
Secure Product
Development

Agile Development Basics

Dr. Panayotis Kikiras
INFS133

April 2019

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Agile methods

• Dissatisfaction with the overheads involved in software design
methods of the 1980s and 1990s led to the creation of agile
methods. These methods:

– Focus on the code rather than the design

– Are based on an iterative approach to software development

– Are intended to deliver working software quickly and evolve
this quickly to meet changing requirements.

• The aim of agile methods is to reduce overheads in the software
process (e.g. by limiting documentation) and to be able to respond
quickly to changing requirements without excessive rework.

Agile manifesto

• We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
– Individuals and interactions over processes and

tools
Working software over comprehensive
documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

• That is, while there is value in the items on
the right, we value the items on the left more.

The principles of agile
methods

Principle Description
Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new
system requirements and to evaluate the iterations of the
system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the
system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and
in the development process. Wherever possible, actively work
to eliminate complexity from the system.

Agile Values

Agile Remarks

• The professional goal of every software engineer, and every development team, is to
deliver the highest possible value to our employers and customers.
– And yet, our projects fail, or fail to deliver value, at a dismaying rate.

• Though well intentioned, the upward spiral of process inflation is culpable for at least
some of this failure.

• The principles and values of agile software development were formed as a way
– to help teams break the cycle of process inflation, and
– to focus on simple techniques for reaching their goals.

• At the time of this writing there were many agile processes to choose from. These include
– SCRUM,
– Crystal,
– Feature Driven Development (FDD),
– Adaptive Software Development (ADP), and most significantly,
– Extreme Programming (XP).
– Others…

Where are we know?

15 days

SCRUM basic principles

• Early and continuous delivery of valuable software

• Welcome changing requirements, even late in development

• Build projects around motivated individuals and trust them to

get the job done.

• Working software as the primary measure of progress

• Continuous attention to technical excellence and good design

• Simplicity—maximizing the amount of work not done

• The best architectures, requirements, and designs emerge

from self-organizing teams

• At regular intervals, the team reflects on, tunes, and adjusts

its behavior

• We trust that our teams are doing their best
for security.
– Do they?

• No specific care in designing for security
unless the customer requires that
– Does it happens now?

• No malicious user stories

• No specific controls for common security
flaws

Where are we know?

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

PO view on security

Security is
NOT a

functional
Requirement

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Agile vs. Sec Worlds

Agile Teams:
<More responsive to

business concerns

< Increasing the
frequency of stable

releases

<Decreasing the time it
takes to deploy new

features

Security Teams:
<More aggressive

regulatory
environment

< Increasing focus on
need for security

<Traditional
approaches are

top-down,
document centric

Security in SDLC

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Waterfall VS. Agile

Waterfall
Agile

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

The Challenge: Lightweight
Security Processes

• In SCRUM security processes
iterated over and over again
(comparing to Waterfall)

• Adjust weight of security processes to
distinct scrum controls to keep efforts
reasonable

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Securing SCRUM
an IT Sec Approach

Traditional Security +
Agile Process

Designing a secure product

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Designing a Secure
Product

• Security by Design

– Attack Surface reduction,

– Threat Modeling
• Octave (Operationally Critical Threat, Asset, and Vulnerability Evaluation)

• Microsoft’s Security Development Lifecycle Threat Modeling tool

• Secure by Default

• Clear Security requirements (Customer - Internal)

• Risk Assessment

• Defense in Depth (applied to software and supporting infrastructure)

• Compliance with standards (whenever and if needed)
– Which?

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Security by Design

• Secure by design, in software engineering,
means that the software has been designed
from the ground up to be secure.

• Malicious practices are taken for granted and
care is taken to minimize impact when a
security vulnerability is discovered or on invalid
user input.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Attack Surface Reduction
(ASR)

The Attack Surface Reduction Process

• Look at all of your entry points
– Network I/O

– File I/O

• Rank them
– Authenticated versus anonymous

– Administrator only versus user

– Network versus local

– UDP versus TCP

It’s Not Just About Turning
Stuff Off!

Higher Attack Surface Lower Attack Surface
Executing by default Off by default

Open socket Closed socket
UDP TCP

Anonymous access Authenticated access
Constantly on Intermittently on
Admin access User access

Internet access Local subnet access
SYSTEM Not SYSTEM!

Uniform defaults User-chosen settings
Large code Small code
Weak ACLs Strong ACLs

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Attack Surface Reduction
is as important as trying

to get the code right

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Threat Modeling

• Threat Analysis
– Secure software

starts with
understanding the
threats

– Threats are not
vulnerabilities

– Threats live forever;
they are the
attacker's goal

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Thread Modeling Process

Thread Modeling Process

Whiteboard Your Architecture
• Start with person, processes, data flows, data stores

• Unique shape per item
• Data flows should be one way each
• Label them with data, not read/write

• Draw attack surfaces/trust boundaries
• Tell a story to see if your picture is ok

Data
Flow

• Function call
• Network traffic
• Remote

Procedure Call
(RPC)

• People
• Other systems
• Microsoft.com

External
Entity

• DLLs
• EXEs
• COM object
• Components
• Services
• Web Services
• Assemblies

Process

• Database
• File
• Registry
• Shared

Memory
• Queue / Stack

Data Store

• Process
Boundary

• File system

Trust
Boundary

Find Threats: Use
STRIDE per Element

• Start with items connected to dangerous data flows (those crossing
boundaries)

• Use the chart to help you think of attacks

• Keep a running list

Spoofing

Tampering

Repudiation

Information Disclosure

Denial of Service

Elevation of Privilege

Mitigating Threats

• For each threat, decide how to stop it
– Redesign and eliminate

– Use standard threat mitigations

– Invent new mitigation (not
recommended)

– Accept risk in File a work item in your
bug tracking DB

– Treat threats as bugs, mitigations as
features
Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Validate

• Check threat model diagrams
– Do they match the design docs or code?

