
INTERACTIVE MULTIMEDIA

DESIGN

With an AI touch :)

Spring 2016 Stavros Vassos Sapienza University of Rome, DIAG, Italy vassos@dis.uniroma1.it

Computer programming
M

ag
ic

 !

2

Computer programming
3

Computer programming
M

ag
ic

 !

4

Blocks of code

 In computer programming we separate blocks of

code using brackets

 This block has a name: “void draw()”

 This is the block of code that tells to the system what

to draw on our screen when we run it

void draw() {

 int bowl = 5;

 drawEggs(bowl);

}

5

Blocks of code

void draw() {

 int bowl = 5;

 drawEggs(bowl);

}

6

 In computer programming we separate blocks of

code using brackets

 This block has a name: “void draw()”

 This is the block of code that tells to the system what

to draw on our screen when we run it

Statements

 This block consists of two statements

 Each statement is on a separate line

 Every statement ends with a semicolon

void draw() {

 int bowl = 5;

 drawEggs(bowl);

}

7

Variables

 We are going to use variables a lot!

 A variables is like a little box that keeps one piece

of information inside

 E.g., here, bowl keeps an integer number

void draw() {

 int bowl = 5;

 drawEggs(bowl);

}

8

Variables

void draw() {

 int bowl = 2;

 int anotherbowl = 4;

 bowl = anotherbowl;

 //bowl = anotherbowl + 1;

 //bowl = bowl + 1;

 drawEggs(bowl);

}

9

 We are going to use a lot of variables!

Magic recipes, ocean1.pde
10

 Download file

ocean1.zip from the

following link:

 http://tinyurl.com/int-

mult-2015-pde

 Unzip the file and

open ocean1.pde from

folder ocean1

http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde

Magic recipes, ocean1.pde

 Place two images on the

window

11

Magic recipes, ocean1.pde

 For each image file that

we want to use, we

need to do three things

 Declare a variable
PImage ocean;

 Initialize the variable to

load the image file we

want to use

 Use the variable to

draw the image

12

Processing – Images
13

 variableName = loadImage(“image name”);

 image(img, xPosition, yPosition, width, height);

ocean = loadImage("ocean.jpg");

flower = loadImage("flower.png");

image(ocean, 0, 0, 640, 480);

image(flower, 0, 0, 100, 100);

Processing – Images
14

 tint(red, green, blue, transparency)

 Values from 0 to 255,

 E.g., green and very transparent:

 E.g., red and no transparent:

tint(0, 255, 0, 30);

tint(255, 0, 0, 255);

Magic recipes, ocean2.pde
15

 Download file

ocean2.zip from the

following link:

 http://tinyurl.com/int-

mult-2015-pde

 Unzip the file and

open ocean2.pde from

folder ocean2

http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde

Magic recipes, ocean2.pde

 Place many different

copies of one image

16

Processing – For loop
17

 Make processing do many things for you!

 Execute the block many times!

“For loop statement” {

 block of code

 }

Processing – For loop
18

 Make processing do many things for you!

 Execute the block many times!

“For loop statement” {

 image(flower, 100*i, 0, 100, 100);

 }

Processing – For loop
19

 Make processing do many things for you!

 Each time replace the variable i with the following

values, and then execute the block

 i =1

 i =2

 i =3

 i =4

“For loop statement” {

 image(flower, 100*i, 0, 100, 100);

 }

Processing – For loop
20

 Make processing do many things for you!

 Each time replace the variable i with the following

values, and then execute the block

 i =1  image(flower, 100*1, 0, 100, 100);

 i =2  image(flower, 100*2, 0, 100, 100);

 i =3  image(flower, 100*3, 0, 100, 100);

 i =4  image(flower, 100*4, 0, 100, 100);

“For loop statement” {

 image(flower, 100*i, 0, 100, 100);

 }

Processing – For loop
21

 Make processing do many things for you!

