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1 To simplify equations reduce their degree

Quite early in school we begin dealing with equations in one or more variables.

Some of them, for example equations in one variable of first and second degree,

are easily solved. Many may remember how complex are the formulae to find

the roots of equations in one variable of degree three and four; they were dis-

covered by the Italian mathematicians Gerolamo Cardano and Niccolò Fontana

Tatraglia. As for the roots of equations of degree five or higher, they cannot be

expressed as radicals of any degree. This was first proved by Paolo Ruffini, for

the fifth degree equations, and was later generalized to equations of any degree

by Niels Henrik Abel and Évariste Galois.

Since there are no simple formulae for the roots of equations, it might seem at

first that it is hopeless to search for solutions of systems of algebraic equations.

Fortunately, this is just the first impression. In fact, in the case of equations in

one variable, a lot is known about the roots of an arbitrary algebraic equation.

In practice there is no need to express the roots as radicals; sometimes only

the number of the real roots is needed and at other times the roots need to be

computed to a certain degree of accuracy. For an arbitrary equation of the form

p(x) = 0, all these problems can be successfully solved.

According to the fundamental theorem of Algebra, a polynomial of degree

n, has exactly n roots, multiplicities counted. If only the real roots are needed,



then there exist algorithms to effectively compute them to any degree of accuracy.

There also exist exact formulae for all the roots of an arbitrary equation in one

variable of arbitrary degree; these formulae do not use radicals, but rather the

more complex non-elementary Weierstrass’ θ-functions.

In the sequel a method is presented for dealing with arbitrary systems of

polynomial equations in several variables; however, what is needed first is a way

to simplify these polynomials.

2 Division of a polynomial by another polynomial

Below will be examined systems of polynomial equations of the form
p1(x1, x2, . . . , xn) = 0

p2(x1, x2, . . . , xn) = 0
...

pm(x1, x2, . . . , xn) = 0

.

The number of equations can be arbitrary and is in no way related with the

number of variables; in principle, the system can have an infinite(!) number of

equations.

To see if the problem is simpler in the case of polynomials in one variable,

the following system is simplified first:{
p = x5 − 2x4 + 5x3 + 2x2 − 4x+ 10 = 0

q = x3 − x2 + 3x+ 5 = 0
.

It is not difficult to see that, in this example, the first polynomial, p, can be

simplified if the second one, q, multiplied times x2, is subtracted from it; in

other words,

p− x2q = −x4 + 2x3 − 3x2 − 4x+ 10 = x4 − 2x3 + 3x2 + 4x− 10 = 0.

The resulting equation of fourth degree (with positive coefficient of x4) can be

also simplified in the same way — subtracting from it the second equation, q,

multiplied times x. Applying the same method a third time the resulting second

degree equation is:

x2 − 2x+ 5 = 0.

The simplification procedure described above is continued with the following

new system of polynomials — where p is replaced by q and q is replaced by

x2 − 2x+ 5 = 0: {
p = x3 − x2 + 3x+ 5 = 0

q = x2 − 2x+ 5 = 0
.



However, in this case the result is unexpectedly 0 = 0. That means that the

polynomial x3 − x2 + 3x + 5 disappeared and there remained only the second

degree polynomial x2 − 2x+ 5, whose roots can be easily computed.

Paying closer attention to the above example it is obvious that two polyno-

mial divisions took place; the first time the polynomial p(x) was divided by q(x)

and the remainder was x2−2x+5, whereas the second time the polynomial q(x)

was divided by x2 − 2x+ 5 and the remainder was 0.

Polynomial division can be performed in a way analogous to the (European

style) long division of integers as shown below (see the Wikipedia article on Long

division for the USA style of long division):

x5 − 2x4 + 5x3 + 2x2 − 4x + 10 x3 − x2 + 3x + 5

x5 − x4 + 3x3 + 5x2 x2 −x + 1

− x4 + 2x3 − 3x2 − 4x

− x4 + x3 − 3x2 − 5x

x3 + x + 10

x3 − x2 + 3x + 5

x2 − 2x + 5

The results of these hand computations can always be verified using the function

quorem(p,q,x) of the free computer algebra system Xcas.

In a certain sense, polynomial division is simpler than integer division. This

is because the leading term of the first polynomial is divided by the leading term

of the second polynomial, the resulting quotient is multiplied times the whole

divisor and the product is subtracted from the dividend; this process is repeated

until the remainder polynomial is of degree smaller than that of the divisor.

It is obvious that any two polynomial equations in one variable can be re-

placed by one. From this it follows that if the above simplification method is

applied to a system of polynomials equations in one variable it will always lead

the system to a single equation.

The simplification method described above is called the Euclidean algorithm

and computes the greatest common divisor (gcd) of two polynomials.

In summary, it has been shown that a system of polynomial equations in one

variable is always equivalent to a single equation. Replacing the whole system by

one equation, all its solutions can be easily found. More precisely, it is the exact

number of the complex roots (of the system) that has been computed — which

is equal to the degree of the (equivalent) equation that is obtained as a result

of the simplification process. It is also quite possible that the gcd of a system of

polynomials in one variable is 1, that is, a nonzero constant. Then the system

under examination is equivalent to the equation 1 = 0, which means it does not

have any solutions. In this case the system is called inconsistent.



3 The case of two or more variables: The result is not unique

In what follows the general case is dealt with — that is systems of equations

in several variables. It turns out that the same simplification method can be

applied here as well, even though certain complications arise. To examine a

concrete example, consider the system of equations:{
p = x3y + y2 − 1 = 0

q = x3 + 3y − 1 = 0
.

