
SPIM Instruction Set

This document gives an overview of the more common instructions used in the SPIM simulator.

Overview
The SPIM simulator implements the full MIPS instruction set, as well as a large number
of pseudoinstructions that correspond to one or more equivalent MIPS instructions.
There are also a small number of system call commands used to interface with the
console window of the SPIM simulator. Finally, SPIM renames registers according to
commonly used conventions in order to facilitate the readability of programs.

Instructions and PseudoInstructions
The following is an abbreviated list of MIPS instructions and SPIM pseudoinstructions.
This list is not complete. Notably missing are all Floating Point and coprocessor
instructions.

• - Indicates an actual MIPS instruction. Others are SPIM pseudoinstructions.

 Instruction Function
• add Rd, Rs, Rt Rd = Rs + Rt (signed)
• addu Rd, Rs, Rt Rd = Rs + Rt (unsigned)
• addi Rd, Rs, Imm Rd = Rs + Imm (signed)
• sub Rd, Rs, Rt Rd = Rs - Rt (signed)
• subu Rd, Rs, Rt Rd = Rs - Rt (unsigned)
• div Rs, Rt lo = Rs/Rt, hi = Rs mod Rt (integer division, signed)
• divu Rs, Rt lo = Rs/Rt, hi = Rs mod Rt (integer division, unsigned)
 div Rd, Rs, Rt Rd = Rs/Rt (integer division, signed)
 divu Rd, Rs, Rt Rd = Rs/Rt (integer division, unsigned)
 rem Rd, Rs, Rt Rd = Rs mod Rt (signed)
 remu Rd, Rs, Rt Rd = Rs mod Rt (unsigned)
 mul Rd, Rs, Rt Rd = Rs * Rt (signed)
• mult Rs, Rt hi, lo = Rs * Rt (signed, hi = high 32 bits, lo = low 32 bits)
• multu Rd, Rs hi, lo = Rs * Rt (unsigned, hi = high 32 bits, lo = low 32
bits)

• and Rd, Rs, Rt Rd = Rs • Rt
• andi Rd, Rs, Imm Rd = Rs • Imm
 neg Rd, Rs Rd = -(Rs)
• nor Rd, Rs, Rt Rd = (Rs + Rt)’
 not Rd, Rs Rd = (Rs)’
• or Rd, Rs, Rt Rd = Rs + Rt
• ori Rd, Rs, Imm Rd = Rs + Imm
• xor Rd, Rs, Rt Rd = Rs ⊕ Rt
• xori Rd, Rs, Imm Rd = Rs ⊕ Imm

• sll Rd, Rt, Sa Rd = Rt left shifted by Sa bits
• sllv Rd, Rs, Rt Rd = Rt left shifted by Rs bits
• srl Rd, Rs, Sa Rd = Rt right shifted by Sa bits
• srlv Rd, Rs, Rt Rd = Rt right shifted by Rs bits

 move Rd, Rs Rd = Rs
• mfhi Rd Rd = hi
• mflo Rd Rd = lo
 li Rd, Imm Rd = Imm
• lui Rt, Imm Rt[31:16] = Imm, Rt[15:0] = 0

• lb Rt, Address(Rs) Rt = byte at M[Address + Rs] (sign extended)
• sb Rt, Address(Rs) Byte at M[Address + Rs] = Rt (sign extended)
• lw Rt, Address(Rs) Rt = word at M[Address + Rs]
• sw Rt, Address(Rs) Word at M[Address + Rs] = Rt

• slt Rd, Rs, Rt Rd = 1 if Rs < Rt, Rd = 0 if Rs ≥ Rt (signed)
• slti Rd, Rs, Imm Rd = 1 if Rs < Imm, Rd = 0 if Rs ≥ Imm (signed)
• sltu Rd, Rs, Rt Rd = 1 if Rs < Rt, Rd = 0 if Rs ≥ Rt (unsigned)

