

CHAPTER 1 BIOSENSORS – AN INTRODUCTION

Innovative.Entrepreneurial.Global

Learning Objectives:

- At the end of this chapter you should be able to:
- 1. Define the term biosensor
- 2. State and describe the fundamental components required to make a viable biosensor.

What are Sensors?

- Nose! Tongue! Ears! Eyes! Fingers!
- Sensors can give qualitative or quantitative analysis.

Table 1.1 Test for acids and alkalis

SENSOR	SENSING ELEMENT	QUALITATIVE	QUANTITATIVE
Litmus paper	Dye in litmus paper	Colour change	-
pH indicator solutions	Complex mixture of chemical dyes	Colour change	Semi- quantitative?
pH meter	Glass membrane electrode (pH meter)	-	Digital display (pH value)

Sensors can be divided into three types:

- a. physical sensors distance, mass, temperature etc.
- b. chemical sensors measure an *analyte* by chemical or physical response (eg. litmus paper vs pH meter)
- c. biosensors measure an analyte using *biological* sensing elements / bioelement

** All these devises have to be connected to a *transducer*, so that a visibly observable response occurs.

• Biosensors are analytical devices which are capable of providing either qualitative or quantitative results.

- Biosensors function by coupling a biological sensing element with a detector system using a transducer.
- IUPAC* definition

'A device that uses specific biochemical reactions mediated by isolated <u>enzymes</u>, immunosystems, tissues, <u>organelles</u> or whole cells to detect chemical compounds usually by electrical, thermal or optical signals'.

* International Union of Pure and Applied Chemistry

What is a Biosensor?

• The *biological sensing element* has to be connected to a *transducer* so that a visually observable response occurs. In the case of the pH meter, the electrical response (a voltage change) has to be converted i.e. transduced = led through, into an observable response (movement of a meter needle or digital display).

• Biosensors are generally concerned with sensing and measuring particular chemicals (*analyte*) which <u>need not</u> <u>always be biological components themselves</u>.

IUPAC definition

'A device that uses specific biochemical reactions mediated by isolated <u>enzymes</u>, immunosystems, tissues, <u>organelles</u> or whole cells to detect chemical compounds usually by electrical, thermal or optical signals'. * International Union of Pure and Applied Chemistry

HISTORY OF BIOSENSOR

1916	First report on the immobilisation of proteins: adsorption of invertase on
	activated charcoal
1922	First glass pH electrode
1956	Invention of the oxygen electrode
1962	First description of a biosensor: an amperometric enzyme electrode for glucose
1969	First potentiometric biosensor: urease immobilised on an ammonia electrode to detect urea
1970	Invention of the Ion-Selective Field-Effect Transistor (ISFET)
1972/ 5	First commercial biosensor: Yellow Springs Instruments glucose biosensor
1975	First microbe-based biosensor
	First immunosensor: ovalbumin on a platinum wire
	Invention of the pO2 / pCO2 optode
1976	First bedside artificial pancreas (Miles)
1980	First fibre optic pH sensor for <i>in vivo</i> blood gases
1982	First fibre optic-based biosensor for glucose
1983	First surface plasmon resonance (SPR) immunosensor
	First mediated amperometric biosensor: ferrocene used with glucose oxidase for the detection of glucose

OPENCOURSEWARE

HISTORY OF BIOSENSOR

1987	Launch of the MediSense ExacTech [™] blood glucose biosensor
1990	Launch of the Pharmacia BIACore SPR-based biosensor system
1992	i-STAT launches hand-held blood analyser
1996	Glucocard launched
1996	Abbott acquires MediSense for \$867 million
1998	Launch of LifeScan FastTake blood glucose biosensor
1998	Merger of Roche and Boehringer Mannheim to form Roche Diagnostics
2001	LifeScan purchases Inverness Medical's glucose testing business for \$1.3billion
2003	i-STAT acquired by Abbott for \$392 million
2004	Abbott acquired Therasense for \$1.2 billion
2007	GlucoTel a bluetooth enabled glucose meter launched

Biosensors

1. The Analyte or Substrate

Any substance consumed / produced in a biochemical process can in principle be analysed by a biosensor (if one can be constructed)

Eg: sugars, urea, cholesterol, lactic acid, paracetamol,

ethanol, uric acid, phenol

2. The Biological Component

OPENCOURSEWARE

 Interaction of biological component with substrate highly specific to that substrate alone - avoids interferences from other substances.

