
Slides Based on Database System Concepts, 6th Ed. ©Silberschatz, Korth and Sudarshan www.db-book.com

Μάθημα 6

Κεφάλαιο 4: SQL Μέρος Β

Ευάγγελος Θεοδωρίδης

etheodoridis@teilam.gr

http://eclass.uth.gr/eclass/courses/INFS128/

Βάσεις Δεδομένων

Πανεπιστήμιο Θεσσαλίας

Τμήμα Πληροφορικής http://www.cs.uth.gr/

Ακαδημαϊκό Έτος 2014-2015 - Εαρινό

http://www.db-book.com/
http://cs.uth.gr/

4.2

Κεφάλαιο 4: SQL Μέρος Β

 Join Expressions

 Views

 Transactions

 Integrity Constraints

 SQL Data Types and Schemas

 Authorization

4.3

Joined Relations

 Join operations take two relations and return as a result

another relation.

 A join operation is a Cartesian product which requires that

tuples in the two relations match (under some condition).

It also specifies the attributes that are present in the result

of the join

 The join operations are typically used as subquery

expressions in the from clause

4.4

Join operations – Example

 Relation course

 Relation prereq

 Observe that

prereq information is missing for CS-315 and

course information is missing for CS-437

4.5

Outer Join

 An extension of the join operation that avoids loss of

information.

 Computes the join and then adds tuples form one relation

that does not match tuples in the other relation to the result

of the join.

 Uses null values.

4.6

Left Outer Join

 course natural left outer join prereq

4.7

Right Outer Join

 course natural right outer join prereq

4.8

Joined Relations

 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations

match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not

match any tuple in the other relation (based on the join

condition) are treated.

4.9

Full Outer Join

 course natural full outer join prereq

4.10

Joined Relations – Examples

 course inner join prereq on

course.course_id = prereq.course_id

 What is the difference between the above, and a natural join?

 course left outer join prereq on

course.course_id = prereq.course_id

4.11

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

4.12

Views

 In some cases, it is not desirable for all users to see the entire

logical model (that is, all the actual relations stored in the

database.)

 Consider a person who needs to know an instructors name

and department, but not the salary. This person should see a

relation described, in SQL, by

select ID, name, dept_name

from instructor

 A view provides a mechanism to hide certain data from the

view of certain users.

 Any relation that is not of the conceptual model but is made

visible to a user as a “virtual relation” is called a view.

4.13

View Definition

 A view is defined using the create view statement which has

the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The

view name is represented by v.

 Once a view is defined, the view name can be used to refer to

the virtual relation that the view generates.

 View definition is not the same as creating a new relation by

evaluating the query expression

 Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.

4.14

Example Views

 A view of instructors without their salary

create view faculty as

select ID, name, dept_name

from instructor

 Find all instructors in the Biology department

select name

from faculty

where dept_name = ‘Biology’

 Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)

from instructor

group by dept_name;

4.15

Views Defined Using Other Views

 create view physics_fall_2009 as

select course.course_id, sec_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = ’Physics’

and section.semester = ’Fall’

and section.year = ’2009’;

 create view physics_fall_2009_watson as

select course_id, room_number

from physics_fall_2009

where building= ’Watson’;

4.16

View Expansion

 Expand use of a view in a query/another view

create view physics_fall_2009_watson as

(select course_id, room_number

from (select course.course_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = ’Physics’

and section.semester = ’Fall’

and section.year = ’2009’)

where building= ’Watson’;

4.17

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation

v2 if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either

v1 depends directly to v2 or there is a path of dependencies

from v1 to v2

 A view relation v is said to be recursive if it depends on itself.

4.18

View Expansion

 A way to define the meaning of views defined in terms of other

views.

 Let view v1 be defined by an expression e1 that may itself

contain uses of view relations.