• beq Rs, Rt, Label Branch to Label if Rs == Rt
 beqz Rs, Label Branch to Label if Rs == 0
 bge Rs, Rt, Label Branch to Label if Rs ≥ Rt (signed)
• bgez Rs, Label Branch to Label if Rs ≥ 0 (signed)
• bgezal Rs, Label Branch to Label and Link if Rs ≥ Rt (signed)
 bgt Rs, Rt, Label Branch to Label if Rs > Rt (signed)
 bgtu Rs, Rt, Label Branch to Label if Rs > Rt (unsigned)
• bgtz Rs, Label Branch to Label if Rs > 0 (signed)
 ble Rs, Rt, Label Branch to Label if Rs ≤ Rt (signed)
 bleu Rs, Rt, Label Branch to Label if Rs ≤ Rt (unsigned)
• blez Rs, Label Branch to Label if Rs ≤ 0 (signed)
• bgezal Rs, Label Branch to Label and Link if Rs ≥ 0 (signed)
• bltzal Rs, Label Branch to Label and Link if Rs < 0 (signed)
 blt Rs, Rt, Label Branch to Label if Rs < Rt (signed)
 bltu Rs, Rt, Label Branch to Label if Rs < Rt (unsigned)
• bltz Rs, Label Branch to Label if Rs < 0 (signed)
• bne Rs, Rt, Label Branch to Label if Rs ≠ Rt
 bnez Rs, Label Branch to Label if Rs ≠ 0

• j Label Jump to Label unconditionally
• jal Label Jump to Label and link unconditionally
• jr Rs Jump to location in Rs unconditionally
• jalr Label Jump to location in Rs and link unconditionally

Registers
By convention, many MIPS registers have special purpose uses. To help clarify this,
SPIM defines aliases for each register that represent its purpose. The following table lists
these aliases and the commonly accepted uses for the registers.

Register Number Usage
zero 0 Constant 0
at 1 Reserved for assembler
v0 2 Used for return values from function calls.
v1 3
a0 4 Used to pass arguments to procedures and functions.
a1 5
a2 6
a3 7
t0 8 Temporary (Caller-saved, need not be saved by called procedure)
t1 9
t2 10
t3 11
t4 12
t5 13
t6 14
t7 15
s0 16 Saved temporary (Callee-saved, called procedure must save and

restore)
s1 17
s2 18
s3 19
s4 20
s5 21
s6 22
s7 23
t8 24 Temporary (Caller-saved, need not be saved by called procedure)
t9 25
k0 26 Reserved for OS kernel
k1 27
gp 28 Pointer to global area
sp 29 Stack pointer
fp 30 Frame pointer
ra 31 Return address for function calls.

System Calls
In order to perform I/O with the console, SPIM provides a small library of system calls.
In general, system calls are set up by placing a system call in register $v0, and any

arguments in register $a0 and $a1. Returned values are placed in register $v0. See the
table and the example program below for usage.

Example Program

This program takes input from the user and echoes it back

 .data
Constant strings to be output to the terminal
promptInt: .asciiz "Please input an integer: "
resultInt: .asciiz "Next integer is: "
linefeed: .asciiz "\n"
enterkey: .asciiz "Press any key to end program."

 .text
main:
prompt for an integer
 li $v0,4 # code for print_string
 la $a0,promptInt # point $a0 to prompt string
 syscall # print the prompt

get an integer from the user
 li $v0,5 # code for read_int
 syscall #get int from user --> returned in $v0
 move $t0,$v0 # move the resulting int to $t0

compute the next integer
 addi $t0, $t0, 1 # t0 <-- t0 + 1

print out text for the result
 li $v0,4 #code for print_string
 la $a0,resultInt # point $a0 to result string
 syscall # print the result string

print out the result
 li $v0,1 # code for print_int
 move $a0,$t0 # put result in $a0
 syscall # print out the result

print out a line feed
 li $v0,4 # code for print_string
 la $a0,linefeed # point $a0 to linefeed string
 syscall # print linefeed

Service System Call Code Arguments Result
Print_int 1 $a0 = integer

Print_float 2 $f12 = float
Print_double 3 $f12 = double
Print_string 4 $a0 = string

Read_int 5 Integer (in $v0)
Read_float 6 Float (in $f0)

Read_double 7 Double (in $f0)
Read_string 8 $a0 = buffer, $a1 = length

Sbrk 9 $a0 = amount Address (in $v0)
exit 10

wait for the enter key to be pressed to end program
 li $v0,4 # code for print_string
 la $a0,enterkey # point $a0 to enterkey string
 syscall # print enterkey

wait for input by getting an integer from the user (integer is ignored)
 li $v0,5 # code for read_int
 syscall #get int from user --> returned in $v0

All done, thank you!
 li $v0,10 # code for exit
 syscall # exit program