• Include *enzymes* (most common), *microorganisms* (yeast, bacteria, algae), *tissue material* (liver, banana), *antibodies,* & *nucleic acids*.

3. Biocomponent Immobilisation (details in Chap 2)

OPENCOURSEWARE

- *i.* Adsorption on to surface simplest, weak bonding
- *ii. Microencapsulation* or trapping between membranes (glucose ; oxygen electrode, urea ; CO₂ , NH₃)
- *iii. Entrapment.* Biocomponent trapped in matrix of a gel/paste/polymer (*bananatrode*) Popular method.
- iv. Covalent Attachment. Covalent chemical bonds formed between biocomponent & transducer surface.

3. Biocomponent Immobilisation (details in Chap 2).

OPENCOURSEWARE

- *v.* Cross-linking. A bifunctional agent (gluteraldehye) used to chemically bind biocomponent to transducer. Method helps stabilise adsorbed enzymes. Also used with method (ii).
- vi. Bioaffinity Immobilization gentle oriented immobilization of proteins. Can be achieved by use of affinity tags (His-tag, Strep-tag etc).

4. Transducers/Detector Device (details Chap 3)

i. Electrochemical transducers:

OPENCOURSEWARE

- a. <u>Potentiometry</u>, the measurement of a cell potential at zero current.
- b. <u>Voltammetry</u>, an increasing (decreasing) potential is applied to cell electrode until oxidation (reduction) of substance occurs. (current vs potential)
- c. <u>Amperometry</u> If oxidation (reduction) potential known, step potential directly to that value (constant voltage) and measure current. (current vs time)
- d. <u>Conductimetry</u>, measure of ease of passage of electric current through a solution.

ii. Optical Transducers

absorption, fluorescence, (bio)luminescence

iii. Piezoelectric devices

• Involve generation of electric currents from a vibrating crystal. (QCM-quartz crystal microbalance)

• The frequency of vibration affected by mass of material adsorbed on its surface, which could be related to an active biochemical rxn.

iv. Thermal methods

 Devices such as thermistors measure heat produced/adsorbed which can then be related to the amount of reaction.

- LINEARITY: Maximum linear value of the sensor calibration curve. Linearity of the sensor must be high for the detection of high substrate concentration.
- Selectivity the ability to discriminate between different substrates; most important characteristic of biosensors; function of biocomponent, but sometimes due to operation of tranducer. Interference of chemicals must be minimised for obtaining the correct result
- Sensitivity Range mM but can go down to femtomolar (10⁻¹⁵ M) range. Eg. The value of the electrode response per substrate concentration.

ocw.utm.my

Innovative.Entrepreneurial.Global

5. Performance Factors (Continued)

OPENCOURSEWARE

- Accuracy around ±5%
- *Nature of solution* pH, temperature, ionic strength
- Response times : The necessary time for having 95% of the response. Typically longer than chemical sensors (30s or longer)
- *Recovery time* : time before biosensor is ready to analyse the next sample; should not be more than a few mins.
- Working lifetime : determined by instability of the biological material; vary from a few days to few months; Exactech glucose biosensor is usable for over 1 year.

Where are Biosensors Being Used?

OPENCOURSEWARE

- ✓ Healthcare (glucose, artificial pancreas)
- ✓ Process control:fermentation control and analysis
- \checkmark Food and drink production and analysis
- ✓ Industrial Effluent Control
- \checkmark Pollution control and monitoring
- \checkmark Mining, industrial and toxic gases
- ✓ Military applications
- Pharmaceutical and drug analysis

Read more about it

- B.D. Malhotra, R. Singhal, A. Chaubey, S.K. Sharma, and A. Kumar, "Recent trends in biosensors," *Curr. Appl. Physics, vol. 5, no. 2, pp. 92–97,* 2005.
- Rodriguez-Mozaz, S., M. Maria-Pilar. M. J. Lopez de Alda, and D. Barceló, "Biosensors for environmental applications: Future development trends *Pure Appl. Chem., Vol. 76, No. 4, pp. 723–752, 2004.*

