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idea of homomorhpic encryption



playing with encrypted data

∙ Suppose Alice gives Bob a securely encrypted computer file and
asks him to sum a list of numbers she has put inside

∙ Without the decryption key, this task also seems impossible
∙ The encrypted file is just as opaque and impenetrable as a
locked suitcase

∙ “Can’t be done” Bob concludes again.
∙ But Bob is wrong
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it can be done

∙ Because Alice has chosen a very special encryption scheme,
Bob can carry out her request

∙ He can compute with data he can’t inspect
∙ The numbers in the file remain encrypted at all times, so Bob
cannot learn anything about them

∙ Nevertheless, he can run computer programs on the encrypted
data, performing operations such as summation

∙ The output of the programs is also encrypted; Bob can’t read it
∙ But when he gives the results back to Alice, she can extract the
answer with her decryption key
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fully homomorphic encryption

∙ The technique that makes this magic trick possible is called
fully homomorphic encryption, or FHE

∙ It’s not exactly a new idea, but for many years it was viewed as a
fantasy that would never come true

∙ That changed in 2009, with a breakthrough discovery by Craig
Gentry, who was then a graduate student at Stanford University
(He is now at IBM Research)

∙ Since then, further refinements and more new ideas have been
coming at a rapid pace

∙ Homomorphic encryption is not quite ready for everyday use
∙ The methods have been shown to work in principle, but they
still impose a heavy penalty of inefficiency
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looking to the future

∙ If the system can be made more practical, however, there are
applications ready and waiting for it

∙ Many organizations are eager to outsource computation:
Instead of maintaining their own hardware and software, they
would like to run programs on servers “in the cloud,” a phrase
meant to suggest that physical location is unimportant

∙ But letting sensitive data float around in the cloud raises
concerns about security and privacy

∙ Practical homomorphic encryption would address those worries,
protecting the data against eavesdroppers and intruders and
even hiding it from the operators of the cloud service
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fhe usability

∙ Cryptographic technology has become a routine part of life on
the Internet

∙ When you check your bank balance on the Web, or make an
online purchase encryption is behind the scenes

∙ Even Google searches are encrypted
∙ These measures are meant to protect your messages while they
are in transit

∙ On the other hand, the cryptographic protocols conceal nothing
from the recipients of your messages, who have the keys to
decipher them

∙ Usually, that’s just fine, because the intended recipient is a
trusted party

∙ Homomorphic encryption is the tool for those occasions when
you don’t trust anyone, not even Bob
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fhe / conventional cryptography
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idea of homomorphism

∙ The Greek world homomorphic translate as same shape or
same form, and the underlying idea is that of a transformation
that has the same effect on two different sets of objects

∙ Homomorphic cryptography offers a similar pair of pathways :
∙ We can do arithmetic directly on the plaintext in puts x and y
∙ Or we can encrypt x and y, apply a series of operations to the
ciphertext values, then decrypt the result to arrive at the same
final answer

∙ Among the many operations on numbers we might consider, it
turns out that adding and multiplying are all we really need to
do; other computations can be expressed in terms of these
primitives
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example
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fully homomorphic encryption



history

∙ The idea of computing with encrypted data was first proposed in
1978 by Ron Rivest, Len Adleman and Michael Dertouzos at MIT

∙ Just a few months before, Rivest and Adleman, along with Adi
Shamir, had introduced the first implementation of a public-key
crypto system, which came to be known as RSA after their initials

∙ The basic RSA scheme is partially homomorphic: It allows
multiplication of ciphertexts but not addition

∙ In the next 30 years there were occasional advances on this
front

∙ For example, in 2005 Boneh, Goh and Nissim devised a
homomorphic system that allowed an unlimited number of
additions on the ciphertext, followed by a single multiplication

∙ In spite of such incremental progress, however, Gentry’s
announcement of a fully homomorphic scheme came as a total
surprise in 2009
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gentry’s fhe outline

∙ He creates a crypto system with the usual encrypt and decrypt
functions, which convert bits from plaintext to ciphertext and
back

