicable to
the problem of detecting denial of service (DDOS) attacks.
By studying “normal” traffic and “attack” traffic one can
develop different classes for these traffic flows.

In this paper we focus on highly aggregated flows and de-



velop a very general method for classifying them. There are
two benefits of trying to classify flows. First, it enables us
to learn more about the traffic in that we identify charac-
teristics that are common to a set of flows (those within a
same class), and identify those that differ from one class to
another. Second, we enable a mechanism to examine any
single flow and determine which class it belongs to. This
in turns gives the operator the opportunity to manage flows
from one class differently than those in another.

We identify two issues that need to be addressed in this
process. On the one hand, it is desirable for traffic clas-
sification to use only a few classes because this helps keep
the management of flows simpler. On the other hand, the
macroscopic behavior may mask lower level behavior that
could be important in the identification of different types of
flows. Consequently, we want a classification scheme that is
powerful in that it can differentiate key differences in flows,
but yet one that operates at the macroscopic level since con-
trol of flows is typically carried out on highly aggregated
streams.

1.1 Features and Issues in Classification
Many researchers that have conducted traffic studies, have

found themselves unsatisfied by looking merely at first and
second order moments. The mean of traffic flows often says
very little about those flows because many aggregated flows
exhibit a wide range of behavior in terms of variability [9].
Characterizing flows by computing simple variance metrics
is also often insufficient because there are many sources of
variability in aggregated flows, including diurnal patterns,
bursty behavior and simple noise fluctuations [9]. In this
paper we argue that when doing traffic classification the
entire distributional properties of flows should be used.

The most common classification of flows is into the so
called elephants and mice classes. The idea of discussing
flows in terms of elephants and mice has arisen due to three
observations; first that a small fraction of the flows (e.g., 10
traffic load (e.g., 90 that heavy flows can be two or three
orders of magnitude larger than light flows; and third, that
there are many flows with extremely small bandwidths (and
often zero for long periods of time) [12]. Such observations
lead us to know that different classes of flows arise naturally
in the internet, however they do not leave us with a mech-
anism to observe a single flow and determine its class. This
can be difficult for those flows that are “in the middle”, i.e.
those that are not clearly elephants nor clearly mice. The
problem of good classification has to do with how well those
“flows in the middle” can be distinguished one from another.
Flows that do not exhibit persistent behavior over time can
also be difficult to classify because they may be heavy for
some period of time and then become lighter. Thus the
dynamic behaviour of flows further complicates the classifi-
cation task. For these reasons we believe that making use of
the entire distributional properties of flows will enable the
best classification.

1.2 Our Method
In this work, we investigate the applicability of statistical

inference techniques for identifying classes as well as decid-
ing the likelihood that a particular flow belongs to a specific
class. Our approach is as follows. We use samples of aver-
age flow bandwidths obtained from packet traces. We first
convert these samples into histograms. Our classification is

performed over the ensemble of histograms. By using the
entire distribution we incorporate many aspects of a flows
behavior, e.g. all order moments or tail behavior. These
histograms are grouped into a small set of classes and each
class is modeled via a random distribution. In particular we
use as a prior Dirichlet random distributions because these
distributions are very general and capable of representing a
wide variety of distributions. To find the parameters of the
Dirichlet distribution for each class, we use maximum likeli-
hood estimation. Our estimation algorithm is implemented
using a stochastic version of the Expectation Maximization
(EM) algorithm. Our method outputs the distribution de-
scribing each class, and also an a posteriori probability or
membership probabilities, ı.e. the probability that a given
flow belongs to each class. We apply a Maximum a posteri-
ori criterion saying that a flow belongs to a particular class
if the probability that it belongs to that class is higher than
the probability that it belongs to any other class.

The method developed in this paper is very general for
three reasons. First, it uses histograms that capture the
entire range of traffic behavior and all statistical character-
istics of flows (i.e., all the moments, not just the first and
second moments as is usually done). Second, since the form
of Dirichlet processes is a very general polynomial prior, our
Dirichlet-based model can capture well flows with almost
any type of distribution. Third, because we describe a class
via a probability distribution, our approach is more general
than schemes that rely on a tuple (e.g., mean and variance),
or previous methods [12, 7] that define thresholds. In thresh-
olding methods a flow is in one class if its mean bandwidth
(for example) is above the threshold and in another class if
it is below. Our approach is more general because it allows
large flows to have small moments of non-large behavior but
still remain classified as a large flow. In [12] the authors
identified the problem of flows frequently changing between
classes. By incorporating the entire histogram of a flow’s
behavior, rather than a single value, the likelihood that a
flow needs to be reclassified because it experiences a small
moment of atypical behavior is greatly reduced.

The literature has widely used zoological references such
as elephant, mice, tortoise, dragonflies, etc., [2] to name dif-
ferent classes of flows. We will not deviate from this tradi-
tion and we thus consider our schemes as analogous to going
on a safari in which one wishes to potentially discover new
animals and their behavior, or to hunt (find and identify)
animals of predefined types.