 Each time replace the variable i with the following

values, and then execute the block

 i =1  image(flower, 100*1, 0, 100, 100);

 i =2  image(flower, 100*2, 0, 100, 100);

 i =3  image(flower, 100*3, 0, 100, 100);

 i =4  image(flower, 100*4, 0, 100, 100);

“For loop statement” {

 image(flower, 100*i, 0, 100, 100);

 }

Processing – For loop
22

 Make processing do many things for you!

 Each time replace the variable i with the following

values, and then execute the block

 Start with i =1, and execute the block

 Continue as long as i<5

Add 1 to i, and execute the block

 …

“For loop statement” {

 image(flower, 100*i, 0, 100, 100);

 }

Processing – For loop
23

 Make processing do many things for you!

 Each time replace the variable i with the following

values, and then execute the block

 Start with i =1, and execute the block

 Continue as long as i<5

Add 1 to i, and execute the block

 …

for(i=1; i<5; i++) {

 image(flower, 100*i, 0, 100, 100);

 }

Magic recipes, eggs1.pde

24

 Remember the function that drew eggs on the screen?

It was just a simple for loop, like the one we did with

flowers here, but with ellipse() instead ;)

Magic recipes, eggs1.pde

// a function that draws n eggs

// one next to the other

void drawEggs(int n) {

 for (int i = 0; i < n; i++) {

 ellipse(100+i*70, 250, 55, 77);

 }

}

25

 Remember the function that drew eggs on the screen?

It was just a simple for loop, like the one we did with

flowers here.

Magic recipes, ocean3.pde
26

 Download file

ocean3.zip from the

following link:

 http://tinyurl.com/int-

mult-2015-pde

 Unzip the file and

open ocean3.pde from

folder ocean3

http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde

Magic recipes, ocean3.pde

 Place even more copies

of one image!

27

Processing – “Nested” For loop
28

 Make processing do many things for you!

 A for loop says to Processing “Do this thing N times

for me”

 E.g., Draw 5 images for me, one next to the other

 We can use this as many times we want, even

combine it with another to do more automatization

 E.g., Do the previous thing 5 times for me, and each

time draw at a lower place

Magic recipes, ocean4.pde
29

 Download file

ocean4.zip from the

following link:

 http://tinyurl.com/int-

mult-2015-pde

 Unzip the file and

open ocean4.pde from

folder ocean4

http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde

Magic recipes, ocean4.pde

 Use the mouse to place

copies of an image

30

Processing – Mouse input
31

 mouseX, mouseY are variables that always

contain the current x and y position of the mouse in

the window

 mousePressed says if the main button of the

mouse is pressed at the current “frame”

 void draw() {

 if(mousePressed){

 image(flower, mouseX, mouseY, 100, 100);

 }

}

Processing – Mouse input
32

 mouseX, mouseY are variables that always

contain the current x and y position of the mouse in

the window

 mousePressed says if the main button of the

mouse is pressed at the current “frame”

 void draw() {

 if(mousePressed){

 image(flower, mouseX, mouseY, 100, 100);

 }

}

Processing – Mouse input
33

 mouseX, mouseY are variables that always

contain the current x and y position of the mouse in

the window

 mousePressed says if the main button of the

mouse is pressed at the current “frame”

 void draw() {

 if(mousePressed){

 image(flower, mouseX, mouseY, 100, 100);

 }

}

Processing – Mouse input
34

 mouseX, mouseY are variables that always

contain the current x and y position of the mouse in

the window

 mousePressed says if the main button of the

mouse is pressed at the current “frame”

 void draw() {

 if(mousePressed){

 image(flower, mouseX, mouseY, 100, 100);

 }

}

Processing – Images
35

 Notice that the image of the flower is not placed

exactly at the place where you click – Why?

Processing – Images
36

 Notice that the image of the flower is not placed

exactly at the place where you click – Why?

 There are two ways to place an image, the

default one is to place it so that the image upper-

left corner is located at the specified x,y position

 But you can also change this so that the image

center is located at the specified x,y position

 imageMode(CORNER);

 imageMode(CENTER);

Processing – Images
37

 All of these statements are like “putting a brush into

the bucket with the paint and then paint”, i.e., they

affect all later statements

imageMode(CORNER); imageMode(CENTER);

tint(0, 255, 0, 30); tint(255, 0, 0, 30);

image(ocean, 0, 0, 640, 480);

image(flower, 0, 0, 100, 100);

Processing – Images
38

 Note that we normally want to deal with

background images differently than images we

want to place on a particular point, e.g.,

imageMode(CENTER);

tint(255, 0, 0, 30);

image(flower, 0, 0, 100, 100);

Processing – Images
39

 Note that we normally want to deal with

background images differently than images we

want to place on a particular point, e.g.,

imageMode(CORNER);

tint(255, 255, 255, 255);

image(ocean, 0, 0, 640, 480);

Processing – Images
40

 This is the same as with drawing circles and

rectangles, there we typically want to specify the

fill color and the stroke color of drawings

fill(255,255,255); fill(0,0,0);

stroke(0, 255, 0); stroke(255, 0, 0);

rect(x1, y1, x2, y2);

ellipse(x, y, width, height);

Magic recipes, ocean5.pde
41

 Download file

ocean5.zip from the

following link:

 http://tinyurl.com/int-

mult-2015-pde

 Unzip the file and

open ocean5.pde from

folder ocean5

http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde

Magic recipes, ocean5.pde

 Place circles at random

points following image color

42

Processing – Mouse input
43

 The variable x is assigned a new value that is

randomly chosen from 0 to 10

 Here, x,y is a random point in the window

 void draw() {

 float x = random(640);

 float y = random(480);

 ellipse(x, y, 50, 50);

}

float x = random(10);

Processing – Mouse input
44

 We can use random() with more specific values, e.g.,

the size of an image in the window, and then even

pick the color of the point and draw using that color

void draw() {

 float x = random(ocean.width);

 float y = random(ocean.height);

 color pixel = ocean.get(x, y);

 tint(pixel);

 ellipse(x, y, 50, 50);

}

Magic recipes, ocean6.pde
45

 Download file

ocean6.zip from the

following link:

 http://tinyurl.com/int-

mult-2015-pde

 Unzip the file and

open ocean6.pde from

folder ocean6

http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde
http://tinyurl.com/int-mult-2015-pde

Magic recipes, ocean6.pde

 Place image at random

points following image color

46

Interactive Multimedia Design

 It’s important to separate the inputs and outputs

Input Output Environment

Recipe

Video game metaphor

47

Interactive Multimedia Design

 It’s important to separate the inputs and outputs

 We “monitor” the input, i.e., the mouse click, and then

we generate output, i.e., flowers on a background,

based on the mouse position, which is also an input

 Input Output Environment

Recipe

48

Interactive Multimedia Design

 It’s important to separate the inputs and outputs

 Input: Mouse position, Mouse click, Yo message (IOTUP,

IOTDOWN)

 Output: Drawings, Sound

Input Output Environment

Recipe

49

Interactive Multimedia Design

 It’s important to separate the inputs and outputs

 Input: Mouse position, Mouse click, Yo message (IOTUP,

IOTDOWN), chat!

 Output: Drawings, Sound, chat!

Input Output Environment

Recipe

50

Reminder: Processing reference

 https://processing.org/reference/color_datatype.html

 https://processing.org/reference/PImage.html

 https://processing.org/reference/loadImage_.html

 “Processing Reference” is like a Spell Book!

 http://processing.org/reference/

 There you can find all available magic words you

can use as well as a detailed explanation of the

intended use and examples

51

https://processing.org/reference/color_datatype.html
https://processing.org/reference/color_datatype.html
https://processing.org/reference/color_datatype.html
https://processing.org/reference/PImage.html
https://processing.org/reference/PImage.html
https://processing.org/reference/loadImage_.html
https://processing.org/reference/loadImage_.html
http://processing.org/reference/

Interactive Multimedia Design

 New magic word: else !

void draw() {

 if (mousePressed) {

 fill(alert);

 } else {

 fill(gray);

 }

 rect(50, 50, 250, 250, 17);

 image(img, 100, 100, 150, 150);

}

52

