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Abstract -- An essential issue in designing, operating and
managing a modern network is to assure end-to-end Quality-of-
Service (QoS) from users’ perspective, and in the meantime to
optimize a certain “average” performance objective from the
system’s perspective. In this paper, we consider the problem of
minimizing the average cross-network packet delay in virtual
circuit networks subject to an end-to-end delay constraint for
each origin-destination user pair. The problem is formulated as a
multicommodity network flow problem with integer routing
decision variables, where additional end-to-end delay constraints
are considered. The difficulties of this problem result from the
integrality nature and particularly the nonconvexity associated
with the end-to-end delay constraints. The basic approach to the
algorithm development is Lagrangean relaxation in conjunction
with a number of optimization-based heuristics. In the
computational experiments, it is shown that the proposed
algorithm calculates solutions which are within 1% and 3% of
optimal solutions under lightly and heavily loaded conditions,
respectively, in minutes of CPU time for networks with up to 26
nodes.

Index Terms -- Optimization, Lagrangean Relaxation, End-to-
end QoS, Routing Assignment

1. INTRODUCTION

To ensure user-perceived end-to-end QoS requirement is
one of the most important issues in providing modern network
services, which typically requires sophisticated design of
routing and capacity management policies. User-perceived
end-to-end QoS measures include, for example, mean packet
delay, packet delay jitter and packet lost probability. Besides
users’ perspective of QoS, from the service providers’
perspective (which is a traditional view of network
performance management), optimizing a certain system-level
performance measure, e.g. overall network utilization or
average cross-network delay among all users, is another major
concern. Unfortunately, these two perspectives/objectives may
not be entirely agreeable with each other. This then places a
major challenge to network managers and therefore calls for
an integrated methodology to consider these two perspectives
in a joint fashion.

The routing problem in virtual circuit networks has been a
traditional research topic in computer networks and has
attracted even more attention since the emergence of the
Asynchronous Transfer Mode (ATM) technology. However,
most previous research on virtual circuit routing considers the
objective function of minimizing the average end-to-end
packet delay [1,3,5], which addresses a system-optimization
perspective without taking individual users into account. In [2],
Cheng and Lin took a user-optimization approach and
considered a fairness issue by minimizing the maximum
individual end-to-end packet delay in virtual circuit networks.
In this paper, we attempt to jointly consider both perspectives.
More precisely, we consider the virtual circuit routing problem
of minimizing the average packet delay subject to end-to-end
packet delay constraints for users. This problem is a difficult
NP-complete problem as indicated in [6]. An optimization-
based approach is then devised to attack the problem, where
the problem is formulated as a mathematical programming
problem, followed by proposing an algorithm based on
Lagrangean relaxation. It is shown in the computational
experiments that the proposed algorithm is both efficient and
effective.

The remainder of this paper is organized as follows. In
Section 2, a mathematical formulation of the routing problem
is proposed. In Section 3, a solution approach to the routing
problem based on Lagrangean relaxation is presented. In
Section 4, heuristics are developed to calculate good primal
feasible solutions. In Section 5, computational results are
reported. Finally, Section 6 concludes this paper.

2. PROBLEM FORMULATION

The virtual circuit network is modeled as graph where the
processors are depicted as nodes and the communication
channels are depicted as arcs. We show the definition of the
following notation.

V ={1,2, …,N}, the set of nodes in the graph
L the set of communication links in the communication

network
W the set of Origin-Destination (O-D) pairs in the network
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wγ (packets/sec): the arrival rate of new traffic for each O-D
pair w∈W, which is modeled as a Poisson process for
illustration purpose

Cl (packets/sec), the capacity of each link l∈L
Pw a given set of simple directed paths from the origin to the

destination of O-D pair w

px a routing decision variable which is 1 when path p∈Pw is
used to transmit the packets for O-D pair w and 0
otherwise

plδ the indicator function which is 1 if link l is on path p and
0 otherwise

gl the aggregate flow over link l, which is equal to

∑ ∑
∈ ∈wPp Ww

plwpx δγ

Dw the maximum allowable end-to-end delay for O-D pair w

Under the assumption of Kleinrock’s independent
assumption [4], the arrival of packets to each buffer is a
Poisson process where the rate is the aggregate flow over the
outbound link. Assume that the transmission time for each
packet is exponentially distributed with mean C-1

l. Hence, refer
to previous research [1, 3, 5], each buffer is modeled as an
M/M/1 queue.