One of the main contributions of this paper lies in the
development of a new method for flow classification. The
fundamentals of this method were developed recently in the
mathematics community [8]. In this work, we adapted the
method to Internet flows. This is the first time that this
method has been evaluated on any dataset. We first vali-
date the method on synthetic data in which we can know
ahead of time what the “proper” classification of a flow is.
Our method yielded 100 few synthetic data trials. Second,
we apply our method to prefix level flows collected inside a
large carrier’s backbone. We consider the scenario of two
classes and confirm that our method generates not only a
set of classes that matches our intuition about elephants
and mice, but one that can also classify those “flows in the
middle”. We then consider a scenario in which flows are
separated into four classes. We see that these four classes
do exhibit distinct behavior. We thus conclude that our



method is capable of detecting fine differences in macro-
scopic flows. Finally we examine the temporal stability of
our classification and illustrate that our method can handle
the dynamicity of flows well.

In section 2, we present our method for creating empir-
ical histograms from flow measurements, and our rationale
for histogram-based classification. Our model and the re-
lated background material are given in Section 3. We dis-
cuss random distributions, parametric inference for these
distributions and the stochastic version of the Expectation
Maximization method for Maximum Likelihood estimation
that is used to estimate the parameters of our model and the
membership probabilities. We validate our model in Section
4. In Section 5 we apply our method to Internet backbone
flows when either two or four classes are used. The issue of
the stability of the classification is addressed in Section 5.3.
Finally, we conclude in Section 6.

2. HISTOGRAM-BASED CLASSIFICATION
In this section we describe the data used for classification,

how we built the histograms, and our motivation for doing
so. Since core routers use IP destination prefixes announced
by the Border Gateway Protocol (BGP) [17] for routing pur-
poses, the natural granularity level for inter-domain traffic
engineering is that of network prefixes appearing in routing
tables. We therefore define flows throughout this paper as
the sequence of packets going toward a specific BGP prefix
(i.e., those that appear in a BGP table). We believe that
this granularity level is a natural candidate for traffic clas-
sification for a few reasons. First, such flows can easily be
manipulated by simply changing the next hop address in
the routing table for that particular flow. Second, routing
policies tend to be applied to a network prefix as a whole,
since network prefixes are the smallest routable entities in
the Internet.

2.1 Data used for classification
The data used in this paper comes from packet traces

collected in the core of a major Tier-1 ISP network. Optical
splitters are used in conjunction with passive monitoring
equipment to collect 44-byte headers from every IP packet
traversing monitored links. We use packet traces, collected
on July 24, 2001, from two different OC-12 links in the USA,
one from an east coast PoP (Point of Presence) and the other
from a west coast PoP. The links used are two hops away
from the periphery of the network so that traffic toward
specific destinations exhibits sufficient level of aggregation.
Our traces contain 3 1/2 days of continuous data.

The packet trace collection was accompanied by the col-
lection of the BGP routing tables at the corresponding PoPs.
Those BGP tables are default-free and contain approximately
120K entries. We calculated the volume of traffic headed to-
ward each BGP destination and computed the average band-
width of each flow over 5 minute time intervals. We found
that in any given measurement interval, approximatively 90
the network prefixes had no traffic traveling toward them.
We thus define a flow to be active if it transmits at least
one packet during the measurement interval. We found that
in a typical measurement interval, approximately 2000 flows
were active.

2.2 Creating histograms
Much of our work was done considering 24-hour periods
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Figure 1: Converting flow data to histograms

from these traces. Since we measure the flows every 5 min-
utes, this yields 288 measurements for each flow. We con-
sider the ensemble of the active flows and build our his-
tograms as follows. Let B denote a set of L bins, B =
{[b0 = 0, b1), [b1, b2), . . . , [bL−1, bL = +∞)}, with 0 < b1 <
. . . < bl < . . . < bL−1. Let m denote the number of mea-
surements for the flows (e.g., 288 in the 24-hour traces). We
define Xil to be the proportion of time among m time slots
where the bandwidth of flow i was in the interval [bl−1, bl).
Thus Xi∗ gives an empirical histogram for flow i over the
set of bins B. In Figure 1 we give a dummy example with 4
flows and 4 bins to help clarify our notation. Each value rep-
resents a sample value for Xil. Since we have

PL
l=1 Xil = 1,

we indeed have a proper histogram for each flow i. When
considering all the flows together, then X∗l gives a vector of
samples for bin l. To simplify the notation, when we write
Xl we imply X∗l. The vector Xl gives a set of of samples
on the proportion of time that an arbitrary flow transmits
in the range defined by the l-th bin. An example of this
vector is indicated in Figure 1 via the encircled set of val-
ues. We can thus define the vector X = (X1, ..., XL) (i.e.,
a vector of vectors) to represent our entire data collection.
This X can be viewed two ways. It represents our entire
set of histograms for all the flows. It also represents the
bin distributions for all bins. In essence, Xl denotes the
likelihood that a flow transmits in the range defined by bin
l. For modeling purposes, we will make use of this second
view. We will discuss the issue of bin sizing in section 5.

In Figure 2 we plot three flows and the corresponding
histograms they generate. We used logarithmic bin centers
due to the wide range of bandwidth that single flows can
span and to ensure that no bins are empty. These three flows
generate three different histograms. Although the first two
flows appear somewhat similar over time, their histograms
capture the differences; for example, the second flow spends
more time in the 104 range of values than the first flow.