It is obvious that the term x3y can be easily eliminated

p− y ∗ q = −2y2 + y − 1 = 0.

Replacing p by q and q by −2y2 + y − 1 = 0 results in the equivalent system{
p = x3 + 3y − 1 = 0

q = −2y2 + y − 1 = 0
,

which is easily solved since q is a second degree polynomial equation only in y.

In the case of systems of polynomials in one variable, the simplification con-

sists of reducing their degree. However, in the general case of two or more vari-

ables, the situation is a bit more complicated: reducing the degree in variable x

may increase the degree in variable y, and vice-versa. A way out of this situa-

tion could be found if it was known — as in the case of univariate polynomials

— which of the terms of a polynomial is the leading one. This leading term

could then be eliminated using the leading term of another polynomial. In the

sequel the term of a polynomial without its numerical coefficient will be called

monomial.

To order monomials what is needed first is an ordering among variables.

There are n! ways to order a set of n variables; for the example that follows

below, in the variables x and y, the ordering chosen is according to the following

ranking (the symbol ≺ means precedes), 1 ≺ a ≺ b, . . . ,≺ x ≺ y ≺ z, in which

case, variable y has higher ranking than variable x. This ordering of the variables

is called lexicographical because it follows the way in which words are ordered

in a dictionary (lexico, in Greek) or encyclopedia; namely, letters are written in

alphabetical order and words are ordered first according to the first letter, then

according to the second letter etc.

Having ordered the variables, to determine which of two monomials — in a

given polynomial — is the leading one, compare the degrees of the variable with

the highest ranking (leading variable): If the degree of the leading variable in the

first monomial is greater, then this is the leading monomial; and if the degrees

of the leading variable in the two monomials are the same, then compare the

degrees of the variable with ranking one less than the highest, etc.



The advantage of ordering monomials is that it is now possible to define

the leading term in every polynomial of a given system of equations. Having

defined the leading term of each polynomial in the system one can test whether

the leading term of a given polynomial p is divided by one of the leading terms

of the other polynomials in the system and if the answer is yes, to simplify the

polynomial p. Obviously, with this simplification the leading term of p is reduced

and eventually a system of equations is obtained where (pairwise) the leading

terms of the polynomials do not divide each other. In this case, is it possible

that the system of equations cannot be further simplified? A simple example

will show that this is not so. Consider the system of equations{
y5 + 5x3y3 + 2 = 0

x2y + 3x+ y + 1 = 0
.

Keeping in mind that y is the variable with the higher ranking, the leading

terms of the two polynomials can be found either by simple inspection (after

some practice) or with the help of the function lcoeff(poly,[y,x])1 of the

free computer algebra system Xcas — notice that the variables are written as

[y,x] to reflect the chosen ordering, where variable y has higher ranking than

variable x; either way, the leading terms (monomials) are y5 and x2y and none

divides the other. However, in the first equation there is the term 5x3y3 which can

be eliminated — even though it is not the leading term — since it is divisible

by the leading monomial x2y of the second equation. Indeed, subtracting the

second polynomial multiplied times 5xy2, from the first polynomial, leads to the

system of equations{
y5 − 5xy3 − 15x2y2 − 5xy2 + 2 = 0

x2y + 3x+ y + 1 = 0
.

Here again — in the first equation — there is the term −15x2y2 which can be

eliminated since it is divisible by the leading monomial x2y of the second equa-

tion. Indeed, subtracting — from the first polynomial — the second polynomial

multiplied times −15y leads to the system of equations{
y5 − 5xy3 − 5xy2 + 15y2 + 45xy + 15y + 2 = 0

x2y + 3x+ y + 1 = 0
,

which cannot be further simplified in this way.

It is now time to introduce new terminology. Having fixed an ordering on

the monomials, one says that a polynomial p can be reduced with the help of

1 The function lcoeff(poly,[y,x]) has a third argument to indicate the monomial
ordering; by default it is the lexicographical order. The monomial orderings available
in Xcas are discussed in Section 6.



(or modulo) the set of polynomials q1, q2, . . . , qn if the leading term of p can

be divided by the leading term of one of the polynomials qi. The process of

simplifying polynomials by eliminating the leading term, as described above, is

called reduction. If p1 is the result of the reduction of polynomial p modulo the

set of polynomials q1, q2, . . . , qn then one says that the polynomial p reduces to

p1 with the help of (or modulo) the set of polynomials q1, q2, . . . , qn.

It follows easily that since the process of reducing the leading terms cannot

go on for ever, one can always use the reduction process to reduce any system

of equations to an equivalent one where the leading terms, pairwise, do not

divide one another. This whole process can be considered a generalization of the

Euclidean division algorithm for polynomials in one variable. The only difference

is that now the polynomial p is divided not by a single polynomial but by a whole

set of polynomials q1, q2, . . . , qn simultaneously.

The process of reduction - division can be done exactly like the long division.

