
homomorphic encryption
Ψηφιακή ασφάλεια και ιδιωτικότητα

Γεώργιος Σπαθούλας
Msc Πληροφορική και υπολογιστική βιοιατρική

Πανεπιστήμιο Θεσσαλίας

idea of homomorhpic encryption

playing with encrypted data

∙ Suppose Alice gives Bob a securely encrypted computer file and
asks him to sum a list of numbers she has put inside

∙ Without the decryption key, this task also seems impossible
∙ The encrypted file is just as opaque and impenetrable as a
locked suitcase

∙ “Can’t be done” Bob concludes again.
∙ But Bob is wrong

2

it can be done

∙ Because Alice has chosen a very special encryption scheme,
Bob can carry out her request

∙ He can compute with data he can’t inspect
∙ The numbers in the file remain encrypted at all times, so Bob
cannot learn anything about them

∙ Nevertheless, he can run computer programs on the encrypted
data, performing operations such as summation

∙ The output of the programs is also encrypted; Bob can’t read it
∙ But when he gives the results back to Alice, she can extract the
answer with her decryption key

3

fully homomorphic encryption

∙ The technique that makes this magic trick possible is called
fully homomorphic encryption, or FHE

∙ It’s not exactly a new idea, but for many years it was viewed as a
fantasy that would never come true

∙ That changed in 2009, with a breakthrough discovery by Craig
Gentry, who was then a graduate student at Stanford University
(He is now at IBM Research)

∙ Since then, further refinements and more new ideas have been
coming at a rapid pace

∙ Homomorphic encryption is not quite ready for everyday use
∙ The methods have been shown to work in principle, but they
still impose a heavy penalty of inefficiency

4

looking to the future

∙ If the system can be made more practical, however, there are
applications ready and waiting for it

∙ Many organizations are eager to outsource computation:
Instead of maintaining their own hardware and software, they
would like to run programs on servers “in the cloud,” a phrase
meant to suggest that physical location is unimportant

∙ But letting sensitive data float around in the cloud raises
concerns about security and privacy

∙ Practical homomorphic encryption would address those worries,
protecting the data against eavesdroppers and intruders and
even hiding it from the operators of the cloud service

5

fhe usability

∙ Cryptographic technology has become a routine part of life on
the Internet

∙ When you check your bank balance on the Web, or make an
online purchase encryption is behind the scenes

∙ Even Google searches are encrypted
∙ These measures are meant to protect your messages while they
are in transit

∙ On the other hand, the cryptographic protocols conceal nothing
from the recipients of your messages, who have the keys to
decipher them

∙ Usually, that’s just fine, because the intended recipient is a
trusted party

∙ Homomorphic encryption is the tool for those occasions when
you don’t trust anyone, not even Bob

6

fhe / conventional cryptography

7

idea of homomorphism

∙ The Greek world homomorphic translate as same shape or
same form, and the underlying idea is that of a transformation
that has the same effect on two different sets of objects

∙ Homomorphic cryptography offers a similar pair of pathways :
∙ We can do arithmetic directly on the plaintext in puts x and y
∙ Or we can encrypt x and y, apply a series of operations to the
ciphertext values, then decrypt the result to arrive at the same
final answer

∙ Among the many operations on numbers we might consider, it
turns out that adding and multiplying are all we really need to
do; other computations can be expressed in terms of these
primitives

8

example

9

fully homomorphic encryption

history

∙ The idea of computing with encrypted data was first proposed in
1978 by Ron Rivest, Len Adleman and Michael Dertouzos at MIT

∙ Just a few months before, Rivest and Adleman, along with Adi
Shamir, had introduced the first implementation of a public-key
crypto system, which came to be known as RSA after their initials

∙ The basic RSA scheme is partially homomorphic: It allows
multiplication of ciphertexts but not addition

∙ In the next 30 years there were occasional advances on this
front

∙ For example, in 2005 Boneh, Goh and Nissim devised a
homomorphic system that allowed an unlimited number of
additions on the ciphertext, followed by a single multiplication

∙ In spite of such incremental progress, however, Gentry’s
announcement of a fully homomorphic scheme came as a total
surprise in 2009

11

gentry’s fhe outline

∙ He creates a crypto system with the usual encrypt and decrypt
functions, which convert bits from plaintext to ciphertext and
back

∙ He also builds an evaluate function that accepts a description
of a computation to be performed on the ciphertext

∙ The computation is specified not as a sequential program but as
a circuit or network, where input signals pass through a cascade
of logic gates

∙ Such circuits are most often assembled from Boolean gates
(and, or, not, etc.), but they can also be specified in terms of
addition and multiplication steps

12

barrier

∙ The evaluate function amounts to a complete computer
embedded in the cryptosystem

∙ In principle, it can calculate any computable function, provided
that the circuit representing the function is allowed to extend to
arbitrary depth