2.3 Motivation
In section 1 we discussed why we believe the entire distri-

butional properties of flows should be used for classification,
rather than, for example, using a tuple such as the mean and
variance (or standard deviation). We illustrate here, via
an example, why using the mean and standard deviation
alone can be insufficient. Although we haven’t described
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Figure 2: Temporal variation of a flow

our method yet, we use it here merely for motivational pur-
poses. We used one of our 24-hour traces and our method
for classifying the flows into two classes. With a classifi-
cation of the flows into elephants and mice, we computed
the mean and variance of each flow in each class. In Figure
3, we plot the standard deviation versus the mean. Each
circle represents the (mean,std) tuple for one elephant flow.
Each plus sign represents the tuple for a single mouse. If the
elephants and mice were cleanly separable using only these
two parameters, then the circles and pluses would appear
as two distinct clusters on such a graph. Although many
elephants are clustered toward the top right of the graph
and many mice are clustered near the bottom left, there are
clearly many flows “in the middle” which are not easy to
differentiate.

An astute reader might postulate that there is a circular
argument here. We have used our own method and shown
that the (mean,std) tuple is insufficient. This could be an
artifact of our method. While that might be true, our expe-
rience testing a variety of methods leads us to hypothesize
that the conclusion implied by this figure holds more gen-
erally. Especially since we are using the entire distribution
of the flows for classification. To check this, we also cre-
ated the same type of plot for methods such as [7, 12], and
simple threshold methods (such as “select largest-N flows as
elephants” or “select flows contributing to top x lack of clear
clusters. We were thus motivated to study classification us-
ing the entire distributions of flows.

3. METHODOLOGY

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

mean

st
d

Mean vs Std

Mice
Elephant

Figure 3: Two feature classification using mean and
standard deviation



In this work we propose to model the vector X = (X1, ...,
XL)

that represents the empirical histogram of a flow using a
mixture of Dirichlet processes. In order to explain this we
first present some background material on random distribu-
tions, Dirichlet densities and Dirichlet processes. We dis-
cuss what this type of model implies for bin distributions.
We then explain why we use a mixture of such processes.
Finally, we present an algorithm that does two things: esti-
mates the parameters of the mixture model, and computes
the a posteriori probability, i.e. the membership probabil-
ities (the probability that a flow belongs to a class). The
class assignment will use a MAP (Maximum A Posteriori)
criterion, i.e. a flow is classified in class k if the probability
that it belongs to class k is larger than the probability that
it belongs to any other class. This can be viewed as a “soft”
class assignment, as opposed to a “hard” one in which a
flow can only be classified in one class. Soft assignments are
intuitively more appealing in the dynamic context of the In-
ternet as they essentially recognize that a flow may behave
like a flow in another class at times.

3.1 Theoretical framework
Because we try to analyze the histogram of a flow rather

than its values, we are dealing with observations that are
themselves probability distributions. In other words, each
flow yields a histogram that can be seen as a realization com-
ing from a stochastic source generating random histograms.
By way of analogy, we can say that random distribuions
are a source that generates histograms much the same way
that a random variable represents a source that generates
a single value, or that a random vector represents a source
that generates vectorial observations. A formal definition of
random distributions is given as follows.

Definition 1: A random distribution (RD) is a measur-
able map from a probability space (Ω, z,P) to the space
P(V ) of all probability measures defined on a fixed measur-
able set (V,V). If X : Ω −→ P(V ) is a RD, its distribution
PX is then a probability measure on P(V ).

Any parametric distribution in which the parameter is
randomized is an example of a random distribution. For
example λ(ω)e−λ(ω)x where λ(ω) is itself a random variable
forms an exponential RD.

An example of a random distribution for discrete random
variables is the following. Let V = {1, . . . , L} be a finite set,
then P(V ), the set of all probability distributions defined
over the set V , can be identified to be the set

X = (X1, ..., XL) : (Ω,P) → Rl
+ such that

LX
l=1

Xl = 1.

.
This last RD is very useful in the context we are studying

as each histogram coming from a flow is a discrete proba-
bility distribution defined over a finite set of bins. Recall
that Xl is a random variable that denotes the likelihood of
a flow transmitting in the range defined by bin l. Therefore
this last example of an RD describes the set of histograms
we have to deal with in flow classification.

The source generating random distributions is governed
by a multidimensional probability distribution that defines
the probability of an histogram X = (X1, ..., XL). Clearly
bin sizes (Xi) are dependent of each other as they are jointly

constrained by the condition that
PL

k=1 Xk = 1. This means

that classical distributions are not applicable in this context.
The Dirichlet distribution defines a multivariate distribution
on the space of random distributions that is frequently used
in the context of RD.