 View expansion of an expression repeats the following

replacement step:

repeat

Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will

terminate

4.19

Update of a View

 Add a new tuple to faculty view which we defined earlier

insert into faculty values (’30765’, ’Green’, ’Music’);

This insertion must be represented by the insertion of the tuple

(’30765’, ’Green’, ’Music’, null)

into the instructor relation

4.20

Some Updates cannot be Translated Uniquely

 create view instructor_info as

select ID, name, building

from instructor, department

where instructor.dept_name= department.dept_name;

 insert into instructor_info values (’69987’, ’White’, ’Taylor’);

which department, if multiple departments in Taylor?

what if no department is in Taylor?

 Most SQL implementations allow updates only on simple views

 The from clause has only one database relation.

 The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates, or

distinct specification.

 Any attribute not listed in the select clause can be set to null

 The query does not have a group by or having clause.

4.21

And Some Not at All

 create view history_instructors as

select *

from instructor

where dept_name= ’History’;

 What happens if we insert (’25566’, ’Brown’, ’Biology’, 100000)

into history_instructors?

4.22

Materialized Views

 Materializing a view: create a physical table containing all the tuples

in the result of the query defining the view

 If relations used in the query are updated, the materialized view result

becomes out of date

 Need to maintain the view, by updating the view whenever the

underlying relations are updated.

4.23

Transactions

 Unit of work

 Atomic transaction

 either fully executed or rolled back as if it never occurred

 Isolation from concurrent transactions

 Transactions begin implicitly

 Ended by commit work or rollback work

 But default on most databases: each SQL statement commits

automatically

 Can turn off auto commit for a session (e.g. using API)

 In SQL:1999, can use: begin atomic …. end

 Not supported on most databases

4.24

Integrity Constraints

 Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the

database do not result in a loss of data consistency.

 A checking account must have a balance greater than

$10,000.00

 A salary of a bank employee must be at least $4.00 an

hour

 A customer must have a (non-null) phone number

4.25

Integrity Constraints on a Single Relation

 not null

 primary key

 unique

 check (P), where P is a predicate

4.26

Not Null and Unique Constraints

 not null

 Declare name and budget to be not null

name varchar(20) not null

budget numeric(12,2) not null

 unique (A1, A2, …, Am)

 The unique specification states that the attributes A1, A2, …

Am

form a candidate key.

 Candidate keys are permitted to be null (in contrast to primary

keys).

4.27

The check clause

 check (P)

where P is a predicate

Example: ensure that semester is one of fall, winter, spring

or summer:

create table section (

course_id varchar (8),

sec_id varchar (8),

semester varchar (6),

year numeric (4,0),

building varchar (15),

room_number varchar (7),

time slot id varchar (4),

primary key (course_id, sec_id, semester, year),

check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’))

);

4.28

Referential Integrity

 Ensures that a value that appears in one relation for a given

set of attributes also appears for a certain set of attributes in

another relation.

 Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there exists

a tuple in the department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two relations that

contain attributes A and where A is the primary key of S. A is

said to be a foreign key of R if for any values of A appearing

in R these values also appear in S.

4.29

Cascading Actions in Referential Integrity

 create table course (

course_id char(5) primary key,

title varchar(20),

dept_name varchar(20) references department

)

 create table course (

…

dept_name varchar(20),

foreign key (dept_name) references department

on delete cascade

on update cascade,

. . .

)

 alternative actions to cascade: set null, set default

4.30

Integrity Constraint Violation During

Transactions

 E.g.

create table person (

ID char(10),

name char(40),

mother char(10),

father char(10),

primary key ID,

foreign key father references person,

foreign key mother references person)

 How to insert a tuple without causing constraint violation ?

 insert father and mother of a person before inserting person

 OR, set father and mother to null initially, update after

inserting all persons (not possible if father and mother

attributes declared to be not null)

 OR defer constraint checking (next slide)

4.31

Complex Check Clauses

 check (time_slot_id in (select time_slot_id from time_slot))

 why not use a foreign key here?

 Every section has at least one instructor teaching the section.

 how to write this?

 Unfortunately: subquery in check clause not supported by

pretty much any database

 Alternative: triggers (later)

 create assertion <assertion-name> check <predicate>;

 Also not supported by anyone

4.32

Built-in Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date

 Example: date ‘2005-7-27’

 time: Time of day, in hours, minutes and seconds.