In the European style of division, the divisors are all written on the right, and are

separated by comma. Each subtraction in this scheme corresponds to a reduction

with a certain degree of freedom. Namely, as mentioned above, since the dividend

(the polynomial p) is to be reduced with the help of the leading term of any

divisor (polynomial) q1, q2, . . . , qn, it may well turn out that p can be reduced

modulo the leading terms of several polynomials qi. In cases like this, an arbitrary

choice is made as to which of the polynomials q1, q2, . . . , qn should be used to

reduce p. Due to this freedom of choice, the result of these reductions depends

on the polynomials q1, q2, . . . , qn used. The only thing that is guaranteed is that,

at the end of the process, the resulting polynomial cannot be further reduced

with the help of the polynomials q1, q2, . . . , qn. By analogy with the division

of polynomials in one variable, the resulting polynomial could be called the

remainder of the division of p by the set of polynomials q1, q2, . . . , qn.

In Xcas the process of reduction - division can be computed with the help

either of the function greduce(p,[q1,...,qk],[x1,...,xl]), or of the function

rem(p,[q1,...,qk],[x1,...,xl])
2, where in both cases the variables in the

third argument are written in the chosen ordering. The set of polynomials qi,

in the second argument, can contain a single element, in which case a single

reduction is performed.

Example. To demonstrate the reduction - division process consider the poly-

nomial p = x2y − y which is to be divided by the polynomials q1 = xy − x and

2 For Xcas version 0.9.8 or higher. For operations related to Gröbner bases (defined
in Sections 5 and 9) Xcas uses either built-in functions or functions from the li-
brary of the computer algebra system CoCoA, which specializes in Computations
in Commutative Algebra. Inserting to the corresponding commands the optional ar-
gument with cocoa=true or with cocoa=false determines which functions will be
used. At the time of writing this article (summer 2012), functions from the CoCoA
library are used by default; this might change in the future.



q2 = x2−y; here again x ≺ y, that is, variable y has higher ranking than variable

x. If p is reduced by q1 the remainder is −y+x2, which, in turn, can be reduced

by q2 to obtain the final remainder 0. In Xcas the corresponding command is

greduce(p,[q1,q2],[y,x]) or rem(p,[q1,q2],[y,x]); notice that the order

of the polynomials is [q1, q2], which means divide p by q1 first, if that is possi-

ble. However, if p is reduced by q2 the remainder is x4 − y, which, in turn, can

be reduced again by q2 to obtain the final remainder x4 − x2, which cannot be

further reduced neither by q1 nor by q2. In Xcas the corresponding command is

greduce(p,[q2,q1],[y,x]) or rem(p,[q2,q1],[y,x]); notice the order of the

polynomials is now [q2, q1].

4 Ideals and their relation to systems of polynomials

As was indicated above, a system of the form
p1(x1, x2, . . . , xn) = 0

p2(x1, x2, . . . , xn) = 0
...

pm(x1, x2, . . . , xn) = 0

may be brought into such a form that no further reduction of leading terms is

possible. Is this the simplest form of an arbitrary system? Unfortunately, things

are again a bit more complicated. Consider the system{
x2y − xy + 1 = 0

x3 − y2 + 1 = 0
,

where the variables have been ordered as before, with y having higher ranking

than x.

It is easily seen that in this example no reduction is possible because the

leading terms are x2y and −y2 and none divides the other. However, this does

not mean that it is impossible, in principle, to simplify this system after making

certain other transformations. Indeed, multiply the first equation times y, the

second times x2 and subtract one from the other to get −x5 + 2x2y2 − x2 −
xy2 + y = 0 with leading term 2x2y2. This last equation may be reduced with

the help of the first equation of the system; application of the reduction method

yields the equation −x5−x2 +xy2−y = 0 with leading term xy2, and which can

be also directly derived from the original system of equations. Again, the last

equation may be reduced with the help of the second equation of the system;

application of the reduction method yields the equation x5−x4 +x2−x+ y = 0

with leading term y, which cannot be further reduced.



What actually happened here? A system of polynomial equations was given

that could not be reduced with the help of mutual reductions of the equations.

Next, the equation −x5 +2x2y2−x2−xy2 +y = 0 was derived from the original

system, which equation was reduced to x5 − x4 + x2 − x+ y = 0 with the help

of the system equations.

In other words, together with the original system of equations
p1(x1, x2, . . . , xn) = 0

p2(x1, x2, . . . , xn) = 0
...

pm(x1, x2, . . . , xn) = 0

(1)

it was considered necessary to examine all the equations that could possibly

be derived from it. Thus, any equation pi(x1, x2, . . . , xn) = 0 can be multiplied

times an arbitrary polynomial q(x1, x2, . . . , xn) = 0 to yield the equation q·pi = 0

as a result. In an analogous way, adding any two equations results in an equation

which is derived from the two equations that were added. Examine now all the

equations that can be derived from an arbitrary system of equations of type (1).

Define by J the set of all possible polynomials p derived from a system of

equations of type (1). Then it is easily seen that together with any two polynomi-

als p1 and p2, the set J also contains their sum, and together with any polynomial

p it also contains all its multiples q · p. Such sets are called polynomial ideals.

It is now obvious that every system of polynomial equations generates a

polynomial ideal. The polynomial ideal, itself, can be considered a system with

an infinite number of polynomial equations. It turns out that one can easily learn

to work with such infinite systems, which are all equivalent to systems with a

finite number of equations. However, this is the essence of an important theorem

by Hilbert and will be proved in the sequel.

At this point it can be stated that the basic idea of polynomial simplification

is the foundation of the theory on Gröbner bases.