Definition 2: A Dirichlet distribution density, with pa-
rameter vector α = (α1, ..., αL) is given by

f(x1, x2, ..., xL|α1, α2, ..., αL) =
Γ(α1 + ... + αL)

Γ(α1)...Γ(αL)

LY
l=1

x
αl−1
l

where α1 > 0, ..., αL > 0, xl > 0, and
P

xl = 1. This defines
the joint density probability function of (X1 = x1, X2 =
x2, ..., XL = xL). We denote this Dirichlet distribution by
D(α1, ..., αL)

Remarks:
The popularity of the Dirichlet distribution is due to several
convenient properties that we list here :

1. We should notice that the problem of estimating the
real distribution of a flow, based on an observed empir-
ical distribution over k bins, can be formalized as esti-
mating the parameters Θ = (θ1, . . . , θL) of a multino-
mial distribution based on an observed empirical his-
togram X = (X1, . . . , XL). Now if a random variable
Z follows a multinomial distributionM(θ1, . . . , θL) with
unknown parameters Θ = (θ1, . . . , θL), and if the prior
distribution on the unknown parameter π(Θ) is a Di-
richlet distribution D(α1, . . . , αL), the posterior prob-
ability Prob

˘
Θ|X = (x1, . . . , xL)

¯
will also follow a

Dirichlet distribution given by D(α1+x1, . . . , αL+xL),
i.e. the prior distribution has the same form as the pos-
terior distribution. In other words the Dirichlet distri-
bution is the conjugate prior for the multinomial dis-
tributions. This property reduces the updating of the
prior based on the observed value, to a simple update
of the parameters in the prior density. It is therefore
natural to use a Dirichlet distribution in the context
of inference of a finite distributions.

2. The Dirichlet distribution has the following nice prop-
erty that is particularly useful. If X = (X1, . . . , XL)
has a Dirichlet distribution, D(α1, . . . , αL), then the
marginal distribution of each component Xl follows a
beta distribution 1

Xl ∼ B(αl, A− αl)

where A, defined as A =
PL

l=1 αl, is called the mass-
value. The mean is given by E

˘
Xl

¯
= αlPL

l=1 αl
and

the variance is given by Var(Xl) = αl(A−αl)
A(A+1)

. In other

words the variance of all components Xl is governed
by the mass-value, A.

3. The Dirichlet distribution can be simulated easily by
the following normalization construction. Suppose Z1, ...,

1The beta distribution B(α, β) is defined with a pdf

f(x) =
Γ(α + β)

Γ(α)Γ(β)
(1− x)β−1xα−1

where 0 ≥ x ≥ 1.



ZL are L random variables following a gamma distri-
butions γ(α1, 1), ..., γ(αL, 1)2 respectively, where

γ(a, b)(x) =
1

Γ(a)
bae−bxxa−1I(x>0).

If we normalize each random variable Zl by the sum
Z = Z1 + ... + Zl, then Zl/Z has a beta distribution,

and the multivariate random vector (Z1
Z

, ..., ZL
Z

) will
follow a Dirichlet distribution D(α1, ..., αL).

These three properties make the Dirichlet distribution
very attractive for modeling random distributions. More-
over Dirichlet distributions, and more specially the mixtures
of Dirichlet distributions (to be defined later in the paper),
have demonstrated, in practice, a good ability to model a
very large spectrum of different distributions observed in the
real world [14, 5, 6].

A random distribution following the Dirichlet distribution
is called a Dirichlet process. The mean distribution of the
Dirichlet Process will be defined as E

˘
X

¯
= (E

˘
X1

¯
, . . . ,

E
˘
XL

¯
) = (α1

A
, . . . , αL

A
). As explained in the second remark

above each bin will follow a beta distribution and their vari-
ance will be jointly governed simply by the mass-value A
which acts as a dispersion parameter that controls the dis-
persion of the Dirichlet process X around its mean E

˘
X

¯
.

More generally for every arbitrary distribution f(x) with
cumulative distribution function F (x), we can construct a
Dirichlet process with a mean distribution that approxi-
mates the distribution f(x) over the set of L bins B = {[b0 =
−∞, b1), [b1, b2), . . . , [bL−1, bL = +∞)}. For this purpose it
suffices to set the values of αi = A(F (bi) − F (bi−1)). The
resulting Dirichlet process will have a mean value given by
((F (b1)−F (b0)), . . . , ((F (bl)−F (bl−1)) and a variance that
can be set arbitrarily by choosing the mass-value A. This
last construction illustrates the power and the flexibility of
Dirichlet distributions in the context of this study.

3.2 Modeling multiple classes
Mixed Dirichlet Processes (MPD) are often used as a flex-

ible and practical way for modeling prior distributions in
nonparametric bayesian estimation. The rationale for using
Dirichlet mixtures is well explained in [14]. They are be-
coming increasingly popular for modeling distributions when
conventional parametric priors would impose unreasonably
stiff constraints on the distributional assumptions. Exam-
ples of applications include empirical Bayes problems [5],
nonparametric regression [10] and density estimation [6].

In this paper we want to classify observed flows based
on the similarity of their distribution. We assume that the
observed empirical histograms are coming from a source gov-
erned by a random distribution. Rather than finding a single
distribution to represent all flows, it makes intuitive sense to
think of each class of traffic as having its own distribution.
The entire ensemble of n flows X = {Xi∗, i = 1, . . . , n},
that contains the empirical histogram for each flow, is mod-
eled as a mixture of multiple Dirichlet processes defined asPK

k=1 pkD(αk
1 , ..., αk

L), where each component D(αk
1 , ..., αk

L)
represents a traffic class, and each pk represents the weight
assigned to the class. This mixture defines the so called a
priori probability. Now each observed histogram is assumed
to come from one of these components. The classification

2Recall that the family of gamma distributions contains ex-
ponential, as well as erlang distributions

problem consists of determining from which source compo-
nent each histogram could have originated. To solve this
problem, we need to find out the a posteriori probability,
i.e. the probability that a flow belongs to a class given the
histogram of the flow.