∙ The depth of a circuit is the number of gates on the longest
path from input to output and a full-powered computer must be
able to handle circuits of arbitrary depth

∙ Here the homomorphic system runs into a barrier
∙ The problem is that ciphertext data are contaminated with
numerical “noise”—slight discrepancies from their ideal values

∙ Every arithmetic operation amplifies the noise, until eventually
it overwhelms the signal

13

noise

∙ The origin of the noise lies in the probabilistic encryption
process

∙ Think of each ciphertext value as a point in space
∙ The probabilistic encrypt function injects a smidgen of
randomness into each of the point’s coordinates, displacing it
slightly from the position it would occupy in a deterministic
cryptosystem

∙ The decrypt function filters out the noise by treating each point
as if it were located at the nearest unperturbed position

∙ When the noise is amplified by homomorphic computations,
however, the point wanders farther from its correct position,
until finally the decrypt function will associate it with an
incorrect plaintext value

14

noise amplification

15

and if we could reset randomeness...

∙ Roughly speaking, each homomorphic addition doubles the
noise, and each multiplication squares it

∙ Hence the number of operations must be limited or errors will
accumulate

∙ Because of the limit on circuit depth, this version of the
cryptosystem cannot be called fully homomorphic but only
somewhat homomorphic

∙ The depth limit could be evaded in the following way: Whenever
the noise begins to approach the critical threshold, decrypt the
data and then re-encrypt it, thereby resetting the noise to its
original low level

∙ The trouble is, decryption requires the secret key, and the
whole point of FHE is to allow computation in a context where
that key is unavailable

16

encrypting the encryption key

∙ This is where the story gets wacky and wonderful
∙ The evaluate function built into the cryptosystem is capable of
performing any computation, provided it does not exceed the
noise limit on circuit depth

∙ So we can ask evaluate to run the decrypt function
∙ Evaluate is designed to work with encrypted data, so it is
supplied with an encrypted version of the normal key

∙ Specifically, the secret key supplied to evaluate is the ciphertext
produced when encrypt is applied to the plaintext of the secret
key

∙ When decrypt is run with this enciphered key, the result is not
plaintext but a new encryption of the ciphertext, with reduced
noise

17

the key is locked by itself

∙ In effect, Alice is giving Bob a copy of the key needed to unlock
the data, but the key is inside a securely locked box and can
only be used within that box

∙ As a matter of fact, the box is locked with the very key that is
locked inside the box!

∙ The pause to re-encrypt and refresh the noisy ciphertext can be
repeated as needed

∙ In this way the computer can handle a circuit of any finite
depth, and the system becomes fully homomorphic

∙ It can carry out arbitrarily complex computations on encrypted
data

18

limiting the deapth of decrypt

∙ An essential assumption in this scheme is that the decrypt
circuit is it self shallow enough to run without exceeding the
noise threshold

∙ Indeed, its depth needs to be a little less than the limit, or else
the computer will spend all its time refreshing the data and will
never accomplish any useful work

∙ When Gentry first formulated his FHE scheme, he found that this
condition was not met

∙ The evaluate function could not run the decrypt routine without
accumulating excessive noise

∙ The remedy was a technique for “squashing” decrypt, at the
cost of making the key larger and more complicated

∙ With this last innovation, the problem was solved

19

lets take a step back... rsa ... paillier

rsa multiplicatively homomorhpic

Ο αλγόριθμος RSA παρουσιάζει την εξής ιδιότητα:

D(E(m1) ∗ E(m2)modn2) = m1 ∗m2modn (1)

∙ Έστω Public key (e,N) = (66617,76201) και Private key (d,N) =
(4553,76201)

∙ Εάν m1 = 66624 και m2 = 18532
∙ m1 ∗m2modn = 67366
∙ E(m1) = 64959 και E(m2) = 6778
∙ c1 ∗ c2modn2 = 440292102
∙ D(c1 ∗ c2modn2) = 67366

21

paillier additively homomorhpic

Ο αλγόριθμος Paillier παρουσιάζει τις εξής ιδιότητες:

D(E(m1) ∗ E(m2)modn2) = m1 +m2modn (2)

D(E(m)kmodn2) = k ∗mmodn (3)

D(E(m1) ∗ gm2modn2) = m1 +m2modn (4)

22

σύστηµα ψηϕοϕορίας

Βάσει της ιδιότητας 1 της προηγούμενης διαφάνειας λειτουργεί το
εξής σύστημα ψηφοφορίας

∙ Σε μία εκλογική διαδικασία συμμετέχουν Nc υποψήφιοι
∙ Έστω ότι υπάρχουν Nv ψηφοφόροι
∙ Ο κάθε ψηφοφόρος μπορεί να ψηφίσει όσους θέλει από τους
υποψήφιους ή και κανέναν