5 Reduction to the simplest, or canonical form

Take another look at the system of algebraic equations
p1(x1, x2, . . . , xn) = 0

p2(x1, x2, . . . , xn) = 0
...

pm(x1, x2, . . . , xn) = 0

and along with it consider the whole ideal J of polynomials, which are generated

by the polynomials p1, p2, . . . , pm.

ece




Suppose that somehow the original system of equations can be brought to

the form 
g1(x1, x2, . . . , xn) = 0

g2(x1, x2, . . . , xn) = 0
...

gr(x1, x2, . . . , xn) = 0

,

which is considered simpler. The only requirement of such a system is that

any equation derived from the original system, that is any polynomial belong-

ing to the ideal J , may be simplified with the help of the set of polynomials

g1, g2, . . . , gr.

Definition. The set of polynomials gi is a Gröbner basis of the polynomial

ideal J if the leading term of any polynomial belonging to the ideal J can be

divided by one of the leading terms of the polynomials g1, g2, . . . , gr.

The definition is definitely non-constructive, since it is impossible to check

this condition for the infinite number of polynomials in J . Despite this fact, it

is possible to prove some very remarkable properties of these bases.

6 Properties of Gröbner bases

Suppose that somehow a Gröbner basis g1, g2, . . . , gr has been found (using, for

example, the function gbasis([p1,p2,...,pk],[x1,x2,...,xl])
3 of Xcas) for

the polynomial ideal J . It will be shown that it is now possible to easily check

whether a given polynomial p belongs to the ideal J or not. In other words, for

any arbitrary equation it is possible to check whether it is derived from a given

system of equations. This is known as the ideal membership problem.

As stated previously, there exists an algorithm for dividing an arbitrary poly-

nomial p by a set of polynomials, an operation which is equivalent to a sequence

of reductions (greduce(p,[q1,q2,...,qk],[x1,x2,...,xl]) or rem(p,[q1,q2,

...,qk],[x1,x2,...,xl]) in Xcas; see also Section 3 for comments regarding

this function). Apply this algorithm to the polynomial p and the set of polynomi-

als g1, g2, . . . , gr and denote by res the resulting polynomial. Clearly, res cannot

be further reduced (simplified) with the help of the polynomials g1, g2, . . . , gr.

Assume now that p belongs to the ideal J . The result of each reduction

also belongs to the ideal since the polynomial that was subtracted each time

was a multiple of some gi. Therefore, the final result res also belongs to the

ideal J . However, by the definition of Gröbner bases, the leading term of every

3 This is equivalent to gbasis([p1,p2,...,pk],[x1,x2,...,xl],with cocoa=true);
that is, it uses the library of the CoCoA system.
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polynomial in the ideal J is divided by one of the leading terms of g1, g2, . . . , gr,

which implies that the polynomial res has to be reducible. Therefore, res is

equal to zero, and the following has been proved:

Theorem. A polynomial p belongs to an ideal J if and only if on dividing p

by the set of polynomials g1, g2, . . . , gr of the Gröbner basis of J the remainder

is equal to zero.

Notice that whereas the definition of Gröbner bases is non-constructive, the

algorithm for solving the ideal membership problem is constructive — provided

the polynomials gi form a Gröbner basis of the ideal J .

Another remarkable property of the set of polynomials which are a Gröbner

basis is that, on dividing any polynomial by the set of polynomials in the basis,

the remainder is uniquely defined — despite the fact that in the division process

the reductions may be executed in any order.

To see this, suppose that the polynomial p is reduced in two different ways to

the polynomials res1 and res2, which cannot be further reduced with the help of

the polynomials gi. Since in the reduction process multiples of the polynomials

gi are subtracted from p, the following equalities hold: p − res1 =
∑r
k=1 fi · gi

and p− res2 =
∑r
k=1 hi · gi.

Therefore, the difference res1 − res2 belongs to the ideal J and, if res1 −
res2 6= 0, then the monomial of the leading term of this difference will be re-

ducible with the help of the polynomials gi — by the definition of Gröbner bases;

moreover, this monomial must exist either in res1 or in res2, which implies that

either res1 or res2 is reducible. Hence, res1 − res2 = 0.

Notice that so far it has not not been required that one should not be able

to simplify the system g1, g2, . . . , gr itself. Such a stronger condition leads to the

concept of the reduced Gröbner basis.

Definition. The Gröbner basis g1, g2, . . . , gr of the ideal J is called minimal,

if all its leading coefficients are 1 and its leading terms pairwise cannot divide

one another.

Definition. The Gröbner basis g1, g2, . . . , gr of the ideal J is called reduced,

if all its leading coefficients are 1 and none of the monomials of the polynomial

gi can be divided by any of the leading terms of the other polynomials in the

basis.

It turns out that for any polynomial ideal there exists a unique reduced

Gröbner basis. That is, any system of polynomials, even an infinite one, may be

reduced to a unique canonical form.

This uniqueness depends on the monomial ordering that has been established;
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and there is an infinite number of such orderings. Even in the lexicographical

order, one can change the ranking of the variables, considering that variable x

has higher ranking than y; that is, if the symbol � is read as is followed by, then

the ordering is 1 � a � b, . . . ,� x � y � z. Another monomial ordering would

be to consider not the degree of the leading variable but the total degree (the

sum of the degrees of the variables in the monomial). Changing the monomial

ordering may change the Gröbner basis.

In Xcas the monomial orderings that one can chose from are: plex, the de-

fault lexicographical order, tdeg, the total degree and revlex, first total degree

and then reverse lexicographical order. Reverse lexicographical order is not what

its name implies; what it means is that if x is the leading variable (i.e. the or-

dering is x � y � z) xy2z2 is the leading term of the polynomial x2y2z+ xy2z2,

whereas if z is the leading variable (i.e. the ordering is x ≺ y ≺ z) the leading

term of the polynomial is x2y2z.