MDPs inherits the nice properties of Dirichlet processes
we described in the previous section. Any particular prob-
ability density can be approximated over a bin set B by a
MDP with suitable parameters. Moreover the mass-value
of each component controls the extent to which the model
is allowed to diverge from its specified mean behavior. So
MDP doesn’t contain as much a priori as a normal or Pois-
son distribution.

Let K denote the number of traffic classes into which
we want to classify our Internet flows. We model our ob-
served histograms by assuming that the distribution of bins
Pr(X1, . . . , XL) can be described by a finite mixture of K
Dirichlet distributions:

Pr(X1, . . . , XL) =

KX
k=1

pkD(αk
1 , ..., αk

L)

where the coefficients p1, . . . , pK denote the weight, or con-
tribution, of each Dirichlet density. This gives the prior dis-
tribution, that is the probability that one observes (x1, . . . ,
xL) given that the parameters are fixed at p1, . . . , pK and
αk

1 , ..., αk
L for k = 1, . . . , K. However in practice these pa-

rameters are unknown and in order to finalize our model,
we need to estimate them. Based on this a priori proba-
bility we need also to obtain the a posteriori or the class
membership probability, i.e. the probability that a flow be-
longs to a class given the histogram of the flow. In the next
section we present the estimation procedure for estimating
these parameters based on our data.

3.3 Estimation procedure
Before discussing the estimation of the Dirichlet mixture

process, we first recall the mixture problem when the ob-
servations are real vectors. Let X1, X2, ..., Xn ∈ RL be
n observations (flows) from a random vector of dimension
L. The problem consists in estimating the distribution PX

of X when PX is supposed to be a convex combinationP
k=1,...,K pkPk, in which the distributions Pk belong to a

specific parametric family, say the exponential family. Sev-
eral methods have been proposed to estimate the mixing
weights pk and the parameters of the components Pk; here
we use one of the most efficient methods called SAEM, a
Simulated Annealing Expectation Maximization algorithm
[3]. SAEM is a stochastic approximation of the popular
Expectation Maximization (EM) algorithm [4] that is less
sensitive to local minima problems.

The EM algorithm is a general method of finding the
maximum likelihood estimates of the parameters of an un-
derlying distribution from a given data set when the data
is incomplete or has some unknown parameters. The EM
method is based on an iteration between an Estimation and
a Maximization step. The usage of the EM algorithm in the
case of mixture models is well described in [1].

SAEM, as first described by Celeux and Dielbot in [3],
modifies the EM methods to get rid of common problems
encountered such as slow convergence or local maxima. In-
stead of using a prior distribution for the unknown parame-
ter it involves a stochastic step that simulates the unknown
data in order to obtain complete data and to uncover hidden



variables.
Our algorithm takes as inputs the histograms, the num-

ber of desired classes K, and a sequence of values γq. These
values γq are used to control the tradeoff between the influ-
ence of the stochastic step and the EM steps. Let {γq} be
a sequence of positive real numbers decreasing to zero at a
sufficiently slow rate, with γ0 = 1. Each time the algorithm
iterates, repeating the E and M steps, the impact of the
stochastic EM component is successively reduced (by mul-
tiplying with smaller and smaller γq). When γq approaches
zero, our algorithm reduces to a pure EM algorithm.

Our algorithm outputs three things: the weights, pk, of
each Dirichlet process; the Dirichlet parameters α = (α1, ...,
αL); and the class membership probabilities tq

ik, where tq
ik

denotes the probability that flow i belongs to class k at the q-
th iteration of the algorithm. This algorithm asymptotically
estimates the parameter of the mixture model since pqk, tq

ik

and the density parameters converge as q →∞ [3].
A general formulation of the SAEM for the large class of

mixtures of density functions belonging to the exponential
family has the form:

d(x, a) = d−1(a)e(x) exp < aT . b(x) >

where the parameter a is a vector with transpose aT , d(a)
is a normalizing factor, e and b are fixed but arbitrary func-
tions and < . > is the standard inner product.

In adapting this to our problem, the case of Dirichlet
mixtures, we need to set the parameters as follows: a =

(α1, . . . , αL), b(x) = (log(x1), . . . , log(xL)), d(a) = Γ(α1)...Γ(αL)
Γ(α1+...+αL)

and e(x) = x−1
1 . . . x−1

L . The inputs are the n vectors
Xi∗, i = 1, ..., n where each observation Xi∗ is a normal-
ized histogram. The number of components in the mixture
is a given integer K assumed to be known.

Our algorithm is given in the figure labeled Algorithm 1.
This algorithm contains three main steps:

• A simulation step that introduces some noise into the
process by making a random class assignment. This
noise helps to push the algorithm out from local min-
ima. However since the parameter γq is decreasing, the
noise decreases as well, and the algorithm will converge
to a stable estimate. A threshold c(n) is used where
0 < c(n) < 1 and limn→∞c(n) = 0. This threshold
determines whether or not one needs to return to the
initialization step and essentially start over.