 Example: time ‘09:00:30’ time ‘09:00:30.75’

 timestamp: date plus time of day

 Example: timestamp ‘2005-7-27 09:00:30.75’

 interval: period of time

 Example: interval ‘1’ day

 Subtracting a date/time/timestamp value from another gives

an interval value

 Interval values can be added to date/time/timestamp values

4.33

Index Creation

 create table student

(ID varchar (5),

name varchar (20) not null,

dept_name varchar (20),

tot_cred numeric (3,0) default 0,

primary key (ID))

 create index studentID_index on student(ID)

 Indices are data structures used to speed up access to records

with specified values for index attributes

 e.g. select *

from student

where ID = ‘12345’

can be executed by using the index to find the required

record, without looking at all records of student

More on indices in Chapter 11

4.34

User-Defined Types

 create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

 create table department

(dept_name varchar (20),

building varchar (15),

budget Dollars);

4.35

Domains

 create domain construct in SQL-92 creates user-defined

domain types

create domain person_name char(20) not null

 Types and domains are similar. Domains can have

constraints, such as not null, specified on them.

 create domain degree_level varchar(10)

constraint degree_level_test

check (value in (’Bachelors’, ’Masters’, ’Doctorate’));

4.36

Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a

large object:

 blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an

application outside of the database system)

 clob: character large object -- object is a large collection of

character data

 When a query returns a large object, a pointer is returned

rather than the large object itself.

4.37

Authorization

Forms of authorization on parts of the database:

 Read - allows reading, but not modification of data.

 Insert - allows insertion of new data, but not modification of existing

data.

 Update - allows modification, but not deletion of data.

 Delete - allows deletion of data.

Forms of authorization to modify the database schema

 Index - allows creation and deletion of indices.

 Resources - allows creation of new relations.

 Alteration - allows addition or deletion of attributes in a relation.

 Drop - allows deletion of relations.

4.38

Authorization Specification in SQL

 The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name> to <user list>

 <user list> is:

 a user-id

 public, which allows all valid users the privilege granted

 A role (more on this later)

 Granting a privilege on a view does not imply granting any

privileges on the underlying relations.

 The grantor of the privilege must already hold the privilege on

the specified item (or be the database administrator).

4.39

Privileges in SQL

 select: allows read access to relation,or the ability to query

using the view

 Example: grant users U1, U2, and U3 select

authorization on the instructor relation:

grant select on instructor to U1, U2, U3

 insert: the ability to insert tuples

 update: the ability to update using the SQL update

statement

 delete: the ability to delete tuples.

 all privileges: used as a short form for all the allowable

privileges

4.40

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

revoke <privilege list>

on <relation name or view name> from <user list>

 Example:

revoke select on branch from U1, U2, U3

 <privilege-list> may be all to revoke all privileges the revokee

may hold.

 If <revokee-list> includes public, all users lose the privilege

except those granted it explicitly.

 If the same privilege was granted twice to the same user by

different grantees, the user may retain the privilege after the

revocation.

 All privileges that depend on the privilege being revoked are

also revoked.

4.41

Roles

 create role instructor;

 grant instructor to Amit;

 Privileges can be granted to roles:

 grant select on takes to instructor;

 Roles can be granted to users, as well as to other roles

 create role teaching_assistant

 grant teaching_assistant to instructor;

 Instructor inherits all privileges of teaching_assistant

 Chain of roles

 create role dean;

 grant instructor to dean;

 grant dean to Satoshi;

4.42

Authorization on Views

 create view geo_instructor as

(select *

from instructor

where dept_name = ’Geology’);

 grant select on geo_instructor to geo_staff

 Suppose that a geo_staff member issues

 select *

from geo_instructor;

 What if

 geo_staff does not have permissions on instructor?

 creator of view did not have some permissions on

instructor?

4.43

Other Authorization Features

 references privilege to create foreign key

 grant reference (dept_name) on department to Mariano;

 why is this required?

 transfer of privileges

 grant select on department to Amit with grant option;

 revoke select on department from Amit, Satoshi cascade;

 revoke select on department from Amit, Satoshi restrict;

 Etc. read Section 4.6 for more details we have omitted here.