The Gröbner basis for a system of polynomial equations gives most of the

answers to the questions arising in the study of such systems. For example, to

find out if a system of polynomial equations is consistent, it suffices to compute

any Gröbner basis and check whether it contains a non-zero constant. If the

Gröbner basis contains the constant 1, then the whole system is equivalent to

the equation 1 = 0, which means it is inconsistent. Additionally, in the case of a

finite number of solutions, one can easily compute them whereas, in the case of

an infinite number of solutions, one can determine whether they lie on a curve,

a surface or a set of higher dimensions.

Using Gröbner bases one can effectively eliminate a variable from a system

of equations. For example, in the previously stated example{
x2y − xy + 1 = 0

x3 − y2 + 1 = 0
,

one can easily eliminate the variable y by computing the Gröbner basis of the

system — provided of course that y is the leading variable (i.e. the variable

ordering is x ≺ y). Lo and behold, the basis contains the polynomial x7− 2x6 +

x5 + x4 − 2x3 + x2 − 1 of only one variable, x.

In Xcas elimination is achieved by computing the Gröbner basis of the system

in lexicographical order gbasis([x2 ∗ y − x ∗ y + 1, x3 − y2 + 1],[y,x])4 and

looking in it for a polynomial in the single variable x5. Since there are only

two variables, in this case the elimination of y can be also achieved with the

command resultant(x2 ∗ y − x ∗ y + 1, x3 − y2 + 1, y).

4 This is equivalent to gbasis([x2 ∗ y − x ∗ y + 1, x3 − y2 + 1],[y,x],plex); that
is, it computes the basis in lexicographical order using functions from the CoCoA
library.

5 In CoCoA the polynomial in the single variable is the first polynomial of the basis.



7 Monomial ideals and Dickson’s lemma

An ideal J is called a monomial ideal if it is generated by monomials. Equiva-

lently, one can say that if f =
∑
α∈Nn kαx

α belongs to J , then xα ∈ J whenever

kα 6= 0.

Below is a proof of Dickson’s famous lemma, which states that any monomial

ideal has a finite basis; this lemma is used in the proof of the existence and

termination of the minimal Gröbner basis of any arbitrary ideal J .

By definition, the leading monomials of the polynomials of a minimal Gröbner

basis of an ideal J do not, pairwise, divide each other. Dickson’s lemma guaran-

tees that all these sets of monomials are finite.

Three equivalent versions of this lemma are presented along with the proof

of the third version which is the least demanding.

Dickson’s Lemma — version 1. Any monomial ideal has a finite basis.

Dickson’s Lemma — version 2. For every infinite sequence {fk : k ∈ N}
of n-tuples of natural numbers there exist indices i < j such that fi ≤n fj . The

relation ≤n on Nn is defined as {a1, . . . , an} ≤n {b1, . . . , bn} if and only if ai ≤ bi
for all i = 1, . . . , n.

Dickson’s Lemma — version 3. Let n ∈ N and let T = {tk, k ∈ N} be

any infinite set of monomials in the variables {x1, x2, . . . , xn}. Then in the set

T there exist two monomials ti and tj such that ti divides tj .

The proof of the third version of Dickson’s Lemma is by induction on the

number of variables.

For monomials in one variable, say x, the proof is obvious: for any two mono-

mials xn and xm, the one with the smaller power divides the other.

Assume now that that the lemma is true for arbitrary infinite sets in l vari-

ables. Take the infinite set of monomials T = {tk, k ∈ N} in l + 1 variables and

assume that pairwise they do not divide each other. Take the first monomial

t1 = xe11 x
e2
2 · · ·x

el+1

l+1 in T . By assumption, any other monomial t in T does not di-

vide t1, which means that the degree of one of the variables {x1, x2, . . . , xl, xl+1}
in t1 is strictly less than the corresponding degree in the monomial t. Subdivide

now the set T in l+ 1 subsets T1, T2, . . . , Tl+1. In subset T1 belong all the mono-

mials whose degree in the variable x1 is less than the corresponding degree of

the monomial t1, etc. According to this rule, if a monomial may belong simulta-

neously to several subsets Ti, then pick any one of the possible candidates. Since

the set T is infinite, one of the subsets, say Ti, will also be infinite. In this set

of monomials the degree of the variable xi is strictly less than ei. Now, break

up the set Ti into ei subsets. In the first of them the degree of the monomials
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in the variable xi is 0, in the second 1 and in the ei-th set the degree of the

monomials in the variable xi is ei − 1. Again one of these sets is infinite and, in

all the monomials of this infinite set, the degree in the variable xi is the same;

hence, these monomials may be distinguished only by the degrees in the other

variables. Dividing out the variable xi one obtains an infinite set of monomials

in l variables, which pairwise do not divide each other. However, this contradicts

the induction hypothesis.

With the help of Dickson’s lemma one can now easily prove Hilbert’s basis

theorem, one of the most important theorems on polynomial ideals.

8 Hilbert’s basis theorem and Gröbner bases

This theorem was discovered by Hilbert long before the appearance of Gröbner

bases, but it is equivalent to the existence and finiteness of such bases for any

polynomial ideal.

Theorem. In the algebra of polynomials with a finite number of variables,

every ideal is generated by a finite set of polynomials {gi}ri=1.

In this section a stronger statement is proven, namely:

Theorem. In the algebra of polynomials with a finite number of variables,

every ideal J has a finite Gröbner basis G = {g1, g2, . . . , gr}.

Proof. For the ideal J consider the infinite set of monomials Mon(J), which

consists of all the leading terms of polynomials in the ideal J . This set must

contain minimal elements, which cannot be divided by any other monomial in

the set Mon(J). Indeed, take any monomial t1 ∈ Mon(J). If it is not minimal,

then it can be divided by some other monomial t2, which in turn can be divided

by some other monomial t3, etc. Such a chain cannot be infinite, and hence it

ends with a minimal monomial. All these minimal elements do not divide each

other and hence, by Dickson’s lemma, their number is finite. Let this set of

minimal elements be {t1, t2, . . . , tr}, where each one of them is the leading term

of some polynomial, say gi, of J . It turns out these polynomials {gi}ri=1 form the

Gröbner basis of the ideal J . Indeed, the leading term of every polynomial in J

belongs to the set Mon(J) which implies that it can be divided by one of the

minimal monomials ti. However, these monomials ti are the leading terms of the

polynomials {gi}ri=1, which means that these polynomials satisfy the definition

of a Gröbner basis. Therefore, the theorem has been proven.

The basis computed in the theorem does not have to be reduced. However,

one can apply to this set the reduction algorithm discussed earlier in order to
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obtain a reduced basis. As has been shown above, this reduced basis is unique

provided an ordering of the monomials has been fixed.

So far it has been shown that the Gröbner bases exist, but alas, the proof of

the theorem is not constructive and no algorithm for the computation of these

bases has been presented. The definition of Gröbner bases, according to which

the leading term of any polynomial of the ideal J is divided by the leading term

of one of the polynomials in the basis, is of little help, since no one can check

this property on all the polynomials of J .

9 Computation of Gröbner bases

The first algorithm for the construction of Gröbner bases was proposed by the

Austrian mathematician Bruno Buchberger, who also introduced this term in

mathematics — to honor his Ph.D. Thesis advisor Wolfgang Gröbner.

Before discussing this algorithm for computing the Gröbner bases, here is a

more modest task. Suppose an arbitrary polynomial ideal is given along with a

set of polynomials {p1, p2, . . . , pk} belonging to this ideal. How can it be tested

if these polynomials form a Gröbner basis for this ideal?

Recall that, according to the definition of Gröbner bases, what is required

is to test whether the leading term of any polynomial of the ideal J is divided

by the leading term of one of the polynomials in the basis. However, since there

is an infinite number of polynomials in the ideal J it is impossible to test this

condition. Therefore, the question is now expressed algorithmically and in a

somewhat different form.

The fact that the leading term of any polynomial of the ideal J is divided by

the leading term of one of the polynomials in the basis means that one can apply

to any polynomial of the ideal J the reduction-division algorithm with the help

of (modulo) the set of polynomials {p1, p2, . . . , pk}. The result also belongs to

the ideal J and the reduction algorithm can be applied to it as well. This process

either will terminate (with 0 if the set {p1, p2, . . . , pk} forms a Gröbner basis —

as was shown in Section 6) or it will go on forever. However, the whole purpose

of the reduction process is to reduce the leading term of the polynomial to which

it is applied. Hence it follows — even though some reasoning is required — that

the process of reduction of the leading term cannot go on for ever. This imposes

certain conditions on the monomial ordering, but all the orderings discussed so

far satisfy them.

To test if the set of polynomials {p1, p2, . . . , pk} is a Gröbner basis — that

is, to test if any polynomial in the ideal J is reduced to 0 modulo the set of

polynomials {p1, p2, . . . , pk} — one has to clearly identify a finite set of poly-

nomials — on which to check this condition — such that their reducibility to

zero would imply the reducibility to zero of any polynomial of the ideal. It turns
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out that it is possible to construct such a set of polynomials. However, whereas

the construction of such a set of polynomials is not complicated, the proof of

Buchberger’s theorem, which states that their reducibility to zero implies the

reducibility to zero of all elements of the ideal, is somewhat complicated and it

is omitted from this discussion. But what are these polynomials?

Take any pair (pi, pj) of elements from the set {p1, p2, . . . , pk}. Let their lead-

ing terms be, respectively, ti and tj , and their respective (leading) coefficients ci
and cj . The monomials ti and tj may have a greatest common divisor, which will

be denoted by gcd(ti,tj) — and which is computed by the function gcd(ti,tj)

in Xcas. Form now the new polynomial S(pi, pj) which is defined by

S(pi, pj) =
cjtjpi − citipj
gcd(ti, tj)

.

These polynomials are called S-polynomials. And here is now Buchberger’s amaz-

ing theorem:

Theorem. Assume a given monomial ordering. The finite set of polynomials

{g1, g2, . . . , gr} from the ideal J forms a Gröbner basis for this ideal and for this

ordering if and only if all S-polynomials S(gi, gj) are reduced to zero with the

help of the set {g1, g2, . . . , gr}.

Such a finite condition may be effectively checked in a finite number of steps,

even though this is labor-intensive process.

This theorem is the basis of the algorithm for the construction of a Gröbner

basis. With the help of this algorithm any system of equations can, in principle,

be transformed to the simplest canonical form.

