HOMOMORPHIC ENCRYPTION

Wnelakn ao@aAela Kal IOIWTIKOTNTA

Fewpylog >maBouAag
Msc MANPOWOPIKN KOl UTIOAOYLOTIKN BLOLATPIKN

MavemoTtrpio Oecoaliog

IDEA OF HOMOMORHPIC ENCRYPTION

PLAYING WITH ENCRYPTED DATA

- Suppose Alice gives Bob a securely encrypted computer file and
asks him to sum a list of numbers she has put inside

- Without the decryption key, this task also seems impossible

- The encrypted file is just as opaque and impenetrable as a
locked suitcase

- “Can’t be done” Bob concludes again.

- But Bob is wrong

IT CAN BE DONE

- Because Alice has chosen a very special encryption scheme,
Bob can carry out her request

- He can compute with data he can’t inspect

- The numbers in the file remain encrypted at all times, so Bob
cannot learn anything about them

- Nevertheless, he can run computer programs on the encrypted
data, performing operations such as summation

- The output of the programs is also encrypted; Bob can’t read it

- But when he gives the results back to Alice, she can extract the
answer with her decryption key

FULLY HOMOMORPHIC ENCRYPTION

- The technique that makes this magic trick possible is called
fully homomorphic encryption, or FHE

- It's not exactly a new idea, but for many years it was viewed as a
fantasy that would never come true

- That changed in 2009, with a breakthrough discovery by Craig
Gentry, who was then a graduate student at Stanford University
(He is now at IBM Research)

- Since then, further refinements and more new ideas have been
coming at a rapid pace

- Homomorphic encryption is not quite ready for everyday use

- The methods have been shown to work in principle, but they
still impose a heavy penalty of inefficiency

LOOKING TO THE FUTURE

- If the system can be made more practical, however, there are
applications ready and waiting for it

- Many organizations are eager to outsource computation:
Instead of maintaining their own hardware and software, they
would like to run programs on servers “in the cloud,” a phrase
meant to suggest that physical location is unimportant

- But letting sensitive data float around in the cloud raises
concerns about security and privacy

- Practical homomorphic encryption would address those worries,
protecting the data against eavesdroppers and intruders and
even hiding it from the operators of the cloud service

FHE USABILITY

- Cryptographic technology has become a routine part of life on
the Internet

- When you check your bank balance on the Web, or make an
online purchase encryption is behind the scenes

- Even Google searches are encrypted

- These measures are meant to protect your messages while they
are in transit

- On the other hand, the cryptographic protocols conceal nothing
from the recipients of your messages, who have the keys to
decipher them

- Usually, that's just fine, because the intended recipient is a
trusted party

- Homomorphic encryption is the tool for those occasions when
you don't trust anyone, not even Bob

FHE / CONVENTIONAL CRYPTOGRAPHY

cornventional encryption fully homomorphic encryption

“u

~n¥akm?ahhs thohoyn®

|

) Bob's computer E, Bob's computer

o

hs s

g o
3

°

8 o~

- E)

& =

& e

2 2

2 -

al -

foucietoentutcor § {Reo,

i
i
[
L

S o \ S © \
3 g g 5
50° %, 50° %oy
20080 Alod's compuer 8010705, 20080 Aliods computer 2010705,

Alice has confidential data she wants to process on Bob’s computer, which is a server “in the doud.” But she wants to make sure no one else
gains access to the data—not even Bob. Conventional encryption (left) protects her information while it is in transit but not while the com-
putation is underway on Bol's computer (red portion of pathway). Homomorphic encryption (right) offers security from the moment the data

stream leaves Alice’s computer until it retums. The strategy requires that all the ari ical and logical ions needed in the

(symbolized here by a circuit of Boolean gates) be applied to the encrypted form of the dah. In I]us diagram Ihe distinction between encry'pled
and unenaypted data—between ciphertext and plaintext—is suggested by a ty Th is shown in

the Devanagari alp which have the 0933 UTGLL.