• A maximization step that updates the parameter val-
ues aq+1

k , as well as the mixing weights p(q+1)k, such

that the likelihood is maximized. (Recall that the aq+1
k

variables in the algorithm correspond to the α vari-
ables in our model as stated above.)

• An estimation step in which we update the member-
ship probabilities tq

ik, i.e., the probability that flow i
belongs to class k (at the q-th iteration through the al-
gorithm). Recall that this is our posterior distribution
(in Bayesian terms).

4. VALIDATION
In this section we validate our classification algorithm us-

ing synthetic data. Synthetic data is needed for this stage
because we need to know ahead of time what the “true”
classification is of each flow so that we may compute error

rates in the model’s classification. We test our estimation
method using “hard” cases in order to test whether it can
make fine distinctions in flow behavior that might otherwise
be blurred by simplistic classification schemes.

4.1 Bin sizing for histograms
The choice of the number of bins and the location of the

bin centers (B) is important. On the one hand the larger the
number of bins the more accurately our empirical histogram
will represent the real distribution. On the other hand, if
there are too many bins, some bins might remain empty
and the estimation algorithm can fail (because an empty bin
gives a likelihood of zero). Our experience has shown that
20 bins achieve a good tradeoff between these two issues.
As explained before it is desirable that bins are not empty,
however the choice of bin centers can affect the accuracy of
the classification algorithm particularly if some bins end up
being empty. As a heuristic we try to find an algorithm that
selects the bin centers such that all bins have roughly the
same number of members.

Using these bins, we derive histograms for each observed
flow. Recall that the goal is to find K classes that represent
the ensemble of all of these histograms. This number K thus
also defines the number of Dirichlet processes in the mixture
model.

4.2 Test Cases
To test the estimation procedure we have defined three

test sets.

1. In the first test, we use the normalization of a gamma
distributed random vector procedure, described in the
third remark under the definition of the Dirichlet dis-
tribution, to generate histograms following a Dirichlet
distribution. Two series of histograms over 20 bins
containing respectively 500 and 100 flows are gener-
ated using the above described method. Each sequence
of histograms follows a distinct Dirichlet distribution
with distinct parameters. We have applied the pre-
viously described estimation procedure to reclassify
blindly the histograms. The estimation procedure has
given a set of values of α as well as the posterior prob-
ability of class membership for each histogram. The
results of the classification are very good. All flows are
correctly reclassified and moreover the parameters of
the α’s of the initial Dirichlet processes are estimated
very faithfully.

2. In the second test case, we have assumed that flows are
generated by two classes whose flows follow a normal
distribution. The first class of flows is normal with the
parameters µ1 = 200 and σ1 = 10; while the second
class of flows has parameters µ2 = 210 and σ2 = 20.
We generated 500 flows in class 1 and 100 flows in
class 2 for a total of 600 flows. Each flow consists
of 288 samples (equivalent to the realistic situation
of one day of measurements with 5 minute reporting
intervals). We pick two classes whose means are fairly
close together because this creates a hard test case in
that the method needs to be able to distinguish two
somewhat similar classes.

These flows are transformed to empirical histograms
as described in Section 2. Our estimation of the two



Initialization step :
Assign randomly each flow i to a class.
Simulation step :

Generate randomly t
(0)
ik (i = 1, . . . , n) representing the initial a posteriori probability that a flow i is in class k where 1 <=

k <= K.
for q = 0 to Q do

Stochastic step:
Generate random multinomial numbers eqi = (ek

qi) following the probability distribution {tqik} where all the ek
qi are 0 except

one of them equal to 1.

if

P
i=1,...,N ek

qi

N
< c(n) for some k then

Return back to initialisation step.

end
Maximization step :

Estimate the mixing weights p(q+1)k = 1
n

[(1− γq)
P

i=1,...,n tqik + γq
P

i=1,...,n ek
qi].

and the parameter value aq+1
k = (1− γq)

P
i=1,...,n t

q
ik

b(fi)P
i=1,...,n t

q
ik

+ γq

P
i=1,...,n ek

qib(fi)P
i=1,...,n ek

qi

Estimation step :

Update the a posteriori probability of a flow i belonging to class k (tq+1
ik ) according to tq+1

ik =
p(q+1)kh(q+1)k(fi)P

r=1...K p(q+1)rh(q+1)r(fi)

end

Algorithm 1: SAEM Algorithm
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Figure 4: Estimated Classes for Synthetic Dataset 1

classes is given in Figure 4. Because the Dirichlet dis-
tribution is a multi-dimensional entity, it is difficult to
plot. To provide some way to visualise as to what our
model produces, we provide here the PDF of the mean
of the Dirichlet mixture process E(X ), which is itself
a random variable. We plot the mean PDF for each of
the two derived classes.

The results of the classification are very significant.
Out of 600 flows, only one flow is misclassified (a flow
with a mean of µ1 = 200 and σ1 = 10 is classified
in the other class)! To the best of our knowledge, no
other classification technique is able to reach such a
high success ratio when classifying classes that are so
similar.