10 Buchberger’s algorithm

Suppose an ideal is given by the finite set of polynomials
p1(x1, x2, . . . , xn)

p2(x1, x2, . . . , xn)
...

pm(x1, x2, . . . , xn)

.

At first the polynomials pi are reduced with respect to each other and this

results in the reduced set G = {g1, g2, . . . , gk}. Now check, whether this is a

Gröbner basis. If the answer is yes, then the process terminates. If not, then one

of the S-polynomials S(gi, gj) does not reduce to zero. Add now this non-zero

reduction to the set G as the polynomial gk+1 and again execute all possible
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reductions. The fact that this process cannot go on for ever may also be deduced

from Dickson’s lemma. At the end the result is the needed Gröbner basis.

It should be noted, that the result of the process does not depend on the order

one chooses the S-polynomials or on the order all these possible reductions are

executed. The Gröbner basis depends only on the ideal and the chosen monomial

ordering. However, the speed of the algorithm does depends on all these factors,

and it turns out that there are many ways to speed up the process.

At first, it turns out, one need not examine all possible S-polynomials, but

only those that satisfy certain additional conditions. These conditions are usually

called criteria, and the most powerful of them were developed by Buchberger —

the so called Buchberger’s criteria. In this case a sharper version of Buchberger’s

version needs to be proven, where it is stated that the reducibility of only those

S-polynomials that satisfy the criteria, needs to be tested to see if a set is a

Gröbner basis.

Another possibility to speed up the algorithm is to search for the best strategy

for choosing the S-polynomial at every step. Moreover, computing all the S-

polynomials that reduce to zero is, in principle, useless and one would like to

foretell such an outcome. In the past thirty years many different strategies were

developed for improving the performance of the algorithm, and active research

in this area still continues.

11 Information obtained from Gröbner bases

At this point one should know what a Gröbner basis is and how the algorithm

works for computing this sort of bases with the help of a computer. Unfortu-

nately, the complexity of this algorithm is quite high and it is not recommended

that one should try and solve a system of polynomial equations by finding the

Gröbner basis of the system with pencil and paper. This can be done only in

very simple cases. For the general case one should use a computer algebra system

and Xcas is recommended as a wonderful tool.

The advantages of reducing a system of polynomial equations to its corre-

sponding Gröbner basis are listed below.

In a nutshell, having computed the Gröbner basis of a system of equations

one can practically find out everything about this system and its solutions.

It has already been stated — in Sections 2 and 6 — how to tell whether a

system of equations is consistent or not: the Gröbner basis of an inconsistent

system will consist of only the constant 1. That is, the system is equivalent to

the single equation 1 = 0.

Next, if one is interested in the number of complex roots of the system, this

can be easily computed from the Gröbner basis of the system. The process is

demonstrated in the following example, where for clarity only two variables are

used — however, it can be also used in the general case.
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y

Figure 1: The points (0,11), (1,6) and (5,0) corresponding to the terms y11, xy6

and x5, respectively.

Suppose the following system of equations is given:{
3x3y + 5xy6 + 2 = 0

x5 + y5 = 1
, (2)

with x being the leading variable, i.e. x � y. Compute the Gröbner basis of the

system, using total degree as the monomial ordering (see Section 6). In Xcas

the command is gbasis([3x3y + 5xy6 + 2, x5 + y5 − 1],[x, y],tdeg), and the

answer is 
x5 + y5 − 1

5xy6 + 3x3y + 2

25y11 − 25y6 − 9x4y − 10x4 − 15x2y − 6x

.

Consider the leading monomial (the leading term without the coefficient) of each

of the three polynomials in the basis. These monomial are x5, xy6 and y11. On a

cross-section paper, plot now three points with integer coordinates corresponding

to these monomials; that is, plot the points (5, 0), (1, 6) and (0, 11) as shown in

Figure 1.

Count now all the points with integer coordinates ≥ 0 that are to the left

and below the three plotted points. It is easily seen that there are exactly 35

points, which implies that the system has exactly 35 complex solutions. If another

monomial ordering had been chosen, then that would probably result in another
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basis with different leading monomials but, nonetheless, the number of points

with integer coefficients lying to the left and below the points corresponding to

the leading monomials would still be 35.

If one needs to compute these 35 solutions, then the Gröbner basis of the

system has to be computed again using lexicographical order6. Try this out on

Xcas with the command gbasis([3x3y + 5xy6 + 2, x5 + y5 − 1],[x, y]). The

resulting basis has two polynomials, {g1, g2} and, as can be seen from equation

(3), the first polynomial, g1, has degree 35 and is independent of the variable x.

g1 = −3125y35 + 3125y30 − 243y20 − 1350y19 − 1500y18

+ 729y15 + 2700y14 + 1500y13 − 729y10 − 1350y9 + 243y5 + 32
(3)

The 35 roots of this polynomial can be found using the function solve(g1=0,y)

of Xcas, where one should first make sure that the appropriate box — in the

CAS Configuration submenu — has been checked for the operations to be done

over the complex numbers (by default operations are done over the reals). To

find the corresponding values of the variable x, one has to replace each one of

the 35 values of y in the second polynomial, g2, of the Gröbner basis and solve it

for x. This can be done because the leading term of g2 is x and all other terms

depend only on y — but, alas, the coefficients are horrendous. To save space,

the case of real roots is presented here since it is quite simple.