IDEA OF HOMOMORPHISM

- The Greek world homomorphic translate as same shape or
same form, and the underlying idea is that of a transformation
that has the same effect on two different sets of objects

- Homomorphic cryptography offers a similar pair of pathways :

- We can do arithmetic directly on the plaintext in puts x and y
- Or we can encrypt x and vy, apply a series of operations to the

ciphertext values, then decrypt the result to arrive at the same
final answer

- Among the many operations on numbers we might consider, it
turns out that adding and multiplying are all we really need to
do; other computations can be expressed in terms of these
primitives

EXAMPLE

cipherspace

6+10 = 16 (6 * 10)/2

30

3+5 = 8 3¢5 = 15

plainspace

The concept of homomorphism describes a parallel linkage between operations on two sets
of objects. In this toy example the sets of objects are the set of all integers (lower panel) and
the set of even integers (upper panel). The operations on the objects are addition and multi-
plication. Going back and forth between the two sets is just a matter of doubling or halving
anumber. Addition works the same way in both sets. In the case of multiplication, an adjust-
ment is needed: For even numbers, the product of x and y is defined as (x-y)/2. These sets and
operations can be pressed into service as a rudimentary homomorphic cryptosystem. Plaintext
integers are encrypted by doubling; then any sequence of additions and multiplications can
be carried out; finally the result is decrypted by halving.

FULLY HOMOMORPHIC ENCRYPTION

HISTORY

- The idea of computing with encrypted data was first proposed in
1978 by Ron Rivest, Len Adleman and Michael Dertouzos at MIT

- Just a few months before, Rivest and Adleman, along with Adi
Shamir, had introduced the first implementation of a public-key
crypto system, which came to be known as RSA after their initials

- The basic RSA scheme is partially homomorphic: It allows
multiplication of ciphertexts but not addition

- In the next 30 years there were occasional advances on this
front

- For example, in 2005 Boneh, Goh and Nissim devised a
homomorphic system that allowed an unlimited number of
additions on the ciphertext, followed by a single multiplication

- In spite of such incremental progress, however, Gentry's
announcement of a fully homomorphic scheme came as a total
surprise in 2009

GENTRY’'S FHE OUTLINE

- He creates a crypto system with the usual encrypt and decrypt
functions, which convert bits from plaintext to ciphertext and
back

- He also builds an evaluate function that accepts a description
of a computation to be performed on the ciphertext

- The computation is specified not as a sequential program but as
a circuit or network, where input signals pass through a cascade
of logic gates

- Such circuits are most often assembled from Boolean gates
(and, or, not, etc.), but they can also be specified in terms of
addition and multiplication steps

BARRIER

- The evaluate function amounts to a complete computer
embedded in the cryptosystem

- In principle, it can calculate any computable function, provided
that the circuit representing the function is allowed to extend to
arbitrary depth

- The depth of a circuit is the number of gates on the longest
path from input to output and a full-powered computer must be
able to handle circuits of arbitrary depth

- Here the homomorphic system runs into a barrier

- The problem is that ciphertext data are contaminated with
numerical “noise”—slight discrepancies from their ideal values

- Every arithmetic operation amplifies the noise, until eventually
it overwhelms the signal

NOISE

- The origin of the noise lies in the probabilistic encryption
process

- Think of each ciphertext value as a point in space

- The probabilistic encrypt function injects a smidgen of
randomness into each of the point’s coordinates, displacing it
slightly from the position it would occupy in a deterministic
cryptosystem

- The decrypt function filters out the noise by treating each point
as if it were located at the nearest unperturbed position

- When the noise is amplified by homomorphic computations,
however, the point wanders farther from its correct position,
until finally the decrypt function will associate it with an
incorrect plaintext value

NOISE AMPLIFICATION

.0 o0 4 e 4
* 9 <
e o
[o L]
CT . » ae
<o &) L # T
[] \.. .‘.--' - . ./ » r
< Ny - . . ‘\.
encryption homomarphic operations decryption

Random “noise” in a secure aryptosystem is the princdpal impediment to homomorphic opera-
tion. Encrypted data can be envisioned as points (purple disks) that are given small random
displacements from a finite set of lattice points (white disks). On decryption, each purple disk
is attracted to the nearest white lattice point. Homomorphic operations amplify the random
displacements. If the noise level exceeds a threshold, some of the disks gravitate to the wrong
lattice point, leading to an incorrect decryption (red arroirs). Without some means of noise
control, the system can support only a limited number of homomorphic operations.