It is remarkable to address that the formulation can be
extended to any non M/M/1 model with monotonically
increasing and convexity performance metrics. For the
illustration purpose, the formulation will be based on the
M/M/1 model. To determine a path for each O-D pair to
minimize the average packet delay with maximum allowable
end-to-end transmission delay is formulated as a nonlinear
combinatorial optimization problem, as shown below.
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 Constraint (1.1) requires that the end-to-end packet delay
should be no larger than Dw for each O-D pair. Constraint (1.2)
requires that the aggregate flow on each link should not
exceed the link capacity. Constraints (1.3) and (1.4) require
that the all the traffic for each O-D pair should be transmitted
over exactly one path. The above formulation is a nonlinear
multicommodity flow problem, since each O-D pair transmits
different type of traffic over the network. And it is easy to
show that (IP”) is a nonconvex programming problem by

verifying the Hessian of ∑ ∑
∈ ∈ −

Ll ll

plp

Pp
gC

x

w

δ
 with respect to xp.

For the purpose of applying Lagrangean relaxation method,
we transform the above problem formulation (IP”) into an
equivalent formulation (IP). In (IP), two auxiliary variables are

introduced: wly  is defined as ∑
∈ wPp

plpx δ  and fl denotes the

estimate of the aggregate flow.
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ll fg ≤ Ll ∈∀ (2.6)

ll Cf ≤≤0 Ll ∈∀ . (2.7)

Redundant constraints associated with these auxiliary
variables from (2.4) to (2.7) are added. Note that Constraints
(2.4) and (2.6) should be equalities, and it is clear that the
equality should hold at the optimal point. By introducing these
auxiliary variables, the Lagrangean relaxation problem can be
decomposed into independent and easily solvable
subproblems.

3. LAGRANGEAN RELAXATION

The algorithm development is based upon Lagrangean
relaxation. We dualize Constraints (2.1), (2.4) and (2.6) to
obtain the following Lagrangean relaxation problem (LR).
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ll Cf ≤≤0 Ll ∈∀ . (3.4)

We can decompose (LR) into two independent subproblems.
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Subproblem 1: for xp
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Subproblem 2: for ywl and fl
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(SUB1) can be further decomposed into W  independent

shortest path problem with nonnegative arc weights. It can be

easily solved by the Dijkstra’s algorithm. The ∑
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the optimal solution of (SUB2). Then (SUB2) can be
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(SUB2.1) is a complicated problem due to the coupling of

ywl and fl. On the other hand, the 
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objective function of (SUB2.1) is a nonnegative and
monotonically increasing function with respect to fl, and it will
not affect the optimal value of the following terms in the
(SUB2.1). Therefore, the algorithm developed in [2] can be
used to solve (SUB2.1). Hence, the algorithm to solve
(SUB2.1) is as follows:
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Step 5. The global minimum point can be found by comparing
these local minimum points.

According to the algorithms proposed above, we could
successfully solve the Lagrangean relaxation problem
optimally. By using the weak Lagrangean duality theorem (for
any given set of nonnegative multipliers, the optimal objective
function value of the corresponding Lagrangean relaxation
problem is a lower bound on the optimal objective function
value of the primal problem), ZD(t,u,v) is a lower bound on ZIP.
We construct the following dual problem to calculate the
tightest lower bound and solve the dual problem by using the
subgradient method.
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where h
IPZ  is an primal objective function value (an upper

bound on optimal primal objective function value), and δ  is a
constant ( 20 ≤≤ δ ).

4. GETTING PRIMAL FEASIBLE SOLUTIONS

To obtain the primal solutions to the minimized average
packet delay with maximum allowable end-to-end delay
constraints problems, solutions to the Lagrangean relaxation
problems (LR) is considered. For example, if a solution to (LR)
is also feasible to (IP), i.e., satisfy the capacity constraints and
end-to-end delay constraints, then it is considered as a primal
feasible solution to (IP); otherwise, it will be modified so that
it may be feasible to (IP).