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Potential Methodologies
- Tools

• Octave (Operationally Critical Threat, Asset, and Vulnerability
Evaluation) : is a suite of tools, techniques, and methods for
risk-based information security strategic assessment and
planning.
– Free family of tools not automated
– Part of the US – Cert tool chain.

– Hard to Implement.

• Microsoft’s Security Development Lifecycle (SDL)Threat
Modeling tool
– Based on MS SDL methodology

– Adopted to Scrum processes

– Integrated to Visual Studio

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Secure by Default

• Security by default, in software, means that
the default configuration settings are the most
secure settings possible, which are not
necessarily the most user friendly settings.
– Allow only those functionalities that are explicitly

need and with the less privileges.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Designing a Secure
Product

• Clear Security requirements (Customer -
Internal)

– Difficult at the moment to have customer’s
requirements

– Must decide internal baseline security
requirements

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Designing a Secure
Product

• Risk Assessment

– Part of the Treat Modeling process

• RA Methodologies
– Microsoft SDL:

• STRIDE (Identification of threats)
• DREAD (quantifying, comparing and prioritizing

the amount of risk presented by each evaluated
threat)

– Others
Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Designing a Secure
Product

• Defense in Depth:
– is an information assurance (IA) concept in

which multiple layers of security controls
(defense) are placed throughout an
information technology (IT) system.

– Its intent is to provide redundancy in the
event a security control fails or a vulnerability
is exploited which can cover aspects of
personnel, procedural, technical and physical
for the duration of the system's life cycle.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Designing a Secure
Product

• Defense in Depth:
– is an information assurance (IA) concept in

which multiple layers of security controls
(defense) are placed throughout an
information technology (IT) system.

– Its intent is to provide redundancy in the
event a security control fails or a vulnerability
is exploited which can cover aspects of
personnel, procedural, technical and physical
for the duration of the system's life cycle.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Designing a Secure
Product

• Compliance with standards (whenever and if needed)
– Which?

– Where?

– When?

• There a lot of different security standards from different bodies
– ITU has more than 50 ICT related standards (http://www.itu.int/ITU-T/studygroups/com17/ict/part02.html)

– Same condition in

• ISO

• ISA

• NIST

• We must decide…

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

http://www.itu.int/ITU-T/studygroups/com17/ict/part02.html

Developing Secure products

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

• Threat Risk Mitigation

• Adopt and follow Principles

• Education and Training

• Learn from mistakes

• Think like an adversary

Developing a Secure
Product

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Developing a Secure
Product

Threat Mitigation Feature

Spoofing Authentication

Tampering Integrity

Repudiation Nonrepudiation

Information Disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

Risk Mitigation Techniques

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

• Adopt and follow Principles – Best Practices
• Top 10 Secure Coding Practices

– Validate input.
– Heed compiler warnings.
– Architect and design for security policies.
– Keep it simple.
– Default deny.
– Adhere to the principle of least privilege.
– Sanitize data sent to other systems.
– Practice defense in depth.
– Use effective quality assurance techniques.
– Adopt a secure coding standard.

Developing a Secure
Product

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

• Education and Training

• At a minimum, train all Product Owners.

• Scrum team autonomy: Trust, but verify.

• Train two persons in every team to act
as the “security conscience”.

• Repeat training periodically adjust to
new threats.

Developing a Secure
Product

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

• Learn from mistakes
– Use Scrum Controls to propagate

lessons learned
• Scrum of Scrums
• Retrospectives

Developing a Secure
Product

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

• Think like an adversary

Developing a Secure
Product

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Releasing a Secure
Product

• Allocate time for Security Testing
– Test for common flaws

– Security Code reviews

– Infrastructure and software penetration
testing.

• Security in Deployment

• Think like an adversary

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Maintaining a Secure
Product

• Fix security issues correctly

• Infrastructure and software
penetration testing

• Adjust to changes of the supporting
infrastructure (patches to OS, libs,
etc.)

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Product Security Lifecycle

5.
Outcome

Assessment

6.
Deploymen

t

7.
Feedback

Each of the lifecycle

steps are integral to

producing a

consistently secure

product.

R&
D

Quality

1.
Define

Requirements

(Threat Profile)

4.
Implementation

Review

2.
Design

3.
Threat

Solution
Model

Immediate steps to
current Product’s line

• Develop Threat Model

• Identify Risk

• Plan evil Use Cases

• Develop risk mitigation controls

• Calculate residual Risk

• Outcome Assessment

• Feedback

• Continues Improvement

Next Steps

• Educate/Train the PO’s

• Develop/Adopt a Threat analysis
model

• Create process to map threat model
to User stories

• Create Unit Security Tests

• Identify and Use standard security
controls

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Next Steps

• Develop procedures for the correct use of
secure coding standards

• Develop/Adopt a Threat analysis model

• Provide security training to developers
(security awareness and proper use of
controls)

• Leverage Security experts

• Appoint Security Officers within SCRUM
teams.

Discussion

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