AND IF WE COULD RESET RANDOMENESS...

- Roughly speaking, each homomorphic addition doubles the
noise, and each multiplication squares it

- Hence the number of operations must be limited or errors will
accumulate

- Because of the limit on circuit depth, this version of the
cryptosystem cannot be called fully homomorphic but only
somewhat homomorphic

- The depth limit could be evaded in the following way: Whenever
the noise begins to approach the critical threshold, decrypt the
data and then re-encrypt it, thereby resetting the noise to its
original low level

- The trouble is, decryption requires the secret key, and the
whole point of FHE is to allow computation in a context where
that key is unavailable

ENCRYPTING THE ENCRYPTION KEY

- This is where the story gets wacky and wonderful

- The evaluate function built into the cryptosystem is capable of
performing any computation, provided it does not exceed the
noise limit on circuit depth

- So we can ask evaluate to run the decrypt function
- Evaluate is designed to work with encrypted data, so it is
supplied with an encrypted version of the normal key

- Specifically, the secret key supplied to evaluate is the ciphertext
produced when encrypt is applied to the plaintext of the secret
key

- When decrypt is run with this enciphered key, the result is not
plaintext but a new encryption of the ciphertext, with reduced
noise

THE KEY IS LOCKED BY ITSELF

- In effect, Alice is giving Bob a copy of the key needed to unlock
the data, but the key is inside a securely locked box and can
only be used within that box

- As a matter of fact, the box is locked with the very key that is
locked inside the box!

- The pause to re-encrypt and refresh the noisy ciphertext can be
repeated as needed

- In this way the computer can handle a circuit of any finite
depth, and the system becomes fully homomorphic

- It can carry out arbitrarily complex computations on encrypted
data

LIMITING THE DEAPTH OF DECRYPT

- An essential assumption in this scheme is that the decrypt
circuit is it self shallow enough to run without exceeding the
noise threshold

- Indeed, its depth needs to be a little less than the limit, or else
the computer will spend all its time refreshing the data and will
never accomplish any useful work

- When Gentry first formulated his FHE scheme, he found that this
condition was not met

- The evaluate function could not run the decrypt routine without
accumulating excessive noise

- The remedy was a technique for “squashing” decrypt, at the
cost of making the key larger and more complicated

- With this last innovation, the problem was solved

LETS TAKE A STEP BACK... RSA ... PAILLIER

RSA MULTIPLICATIVELY HOMOMORHPIC

O aAyop1Buog RSA apouaidlel TNV €€ ¢ 1610TNTA:

D(E(m1) * E(my)modn?) = mq * mymodn (1)

- Eotw Public key (e,N) = (66617,76201) kat Private key (d,N) =
(4553,76201)

- EGv my = 66624 Kal m, = 18532
- My * mymodn = 67366

- E(m4) = 64959 kal E(m,) = 6778
- 1 % C;modn? = 440292102

- D(¢q * c;modn?) = 67366

PAILLIER ADDITIVELY HOMOMORHPIC

O aAyopiBuog Paillier mapouctadel TIG €€AGC 1IB1IOTNTEG:
D(E(m4) * E(my)modn?) = my + mymodn (2)

D(E(m)*modn?) = k x mmodn (3)

D(E(m4) x g™modn?) = my + mymodn (4)

22

2Y3THMA YHOODOPIAZ

Bdioel TNG 1610TNTAG 1 TNG TTPONYOUHEVNG SIOPAVEING AEITOUPYEL TO
€§NG oLOTNHA YNowopiag

- Ye pio ekhoyikn dladikacia cUPHETEXOUY N UTIOWT IOl

- 'Eotw OTL uTtdp)xouv Ny Wnwopopol

- 0 kdBe Ynpowodpog utopel va wnpioel 6ooug BEAEL attd TOUG
UTTIOWTPLOUG 1) KOl KOVEVOV

23

EMIANOIH BAXHZ

ETiAéyoupe vav aplBuo Bdon b €Tol wote b > Ny Kal avamaploToUpE
TNV WPNWo o€ KABe uTIoWN PO PE ToV €ENGC APIOUO :