∙ He also builds an evaluate function that accepts a description
of a computation to be performed on the ciphertext

∙ The computation is specified not as a sequential program but as
a circuit or network, where input signals pass through a cascade
of logic gates

∙ Such circuits are most often assembled from Boolean gates
(and, or, not, etc.), but they can also be specified in terms of
addition and multiplication steps
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barrier

∙ The evaluate function amounts to a complete computer
embedded in the cryptosystem

∙ In principle, it can calculate any computable function, provided
that the circuit representing the function is allowed to extend to
arbitrary depth

∙ The depth of a circuit is the number of gates on the longest
path from input to output and a full-powered computer must be
able to handle circuits of arbitrary depth

∙ Here the homomorphic system runs into a barrier
∙ The problem is that ciphertext data are contaminated with
numerical “noise”—slight discrepancies from their ideal values

∙ Every arithmetic operation amplifies the noise, until eventually
it overwhelms the signal
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noise

∙ The origin of the noise lies in the probabilistic encryption
process

∙ Think of each ciphertext value as a point in space
∙ The probabilistic encrypt function injects a smidgen of
randomness into each of the point’s coordinates, displacing it
slightly from the position it would occupy in a deterministic
cryptosystem

∙ The decrypt function filters out the noise by treating each point
as if it were located at the nearest unperturbed position

∙ When the noise is amplified by homomorphic computations,
however, the point wanders farther from its correct position,
until finally the decrypt function will associate it with an
incorrect plaintext value
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noise amplification
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and if we could reset randomeness...

∙ Roughly speaking, each homomorphic addition doubles the
noise, and each multiplication squares it

∙ Hence the number of operations must be limited or errors will
accumulate

∙ Because of the limit on circuit depth, this version of the
cryptosystem cannot be called fully homomorphic but only
somewhat homomorphic

∙ The depth limit could be evaded in the following way: Whenever
the noise begins to approach the critical threshold, decrypt the
data and then re-encrypt it, thereby resetting the noise to its
original low level

∙ The trouble is, decryption requires the secret key, and the
whole point of FHE is to allow computation in a context where
that key is unavailable
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encrypting the encryption key

∙ This is where the story gets wacky and wonderful
∙ The evaluate function built into the cryptosystem is capable of
performing any computation, provided it does not exceed the
noise limit on circuit depth

∙ So we can ask evaluate to run the decrypt function
∙ Evaluate is designed to work with encrypted data, so it is
supplied with an encrypted version of the normal key

∙ Specifically, the secret key supplied to evaluate is the ciphertext
produced when encrypt is applied to the plaintext of the secret
key

∙ When decrypt is run with this enciphered key, the result is not
plaintext but a new encryption of the ciphertext, with reduced
noise
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the key is locked by itself

∙ In effect, Alice is giving Bob a copy of the key needed to unlock
the data, but the key is inside a securely locked box and can
only be used within that box

∙ As a matter of fact, the box is locked with the very key that is
locked inside the box!

∙ The pause to re-encrypt and refresh the noisy ciphertext can be
repeated as needed

∙ In this way the computer can handle a circuit of any finite
depth, and the system becomes fully homomorphic

∙ It can carry out arbitrarily complex computations on encrypted
data
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limiting the deapth of decrypt

∙ An essential assumption in this scheme is that the decrypt
circuit is it self shallow enough to run without exceeding the
noise threshold

∙ Indeed, its depth needs to be a little less than the limit, or else
the computer will spend all its time refreshing the data and will
never accomplish any useful work

∙ When Gentry first formulated his FHE scheme, he found that this
condition was not met

∙ The evaluate function could not run the decrypt routine without
accumulating excessive noise

∙ The remedy was a technique for “squashing” decrypt, at the
cost of making the key larger and more complicated

∙ With this last innovation, the problem was solved
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lets take a step back... rsa ... paillier



rsa multiplicatively homomorhpic

Ο αλγόριθμος RSA παρουσιάζει την εξής ιδιότητα:

D(E(m1) ