
Software Testing Basics

Adopted from:
Elaine Weyuker

AT&T Labs – Research

Dr. Panayotis Kikiras
INFS133

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Ø Incorrect calculation
Ø Incorrect data edits & ineffective data edits
Ø Incorrect matching and merging of data
Ø Data searches that yields incorrect results
Ø Incorrect processing of data relationship
Ø Incorrect coding / implementation of business rules
Ø Inadequate software performance

Most Common Software problems

Ø Confusing or misleading data
Ø Software usability by end users & Obsolete Software
Ø Inconsistent processing
Ø Unreliable results or performance
Ø Inadequate support of business needs
Ø Incorrect or inadequate interfaces

with other systems
Ø Inadequate performance and security controls
Ø Incorrect file handling

• Executing a program with the intent of finding an error.
• To check if the system meets the requirements and be

executed successfully in the Intended environment.
• To check if the system is “ Fit for purpose”.

• To check if the system does what it is expected to do.

Objectives of testing

• A good test case is one that has a probability of finding
an as yet undiscovered error.

• A successful test is one that uncovers a yet
undiscovered error.

• A good test is not redundant.
• A good test should be “best of breed”.
• A good test should neither be too simple nor too

complex.

Objectives of testing

• Find bugs as early as possible and make sure they get
fixed.

• To understand the application well.
• Study the functionality in detail to find where the bugs

are likely to occur.

• Study the code to ensure that each and every line of
code is tested.

• Create test cases in such a way that testing is done to
uncover the hidden bugs and also ensure that the
software is usable and reliable

Objective of a Software Tester

What is Software Testing?

Executing software in a simulated or
real environment, using inputs
selected somehow.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Testing process

oracle

P
P test

strategy compare
input

subset of
input

subset of
input

expected
output

real
output

test
results

Goals of Testing

• Detect faults

• Establish confidence in software

• Evaluate properties of software
– Reliability

– Performance

– Memory Usage

– Security

– Usability

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Software Testing Difficulties

Most of the software testing literature equates test
case selection to software testing but that is just one
difficult part. Other difficult issues include:

• Determining whether or not outputs are correct.
• Comparing resulting internal states to expected states.
• Determining whether adequate testing has been done.
• Determining what you can say about the software when

testing is completed.
• Measuring performance characteristics.
• Comparing testing strategies.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Determining the
Correctness of Outputs

We frequently accept outputs because they are plausible
rather than correct.

It is difficult to determine whether outputs are correct because:

•We wrote the software to compute the answer.
•There is so much output that it is impossible to validate it all.

•There is no (visible) output.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Testing methodologies

Black box testing

White box testing

Incremental testing

Thread testing

• Black box testing
• No knowledge of internal design or code

required.
• Tests are based on requirements and

functionality
• White box testing
• Knowledge of the internal program design

and code required.
• Tests are based on coverage of code

statements,branches,paths,conditions.

• Incorrect or missing functions
• Interface errors
• Errors in data structures or external database

access
• Performance errors
• Initialization and termination errors

Black Box - testing technique

Black box / Functional testing

• Based on requirements and functionality

• Not based on any knowledge of internal
design or code

• Covers all combined parts of a system

• Tests are data driven

White box testing / Structural testing

• Based on knowledge of internal logic of an
application's code

• Based on coverage of code statements,
branches, paths, conditions

• Tests are logic driven

Functional testing
– Black box type testing geared to functional requirements of an

application.
– Done by testers.

System testing
– Black box type testing that is based on overall requirements

specifications; covering all combined parts of the system.
End-to-end testing

– Similar to system testing; involves testing of a complete
application environment in a situation that mimics real-world use.

Sanity testing

– Initial effort to determine if a new software version is
performing well enough to accept it for a major testing
effort.

Regression testing

– Re-testing after fixes or modifications of the software or its
environment.

Acceptance testing

– Final testing based on specifications of the end-user or
customer

Load testing

– Testing an application under heavy loads.
– Eg. Testing of a web site under a range of loads to

determine, when the system response time degraded or fails.

Stress Testing

– Testing under unusually heavy loads, heavy repetition of
certain actions or inputs, input of large numerical values, large
complex queries to a database etc.

– Term often used interchangeably with ‘load’ and ‘performance’
testing.

Performance testing
– Testing how well an application complies to performance

requirements.

Install/uninstall testing
– Testing of full,partial or upgrade install/uninstall process.

Recovery testing
– Testing how well a system recovers from crashes, HW failures

or other problems.
Compatibility testing

– Testing how well software performs in a particular
HW/SW/OS/NW environment.

Exploratory testing / ad-hoc testing
– Informal SW test that is not based on formal test

plans or test cases; testers will be learning the
SW in totality as they test it.

Comparison testing
– Comparing SW strengths and weakness to

competing products.

Alpha testing
•Testing done when development is nearing
completion; minor design changes may still

be made as a result of such testing.

Beta-testing
•Testing when development and testing are
essentially completed and final bugs and
problems need to be found before release.

Mutation testing

– To determining if a set of test data or test cases is
useful, by deliberately introducing various bugs.

– Re-testing with the original test data/cases to
determine if the bugs are detected.

Srihari Techsoft

White Box - testing technique

• All independent paths within a module have been
exercised at least once

• Exercise all logical decisions on their true and false
sides

• Execute all loops at their boundaries and within their
operational bounds

• Exercise internal data structures to ensure their
validity

This white box technique focuses on the validity
of loop constructs.

4 different classes of loops can be defined
• simple loops
• nested loops
• concatenated loops
• Unstructured loops

Loop Testing

Other White Box Techniques

Statement Coverage – execute all statements at least once

Decision Coverage – execute each decision direction at least
once

Condition Coverage – execute each decision with all possible
outcomes at least once

Decision / Condition coverage – execute all possible
combinations of condition outcomes in
each decision.

Multiple condition Coverage – Invokes each point of entry at
least once.

Statement Coverage – Examples

Small Illustrative Example

Software Artifact : Java Method
/**
* Return index of node n at the
* first position it appears,
* -1 if it is not present
*/
public int indexOf (Node n)
{
for (int i=0; i < path.size(); i++)
if (path.get(i).equals(n))

return i;
return -1;

}
45

3

2

1 i = 0

i < path.size()

if

return ireturn -1

Control Flow Graph

Example (2)

45

3

2

1

Graph
Abstract version

Edges
1 2
2 3
3 2
3 4
2 5
Initial Node: 1
Final Nodes: 4, 5

6 requirements for
Edge-Pair Coverage
1. [1, 2, 3]
2. [1, 2, 5]
3. [2, 3, 4]
4. [2, 3, 2]
5. [3, 2, 3]
6. [3, 2, 5]

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

Find values …

Srihari Techsoft

Incremental Testing

• A disciplined method of testing the interfaces
between unit-tested programs as well as
between system components.

• Involves adding unit-testing program module
or component one by one, and testing each
result and combination.

There are two types of incremental
testing

• Top-down – testing form the top of the
module hierarchy and work down to the bottom.
Modules are added in descending hierarchical
order.

• Bottom-up – testing from the bottom of the
hierarchy and works up to the top. Modules are
added in ascending hierarchical order.

Testing Levels/
Techniques

White
Box

Black
Box

Incre-
mental

Thread

Unit Testing X

Integration
Testing

X X
X

System Testing X

Acceptance
Testing

X

Stages of Testing

Testing
in the
Large

Testing
in the
Small

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Testing in the Small

• Unit Testing

• Feature Testing

• Integration Testing

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Unit Testing

Tests the smallest individually executable code
units.

Usually done by programmers. Test cases might be
selected based on code, specification, intuition, etc.

Tools:

• Test driver/harness

• Code coverage analyzer
• Automatic test case generator

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Integration Testing

Tests interactions between two or more units or

components. Usually done by programmers.

Emphasizes interfaces.

Issues:
• In what order are units combined?

• How do you assure the compatibility and correctness
of externally-supplied components?

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Integration Testing

How are units integrated? What are the implications of this
order?

• Top-down => need stubs; top-level tested repeatedly.

• Bottom-up => need drivers; bottom-levels tested
repeatedly.

• Critical units first => stubs & drivers needed; critical units
tested repeatedly.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Integration Testing

Potential Problems:

• Inadequate unit testing.

• Inadequate planning & organization
for integration testing.

• Inadequate documentation and
testing of externally-supplied
components.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Major Testing Types

• Stress / Load Testing
• Performance Testing
• Recovery Testing
• Conversion Testing
• Usability Testing
• Configuration Testing

Stress / Load Test

• Evaluates a system or component at or
beyond
the limits of its specified requirements.

• Determines the load under which it fails
and
how.

Performance Test

– Evaluate the compliance of a system or
component with specified performance
requirements.

– Often performed using an automated test tool
to simulate large number of users.

Recovery Test

Confirms that the system recovers
from expected or unexpected events
without loss of data or functionality.

Eg.
• Shortage of disk space
• Unexpected loss of communication
• Power out conditions

Conversion Test

– Testing of code that is used to convert data
from existing systems for use in the newly
replaced systems

Usability Test

– Testing the system for the users
to learn and use the product.

Srihari Techsoft

Configuration Test

– Examines an application's requirements for pre-
existing software, initial states and
configuration in order to maintain proper
functionality.

SOFTWARE TESTING LIFECYCLE -
PHASES

• Requirements study

• Test Case Design and Development

• Test Execution

• Test Closure

• Test Process Analysis

Requirements study

• Testing Cycle starts with the study of client’s
requirements.

• Understanding of the requirements is very
essential for testing the product.

Analysis & Planning

• Test objective and coverage
• Overall schedule
• Standards and Methodologies
• Resources required, including necessary training
• Roles and responsibilities of the team members
• Tools used

Test Case Design and Development

• Component Identification
• Test Specification Design
• Test Specification Review

Test Execution

• Code Review
• Test execution and evaluation
• Performance and simulation

Test Closure

• Test summary report
• Project Documentation

Test Process Analysis

Analysis done on the reports and improving the application’s
performance by implementing new technology and additional
features.

TEST PLAN

Objectives

• To create a set of testing tasks.

• Assign resources to each testing task.

• Estimate completion time for each testing task.

• Document testing standards.

Ø A document that describes the
– scope
– approach
– resources
– schedule

• …of intended test activities.
Ø Identifies the

– test items
– features to be tested
– testing tasks
– task allotment
– risks requiring contingency planning.

Purpose of preparing a Test Plan

• Validate the acceptability of a software product.

• Help the people outside the test group to understand
‘why’ and ‘how’ of product validation.

• A Test Plan should be
– thorough enough (Overall coverage of test to be

conducted)
– useful and understandable by the people inside and

outside the test group.

Scope
•The areas to be tested by the QA team.
•Specify the areas which are out of scope (screens,

database, mainframe processes etc).

Test Approach
•Details on how the testing is to be performed.
•Any specific strategy is to be followed for
testing (including configuration management).

Entry Criteria
Various steps to be performed before the start of a test i.e. Pre-
requisites.
E.g.

– Timely environment set up
– Starting the web server/app server
– Successful implementation of the latest build etc.

Resources
List of the people involved in the project and their designation etc.

Tasks/Responsibilities
Tasks to be performed and responsibilities assigned to the
various team members.

Exit Criteria
Contains tasks like
•Bringing down the system / server
•Restoring system to pre-test environment
•Database refresh etc.

Schedule / Milestones
Deals with the final delivery date and the various milestones
dates.

Hardware / Software Requirements
•Details of PC’s / servers required to install the
application or perform the testing

•Specific software to get the application
running or to connect to the database etc.

Risks & Mitigation Plans
•List out the possible risks during testing
•Mitigation plans to implement incase the risk
actually turns into a reality.

Tools to be used
•List the testing tools or utilities
•Eg.WinRunner, LoadRunner, Test Director, Rational Robot, QTP.

Deliverables
•Various deliverables due to the client at various

points of time i.e. Daily / weekly / start of the
project end of the project etc.

•These include test plans, test procedures, test
metric, status reports, test scripts etc.

Testing in Agile

Automation is required to determine
the stability of module developed in

each Sprint as depicted in Figure
above.

Furthermore, with automation
ready, module developed in Sprint 1

can be tested up to ‘n’ sprints
without incurring any cost in terms

of manual testing.

All the defects that are found are
fixed on priority. Automation can be
carried at different phases in agile.

i.e. Unit, Integration, System,
Regression.

Prioritizing Test Cases

Once a test suite has been selected, it is often
desirable to prioritize test cases based on
some criterion. That way, since the time

available for testing is limited and therefore
all tests can’t be run, at least the “most

important” ones can be.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Bases for Test Prioritization

• Most frequently executed inputs.

• Most critical functions.

• Most critical individual inputs.

• (Additional) statement or branch
coverage.

• (Additional) Function coverage.

• Fault-exposing potential.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Securing SCRUM
- Testing

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Summary

• Do test as early as possible

• Testing is a continuous process

• Design with testability in mind

• Test activities must be carefully planned,
controlled and documented.

• No single reliability model performs best
consistently

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