1o¢ utoy. : b° O wnwowodpoc abpoilel Toug
20G uToy. : b’ aplBuoug mou oxeTidovTal Pe
................... TOUG uTIOYWNI{OUG TNG €TAOYNS
Nc vttoy. : bNe=? Tou

Edv KATo10G ETAEEEL OAOUG TOUG UTTOWNWIOUG TOTE 0 aplBUOS OTOV
omoio aBpoifovTal ol TPOTIPNCELG TOU Elval

Ne

Mmax= Z bi_1 (5)

i=1

24

MAPAAEITMA

- EOTw OTL éxoupe N¢ = 3 vmownwioug kat Ny = 9 wneopopoug
- YnoAoy{Coupe Tnv Baon Tou cUCTAPOTOG WG b =N, +1=10

- H wrpoc oTov 1o yivetal 10° = 1
- H ywngoc oTov 20 yivetan 10" = 10
- H wrpoc oTov 30 yivetar 102 = 100

25

MAPAAEITMA

- EOTW OTL 01 9 Wnpowopol YHPLoay we ENGE :

- 0 10¢ YnWloe Tov 20 utoWn Yo — 10

- 020G YHPIoE TOV 10 LTIOWNPLO — 1

- 0 306G Ywnloe Tov 30 utownlo — 100
- 0 40¢ WNWloe Tov 1o uTIoWn o — 1

- 050G Yrploe Tov 30 utownelo — 100
- 0 60¢ YPNWloe Tov 30 uTOWNWIO0 — 100
- 070G wnwloe Tov 1o LTTOWNR IO — 1

- 0 80G WNYIoe TOV 20 uTIOWNPI0 — 10

- 0 90¢ wnwioe Tov 30 uTTOWNWIo — 100

- ABpoilovTag TIC WRYOUG TTIPOKUTITEL TO 423

- Ta wnia 3,2,4 avTIoTOIXOUV OTIC PHPOUC TWY TPIWY UTIoWNQiwv

26

METIZTO AOGPOIZMA

- TMpoKelTal vo 0BpoiooupE TIG WNPOUS OAWY TWV WNYopopwY
- Mag evdlapEpel TO PEYIoTo duvaTo dBpoloua

Tmax = Ny * Mmax (6)

To GBPOIoUO AUTO QVTIOTOIXE! GTO EVOEXOUEVO VO PNPioouv OAOL
ol YNYowopot 6AOUG TOUG UTTOWNPIoug

EMIAOIH P,Q

- Mo va elval e@IKTh N AslToupyia Tou aAyoptBuog Paillier Ba
TIPETIEL TO N VO €(VOL EYOAUTEPO OTIO TO UEYIOTO SUVOTO OTIAO
Kelpevo omoTe

N> Tmax,N =P *(Q (7)

- OTOTE ETUAEYOUUE KATOGANAG Tat P,g TLX.

P, g > v/ Tmax + 1 (8)

- TNV ouvéxela emIAéyovTal/umtoAoyiovTal ol TIUEG VIO TIG
UTTOAOLTTEG TIOPOHETPOUG TOU aAYopiBLiou

28

KPYNTOTrPA®H>H

- 0 kABe YNPowoOpPOg KPUTITOYPAPEL TOV OplBUO TTOU UTIOAOYICE
abpoifovtag TIg WNWougs Tou

- ETAgyel eva Tuxaio r € Z% kat uTtoAoyiCEl TO KPUTITOKEIUEVO
E(mi) = ¢ = g™ * r"modn? (9)

- TNV OUVEXELO OTEAVEL TO KPUTTTOYPALHO C; OTNV 0ipXn TOU
dlevepyel Tnv wnwowpia

29

YMNOAOIIZMOZ ANMOTEAEZMATOZ

- TNV OUVEXELD N apXr) TTOU dlevepYel TIG EKAOYEG TTOAATIAAOLACEL
OAQ T Cj TTOU €AaBE aTtd TOUG WNPOWOPOUG

- O TOAATIACCIOOPUOG QUTOG QVTIOTOIXEl OTNV TIPAEN TNG
MPOoOEONG 0TO TESIO TWV ATIAWY PUVNUOTWY

N,
T:l_[cimodn2 (10)

i=1

- OTNV OUVEXELD OTIOKPUTITOYPAPEITAL TO OTIOTEAEOHA Kat Bat
TIPETIEL VO TIPOKVWEL TO ABPpOLoUa TWY OPXIKWY WHEWY

Ny
D(T) = > _ mimodn (1)