In most applications one is mainly interested only in the real solutions of

the system. To compute them, make sure that the operations in Xcas are done

over the reals and call solve(g1=0,y) to obtain the root y = 1.0013. Using the

command subst(g2,y=1.0013) in Xcas replace this value of y in the second

polynomial, g2, of the Gröbner basis and solve the resulting equation for x to

obtain x = −0.36728. Hence, the system of equations (2) has one real root

x = −0.36728, y = 1.0013 — and this can be easily verified with the command

solve([3x3y + 5xy6 + 2, x5 + y5 − 1],[x, y]).

Looking at the second polynomial, g2, of the Gröbner basis one cannot help

but be impressed.

6 Alternatively — since, in general, computing lexicographically ordered Gröbner bases
takes a lot of time — one can use the so called FGLM -algorithm to compute the
lexicographically ordered Gröbner basis from the already computed one in total
degree.
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g2 =− 367944626934414706421786752906805066725649001902683192x

− 3345026001464375609256495663185167297621749829968750000y34

+ 4702481231361680238976760985922930898258708009560546875y33

− 490855617136502275342311985946370608767935318750000000y32

+ 413674278735592212672733708367552685085795781250000000y31

− 459248975474513131525729909338312334671747165440625000y30

− 771923525758534325799397671230741103204321948531250000y29

− 4873108756630221837208275582749794993216954108380346875y28

+ 849753916321623563212375904740109582867471773419000000y27

− 405650345243059054968091345572820108627511896650000000y26

− 1417544508950925268306336664932085108385489821353125000y25

+ 3943318746679694151635746319537033237761775129312500000y24

+ 269343291583705586318257804164122695886801275312500000y23

+ 166301932700896032793673366018805736163685607794000000y22

− 1081861437351186556980018870990146143899741918300000000y21

+ 1540264934212267797350840701562791284535597977346875000y20

− 125281609162656749532499753632397100689756958622120000y19

− 844001030260078151986165474439309771378307173910571875y18

− 182719982776844078976199729992086481854393307096843750y17

+ 2484345038018692705179854575596784401429132733139062500y16

+ 146677551849086128571927280373559283657927096562212000y15

+ 620760132844567649224573672911791543437079734368600000y14

− 398353088960145386420408225544718072524272337932512023y13

− 4487854652923127253798502669551307298022131269078404660y12

− 1229683990717206105320707714803729209935798136039062500y11

+ 78503888530272387662844650601705298978729671423339000y10

− 442782993481488693174303058594062778367541941280690000y9

+ 2365809859512150586426932483455319705848717586480139671y8

+ 4135308554342488744352194362153885239229577187255248410y7

− 147501629324964297637742277964863157069051533000000000y6

+ 118712726168784893290817869962801533422583175713100000y5

+ 47837339917872061932616501235049260719631537494080000y4

− 1275135882509770980129837504202984282987393930318855773y3

+ 22952927869128406871708699571670698771803704758000000y2

− 18457980566150441031462963228820288042681185600000000 ∗ y
+ 19121961277149639001581974898205471805982052725888000



No wonder one had to use a computer algebra system to replace y by the

value 1.0013 in g2. Nonetheless, the structure of g2 is quite simple.

In the next section Gröbner bases are used for the solution of Geometrical

problems.

12 Discovering new formulae

The problem at hand is to discover a formula expressing the area of a trian-

gle with sides a, b, c through its three heights ha, hb, hc. Recall the well-known

formulae to compute the area of a triangle:

A =
1

2
aha, A =

1

2
bhb, A =

1

2
chc

and the not so well-known Heron’s formula (named after Heron of Alexandria):

A =
√
p(p− a)(p− b)(p− c),

where p is the semiperimeter

2p = a+ b+ c.

Changing Heron’s formula to

A2 = p(p− a)(p− b)(p− c)

one obtains a system of five equations in eight variables. Compute the Gröbner

basis of this system in lexicographical order, with the variables ha, hb, hc, A hav-

ing the lowest ranking. Then, one of the basis polynomials is

h4ah
4
bh

4
cA

2+h4ah
4
bA

4−2h4ah
2
bh

2
cA

4+h4ah
4
cA

4−2h2ah
4
bh

2
cA

4−2h2ah
2
bh

4
cA

4+h4bh
4
cA

4.

Dividing out A2, and solving for A2 one obtains the required answer

A2 =
h4ah

4
bh

4
c

2h4ah
2
bh

2
c + 2h2ah

4
bh

2
c + 2h2ah

2
bh

4
c − h4ah4b − h4ah4c − h4bh4c

.

Notice that the above formula was obtained by eliminating the variables a, b, c,

and p in the process of computing the Gröbner basis. In Xcas this formula can

be obtained as follows:

– define the system of five equations

I:=[2A-a*ha,2A-b*hb,2A-c*hc,A2-p*(p-a)*(p-b)*(p-c),2p-(a+b+c)];

– in lexicographical order (plex) compute its Gröbner basis, which consists of

twenty seven polynomials

gb:=gbasis(I,[a,b,c,p,ha,hb,hc,A],plex);
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– the four variables a, b, c, and p have been eliminated in gb[0], the first poly-

nomial of the Gröbner basis; gb[0], has seven terms, where A2 appears once

and A4 appears six times; replace A2 by x using the function algsubs();

this way A4 will be replaced by x2; the resulting expression is a second

degree polynomial in x

expression:=algsubs(A2=x,gb[0]);

– solve the second degree equation expression=0 for x and pick the second

root, which is 6= 0

solve(expression=0,x)[1];

ece
subs({A**2 : x}) in sympy