Three getting primal heuristics are developed to improve the
effectiveness of the algorithms. For example, when a solution
to (LR) is found, the routing assignments for the maximum
end-to-end delay path is reassigned to another path to reduce
the value of maximum end-to-end delay. For another case,
consider that the end-to-end delay constraints, when the end-
to-end delay constraints is violated, identify the paths that
violate end-to-end delay constraints, the arc weights along
these paths are increased, then the routing assignments are
recalculated. On the other hand, consider the capacity
constraints, when a solution to (LR) is infeasible for capacity
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constraints, the arc weight for the overflow link is increased,
and then the routing assignments are recalculated. According
to the computational experiments, the second heuristic can get
a better solution in many cases.

5. COMPUTATIONAL EXPERIMENTS

The computational experiments for the algorithms
developed in Sections 3 and 4 are coded in C and performed
on a PC with INTELTM PII-233 CPU. We tested the algorithm
for 3 networks -- ARPA, GTE, OCT with 21, 12 and 26 nodes.
The network topologies are shown in Fig. 1, 2 and 3.

Figure 1. 21-node 52-link ARPA Network

Figure 2. 12-node 50-link GTE Network

Figure 3. 26-node 60-link OCT Network

The maximum number of iterations for the proposed dual
Lagrangean algorithm is 1000, and the improvement counter is
30. The step size for the dual Lagrangean algorithm is
initialized to be 2 and be halved of its value when the
objective value of the dual algorithm, does not improve for 30
iterations. It is assumed that the traffic demand of each O-D
pair is one packet per second. Unlike others’ work in [2], the
candidate path set does not need to be prepared in advance and
all possible candidate paths are considered for each O-D pair.

We perform two sets of computational experiments. In the
first set of computational experiments, the choice of the Dw

value is fixed as to examine the solution quality of the
minimum average packet delay problem.

Table 1 summarizes the results. The first column is the type
of the network topology. The second column is the link

capacity. The third column is the maximum allowable end-to-
end delay (Dw). The forth column reports the lower bound of
the proposed dual Lagrangean problem. The fifth column
reports the upper bound of the proposed dual algorithm. The
sixth column reports the error gap between the lower bound
and the upper bound. The seventh column reports the
maximum end-to-end delay among all O-D pairs. As can be
seen in the sixth column, the gap between the lower bound and
the upper bound are very tight for all different network
topologies and link capacities when the value of Dw is loose as
compared to the maximum end-to-end delay among all O-D
pairs.

Since the value for the maximum allowable end-to-end
delay (Dw) have a significant impact on the solution of the
minimum average packet delay problem. In the second set of
computational experiments, we try to examine the impact of
the Dw value on the solution quality of minimum average
delay. Fig. 4, 5 and 6 shows the results for the ARPA, GTE,
OCT network. It is clear to see that the upper bound remains
almost the same with different Dw value. When the Dw value
below a certain threshold (as indicated in third column of
Table 2), the primal solution could not be found.

Table 2 summarizes this result. The first column is the type
of the network topology. The second column is the link
capacity. The third column is the threshold of the maximum
allowable end-to-end delay (Dw). The forth column reports the
lower bound of the proposed dual Lagrangean problem. The
fifth column reports the upper bound of the proposed dual
algorithm. The sixth column reports the error gap between the
lower bound and the upper bound. The seventh column reports
the maximum end-to-end delay among all O-D pairs. The
eighth column reports the results from [2].

The maximum end-to-end delay value in the seventh
column implies the optimal value for the minimax End-to-end
Delay Routing problem developed in [2]. There is one thing
that needs to be addressed: all possible candidate paths are
considered for each O-D pair in this paper but only three
candidate paths are pre-chosen for each O-D pair in [2].
Although we obtain a tighter upper bound than the minimax
end-to-end delay routing problem developed in [2], this
comparison is not on the same basis. On the other hand, the
gap between the lower bound and the upper bound of the
minimum average delay problem is still very tight, which
indicate that the algorithms that we developed can achieve
good system objective (average packet delay) even in stringent
end-to-end delay requirements.