30

TALLYING EXAMPLE

This is the example demonstrating a small election, which uses Paillier Cryptosystem.
N, =9,N,. = 5.Base b is selected as 10. (b > N,,)

Say we want to choose 2 new members for the world parliament. Choosing two candidates
is preferred. However choosing one candidate or leaving the ballot empty can also be an

option.
0 Do a O Da O oD D a
0° 0 0 0 0
Alice v m=10"'= 10
Boh v v | m=10%+10"= 10100
arc m=0
Da v m = 10%= 1000
v v m = 10° + 10°= 1001
d v v m =10"+ 10°= 1010
v 7 m = 10%+ 10*= 1100
v v m =10+ 10°= 1010
v m=10"=1
o 2 3 2 5 1

31

TALLYING EXAMPLE

As we see from the election rules, the maximum vote message that can ever happen to be
encrypted is: Mypq, = 10% + 103 = 11000

And the maximum possible tally can result T, = N, * M0, = 9 % 11000 = 99000

To be able to encrypt T4, 1 > Tpare 5 1 > 99000

Derived from that p and q > v/99000 where p and g are assumed to have same length.
Key generation

1. So we choose primes randomly p = 293,q = 433
ged(pg, (0 — 1)(q — 1)) = 1 Holds here

2. n =pq = 126869 n2 = 16095743161 RSA modulus n

32

TALLYING EXAMPLE

-1)(g-1
A= % = 31536 Carmichael’s function

4. We choose Paillier generator g randomly where g € Z*,z and

1 2
god (P n) =1 g = 6497955158

5. u= (L(g’l mod nz))_1 modn =

31536 -1
(6497955158 mod 16095743161 — 1/126869) mod 126869 = 53022

33}

TALLYING EXAMPLE

E(m) = ¢; = g™ - 1;" mod n? = 6497955158™ - 1,125 mod 16095743161 r € Z*,

Voter Name Vote messages to be Random
encrypted 7]

Encrypted Vote c;

Alice m=10'=10 35145 13039287935
Bob m =10% + 10%= 10100 74384 848742150
Carol m=0 96584 7185465039
Dave m = 10% = 1000 10966 80933260
Eve m = 10° + 10° = 1001 17953 722036441
Fred m = 10" + 10°= 1010 7292 * 350667930 *
Gil m =10% + 10°= 1100 24819 4980449314
Helen m =10+ 10°= 1010 4955 * 7412822644 *
Isaac m=10°=1 118037 3033281324

23251

Simple tally
*Note that the same votes from Fred and Helen are encrypted to different ciphers with the
help of randomization.

34

TALLYING EXAMPLE

Tallying

T=]_[ﬁ\l:"1 c;mod n? = (13039287935 * 848742150 * 7185465039 * 80933260 *
722036441 « 350667930 * 4980449314 + 7412822644 =
3033281324) mod 16095743161 = 2747997353

Decryption

m = L(c* modn?)- umodn

(2747997353%%¢mod 16095743161) — 1
= * 53022 mod 126869
126869

15232

35!

TALLYING EXAMPLE

SoD(T) = Z?’;’l m; mod n is now proven in the above example. In other words encrypted
tally of the all votes decrypts to the sum of all plain votes.

Now the election authority wants to know who have won the election. To know this, we
convert the decrypted tally, which is in decimal form, to a number with the base chosen at
the beginning of the election.

We used the base 10, so actually there is no conversion needed.

15232 =1-10*+ 5:10°+ 2-10%+ 3-10' + 2-10°

36

BIBLIOGRAPHY

- Alice and Bob in Cipherspace, Brian Hayes

- Homomorphic Tallying with Paillier Cryptosystem, Sansar
Choinyambuu

- The development of homomorphic cryptography, Sigrun Goluch

	Idea of homomorhpic encryption
	Fully homomorphic encryption
	Lets take a step back... RSA ... Paillier