3. In the third test case we generate two sequences of
flows following two distributions with differing weight
in the tail. The first distribution is simply a gamma
distribution, the second distribution is a mixture of the
gamma distribution with a Pareto distribution whose
parameter is equal to 2.5 (this leads to a heavy tailed
distribution). We generated 500 flows from each class

and the histograms were constructed over 20 bins as
described formerly. Then we applied our estimation
procedure to these 1000 flows. The results are also ex-
cellent here. The classification had a 100 classification
procedure can be readily applied even to separate a
heavy tailed distribution from a light tailed one.

These three test cases validate the classification algorithm
and justify its application to realistic data that will be de-
scribed in the next section. We point out that the last two
test cases illustrate that even when the data does not follow
a gamma or beta distribution (as would be implied by the
model), the Dirichlet process can be made to fit the data
well since it is such a flexible polynomial prior. This is why
Dirichlet processes are so good for modeling datasets with
unknown distributions.

5. RESULTS
The data used for this classification study was described in

Section 2. Recall that we have two traces from two backbone
links, each of which we split into three back-to-back 24-hour
traces. Thus each trace now contains 288 measurements
(one measurement taken every 5 minutes) for approximately
2000 flows. We grouped these 288 measurements into 20
bins.

We now apply the proposed algorithm to our collected
packet traces from backbone OC-12 links. We studied the
traces from both links, but include only one here for ease
of presentation; the results are similar in both cases. We
classify flows using both 2 classes, and then 4 classes. We
explain what is learned when allowing more classes to be
considered.

Our goal in this section is not to present definitive results
on how internet flows should be classified, but rather to il-
lustrate the proposed method and to see what we may learn
from it. We are aware of the fact that the results presented
here are not sufficient for finalizing general insight about
the behavior of aggregate flows. A study applying this clas-
sification approach to a large set of data traces is currently
under way and is not in the scope of this paper.



5.1 Classification with two classes
We now take one of our packet traces and classify all the

flows into two classes. Figure 5-a shows the distribution
(PDFs and CDFs) of the mean for each class. Recall that
we are plotting the PDF of the mean of the Dirichlet pro-
cess, E(X ), which is a random variable. We give this as
our visualization because Dirichlet processes are not easy
to plot since they are multivariate distributions. We found
that 749 flows (41 belong to class 1 and that 1051 flows (59
2. In the second class, the vast majority of flows typically
have small values. The mean behavior of class 2 has an
exponential like form that is evidenced by the close linear
alignment over the range of 100 bytes/sec to 1 Mbyte/sec. In
the first class, the vast majority of flows experience larger
values and are almost never close to zero. This empirical
classification corresponds to the well known elephants and
mice phenomenon. In Figure 5-b we can see that flows in
class 1 contribute roughly 90 throughout the day. We there-
fore use the standard terms and label the first class of flows
as elephants and the second class as mice. While we picked
the target number of classes here, these figures show that
the classes selected by our method conform to our intuition
and experience with Internet flows.

Note that within the elephant class, we can still see some
flows whose mean bandwidth is small. This is as it should
be. Flows can have small mean bandwidths but may also
experience a few large bursts. Our method is classifying
some of these flows as elephants. Similarly a mouse flow
that experiences one short burst could have a reasonably
large mean, but should still be classified as a mouse if most
of the time its bandwidth is small. Our method is thus
handling well the “flows in the middle” or those that exhibit
a bit of both behaviors.

5.2 Classification with more classes
We now go hunting on safari to see if we can discover other

animals with differing behavior. In this section we consider
classifying our flows into four classes. The motivation for
doing so is the following. When using a small number of
classes, there may be batches of flows within one class that
behavior substantially differently from the rest of the flows
in that same class. Using a larger number of classes per-
mits such finer level distinctions to be drawn. By running
our algorithm with a target of four classes, we will see via
the output whether it draws meaningful differences among
classes. What we did was to tell our method to subdivide
each of the two elephant and mice classes into two classes,
yielding a total of four.

In Figure 6 we plot the CDF of the flow means. We do
see here four distinct CDFs for the four classes. Probing
futher, we examine the contribution of each class to the
overall traffic in Figure 6-b. We see that class 1 contains 20
flows that generate 70 together contain 58% of the flows but
only generate 13 traffic. We will call these flows elephants
(class 1), buffalos (class 2), mice (class 3) and dragonflies
(class 4).

Note that the original elephant class has now been split
into two classes (called elephants and buffalos). The new
class of buffalos has substantially lower average rate than
the elephants. To see whether there is more meaning to this
differentiation, we examine the time series of some sample
flows from each of these two classes in Figure 7. It ap-
pears that buffalo flows are more prone to burst suddenly,
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Figure 5: (a)Mean class PDF/CDF for a two classes
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total traffic during 24 hours

and then quickly drop off to low levels, whereas elephants
flows have more inertia thus exhibiting large volumes for
long durations. This figure thus suggests that buffalos have
a stronger spiky behavior (short lived bursts) than elephants
do.

To validate the hypothesis that our algorithm is differ-
entiating buffalos from elephants based on their burst be-
havior we did the following. For each buffalo and elephant
flow we calibrated a two state hidden Markov model. In
each state, the flow is assumed to follow a Gaussian distri-
bution and transitions between states occur when the flow
goes from a low rate (with small mean) to a high rate (with
large mean) and vice-versa. We used the well known Baum-
Welches equations to infer the transition matrix for each
flow, as well as the parameters of the Gaussian distribution
in each state. Details of this procedure are given in [11].
We computed the mean holding times in each state based
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on the transition matrix.
The CDF of the holding times in the high state for both

buffalos and elephants is given in Figure 8. This plot clearly
shows that buffalos have short holding times in the high
state, implying that their bursts are typically much more
short-lived than those of elephants. This distribution com-
puted over all flows validates the behavior illustrated in Fig-
ure 7; namely that buffalos are more spiky than elephants.