6. CONCLUSIONS

As compared to the work in [2], which tried to achieve
better fairness among users by minimizing the maximum end-
to-end delay for virtual circuit networks without considering
the system perspective (minimize the average packet delay). In
this paper, for the first time, we considered the problem of
minimizing the average packet delay with maximum allowable
end-to-end delay requirements, which indicate that we try to
obtain good system performance under user’s end-to-end
delay requirements.

We formulate this problem as a nonconvex and nonlinear
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multicommodity integral flow problem. The nonconvex and
discrete (integer constraints) properties make the problem very
difficult. We take an optimization-based approach by applying
the Lagrangean relaxation technique in the algorithm
development. According to the computational experiments, the
error gap between the upper bound and the lower bound is so
tight that we can claim that a near optimal solution is found.
When the maximum end-to-end delay requirements are more
and more close to the threshold, the upper bound (average
packet delay) remains almost the same, this indicate that this
solution approach can obtain good average packet delay
solution under stringent end-to-end QoS requirements.
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TABLE 1 – COMPARISON OF SOLUTION QUALITY OBTAINED BY VARIOUS NETWORKS

Network
topology

Link
capacity

Dw (msec) Lower bound (msec) Upper bound (msec) Error gap (%) Maximum end-to-end delay
(msec)

ARPA

65
70

100
150
200

460
300
250
130
100

109
93.7
51.01

29.084
20.368

110.3
94.3
51.06

29.086
20.3686

1.18
0.65
0.1

0.009
0.003

238.7
200.7
106.2
60.4
42.1

GTE

65
70

100
150
200

800
500
100
100
190

28.19
26.02

17.824
11.687
8.6936

28.2
26.04

17.829
11.688
8.694

0.05
0.05
0.03
0.01
0.005

50.9
46.9
31.9
20.8
15.5

OCT

65
70

100
150
200

1400
1000
340
150
100

351.3
237.8
86.2
42.42

28.1529

357.8
240.6
86.8
42.44

28.1559

1.88
1.2

0.69
0.04
0.01

805
525.6
170.4
81.7
53.8

TABLE 2 – COMPARISON OF SOLUTION QUALITY OBTAINED BY VARIOUS NETWORKS AT THE THRESHOLD OF MAXIMUM ALLOWABLE END-TO-END DELAY

REQUIREMENTS

Network
topology

Link
capacity

Threshold of Dw

(msec)
Lower bound

(msec)
Upper bound

(msec)
Error gap (%) Maximum end-to-end

delay (msec)
Results from [2]

ARPA

65
70

100
150
200

237.7
203
110
61
43

108.9
93.6
50.7

28.97
20.35

110.3
94.4
51.2
29.1

20.37

1.23
0.9
1.02
0.5
0.09

237.2
202.2
108
60.9
42.3

N/A=

N/A
N/A
N/A
N/A

GTE

65
70

100
150
200

50.88
47
32

21.5
15.5

28.17
26.026
17.82
11.68
8.6

28.23
26.046
17.83
11.689

8.7

0.2
0.08
0.08
0.07
0.8

50.876
46.9
31.9
20.8
15.49

N/A
N/A
N/A
N/A
N/A

OCT

65
70

100
150
200

727
470

166.8
81.2
54

351.3
237.9
86.24
42.4

28.04

364.2
240.8
86.9
42.5

28.16

3.67
1.21
0.8
0.2
0.4

722
469.8
166.7
81.1
53.9

860.3
514.6
168.4
81.7
54.1

=: The work in [2] did not perform the computational experiments in these network settings.

Figure 4. Upper bound for different Dw value in ARPA network
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0

25

50

75

100

125

150

0 50 100 150 200 250 300 350 400
Dw(msecs)

zh
(m

se
cs

)

ARPA
65
ARPA
70
ARPA
100
ARPA
150
ARPA
200



7

Figure 5. Upper bound for different Dw value in GTE network

Figure 6. Upper bound for different Dw value in OCT network
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