23

επιλογή βάσης

Επιλέγουμε έναν αριθμό βάση b έτσι ώστε b > Nv και αναπαριστούμε
την ψήφο σε κάθε υποψήφιο με τον εξής αριθμό :

1ος υποψ. : b0
2ος υποψ. : b1
...................
Nc υποψ. : bNc−1

Ο ψηφοφόρος αθροίζει τους
αριθμούς που σχετίζονται με
τους υποψηφίους της επιλογής
του

Εάν κάποιος επιλέξει όλους τους υποψηφίους τότε ο αριθμός στον
οποίο αθροίζονται οι προτιμήσεις του είναι

mmax=

Nc∑
i=1

bi−1 (5)

24

παράδειγµα

∙ Έστω ότι έχουμε Nc = 3 υποψηφίους και Nv = 9 ψηφοφόρους
∙ Υπολογίζουμε την βάση του συστήματος ως b = Nv + 1 = 10

∙ Η ψήφος στον 1ο γίνεται 100 = 1
∙ Η ψήφος στον 2ο γίνεται 101 = 10
∙ Η ψήφος στον 3ο γίνεται 102 = 100

25

παράδειγµα

∙ Έστω ότι οι 9 ψηφοφόροι ψήφισαν ως εξής :
∙ Ο 1ος ψήφισε τον 2ο υποψήφιο → 10
∙ Ο 2ος ψήφισε τον 1ο υποψήφιο → 1
∙ Ο 3ος ψήφισε τον 3ο υποψήφιο → 100
∙ Ο 4ος ψήφισε τον 1ο υποψήφιο → 1
∙ Ο 5ος ψήφισε τον 3ο υποψήφιο → 100
∙ Ο 6ος ψήφισε τον 3ο υποψήφιο → 100
∙ Ο 7ος ψήφισε τον 1ο υποψήφιο → 1
∙ Ο 8ος ψήφισε τον 2ο υποψήφιο → 10
∙ Ο 9ος ψήφισε τον 3ο υποψήφιο → 100

∙ Αθροίζοντας τις ψήφους προκύπτει το 423
∙ Τα ψηφία 3,2,4 αντιστοιχούν στις ψήφους των τριών υποψηφίων

26

µέγιστο άθροισµα

∙ Πρόκειται να αθροίσουμε τις ψήφους όλων των ψηφοφόρων
∙ Μας ενδιαφέρει το μέγιστο δυνατό άθροισμα

Tmax = Nv ∗mmax (6)

Το άθροισμα αυτό αντιστοιχεί στο ενδεχόμενο να ψηφίσουν όλοι
οι ψηφοφόροι όλους τους υποψηφίους

27

επιλογή p,q

∙ Για να είναι εφικτή η λειτουργία του αλγόριθμος Paillier θα
πρέπει το n να είναι μεγαλύτερο από το μέγιστο δυνατό απλό
κείμενο οπότε

n > Tmax,n = p ∗ q (7)

∙ Οπότε επιλέγουμε κατάλληλα τα p,q π.χ.

p,q ≥
√
Tmax + 1 (8)

∙ Στην συνέχεια επιλέγονται/υπολογίζονται οι τιμές για τις
υπόλοιπες παραμέτρους του αλγορίθμου

28

κρυπτογράϕηση

∙ Ο κάθε ψηφοφόρος κρυπτογραφεί τον αριθμό που υπολόγισε
αθροίζοντας τις ψήφους του

∙ Επιλέγει ένα τυχαίο r ∈ Z∗n και υπολογίζει το κρυπτοκείμενο

E(mi) = ci = gmi ∗ rni modn2 (9)

∙ Στην συνέχεια στέλνει το κρυπτόγραμμα ci στην αρχή που
διενεργεί την ψηφοφρία

29

υπολογισµός αποτελέσµατος

∙ Στην συνέχεια η αρχή που διενεργεί τις εκλογές πολλαπλασιάζει
όλα τα ci που έλαβε από τους ψηφοφόρους

∙ Ο πολλαπλασιασμός αυτός αντιστοιχεί στην πράξη της
πρόσθεσης στο πεδίο των απλών μυνηματών

T =
Nv∏
i=1

cimodn2 (10)

∙ στην συνέχεια αποκρυπτογραφείται το αποτέλεσμα και θα
πρέπει να προκύψει το άθροισμα των αρχικών ψήφων

D(T) =
Nv∑
i=1

mimodn (11)

30

tallying example

31

tallying example

32

tallying example

33

tallying example

34

tallying example

35

tallying example

36

bibliography

∙ Alice and Bob in Cipherspace, Brian Hayes
∙ Homomorphic Tallying with Paillier Cryptosystem, Sansar
Choinyambuu

∙ The development of homomorphic cryptography, Sigrun Goluch

37

	Idea of homomorhpic encryption
	Fully homomorphic encryption
	Lets take a step back... RSA ... Paillier