This analysis reveals the power of our classification method.
It differentiates flows not only according to their mean be-
havior but also according to specific aspects of their variabil-
ity behavior. It is drawing a distinction related to the time
scale of variability. This shows that our method can draw
fine distinctions between groups of flows that are based on
it knowing more than simply the mean and standard devi-
ation. Classification based on the (mean,std) tuple would
not be able to make use of temporal characteristics.

To complete the story let’s also examine the mice and
dragonflies. The lower curve in Figure 5 corresponding to
mice shows two burst episodes (at 14h and 1h). When these
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Figure 7: Typical temporal (24 hours) behaviour of
Elephants and Buffalos

flows are further separated in two classes, as in Figure 6,
we see that the (new) mice do not exhibit any bursts, and
that all the bursts have been attributed to dragonflies. Our
classification is able to draw fine distinctions between classes
because we give it entire histograms to work with, and be-
cause it uses a very general modeling distribution (e.g, the
random Dirichlet distribution).
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An important point that is out of the scope of this paper
is the issue of exactly how many classes are needed to char-
acterize the set of flows on an aggregated link. The answer
to this question is not as simple as “the larger the number
of classes, the more precise the classification”. The level of
precision needed will clearly depend upon what the classifi-
cation is used for. One promising approach is based on the
entropy inspirated approach developed in [15], where it is
shown that the log-likelihood of an inferred classification is
upper bounded by the entropy of the source generating the
observations.

This subject is currently under investigation.

5.3 Stability analysis



One known problem observed in previous attempts to clas-
sify network flows, was the instability of classification. This
came from two sources: first, different classifications arose
when the scheme is executed at different moments in time;
second, there are many “flow in the middle” that had a
tendency to oscillate between classes, morphing from ele-
phant to mice and vice-versa, in successive snapshots [12].
We decided to evaluate the sensitivity of our approach to
these stability problems. For this purpose we have run the
classification algorithm with 4 classes on each of the three
consecutive days separately. We compare the obtained mean
class behaviour in Figure 9.
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We see that our classification of mice and dragonflies re-
mains very consistent over the three days. The class defini-
tions for elephants and buffalos are very consistent for the
first two days. In the third day we see that the buffalos
species starts to experience some extinction as they morph
to elephants. The number of buffalos falls from 380 to 97 on
day 3, while the number of elephants rises from 392 to 666.
The mean behavior of elephants also changes on the third
day. We point out that this third day is a Saturday, and is
thus most likely related to the difference between weekday
and weekend traffic patterns.

The number of class changes from day 1 and 2 is very small
(around 90 changes in 1800 flows). The given analysis shows
that the approach developed in this paper is able to detect
changes due to weekly variation pattern. It also shows that
the classes of mice and dragon flies are very stable during
the time. This suggests that the proposed classification is
at least robust at a small of some days. This result need
also more confirmation over larger data set covering longer
period of time.

6. CONCLUSIONS
In this paper we develop a new method for classification

of Internet prefix level flows. We argue that classification
of highly aggregated flows should be done using histograms
that capture the entire distributional properties of flows.
This enables classification schemes that are able to draw
fine distinctions about flow behavior even when operating

on macroscopic flows.
When using historgrams for classification we need models

based upon random distributions. We use Dirichlet pro-
cesses to model traffic classes because they are very flexible
distributions that can easily be parametrized to fit a wide
variety of distributional forms. Because we use histograms
for classification combined with Dirichlet processes, we build
an extremely flexible classifier. We use a mixture of Dirich-
let processes with one process per class. The parameters
of the mixture model are estimated using a variant of the
Expectation Maximization algorithm, called the Stochastic
Annealing EM.

We validated our model against three hard synthetic test
cases. Each of the test cases yielded 99% or 100 classifica-
tion. We then applied our method to data collected from
inside a Tier-1 carrier network. When using two classes, our
method defined two classes whose properties behave accord-
ing to the elephants and mice phenomenon we have come
to expect. Our method is more meaningful than thresh-
old based methods because it can classify flows that exhibit
a bit of both behaviors (by determining which behavior is
predominant). When using four classes, we see that our
method is capable of drawing fine distinctions between the
classes. Our method draws a distinction between elephants
and buffalos (both large flows) according to their burst be-
havior. The buffalo class exhibits greater short-term spiki-
ness than the elephants. This illustrates the benefit of using
histograms since a distinction that includes a temporal no-
tion has been incorporated into the classification.

Our goal was to introduce a new method and provide a
proof of concept by illustrating its abilities on Internet flows.
A wider study using a larger data set is needed before gen-
eral conclusions can be drawn about the data itself. Such a
study is under way and the next step in our study will be
to develop a class of parametric models for the mean class
behaviour. This parametric class will be used as a prior in
real time operational traffic classification by using bayesian
estimation.
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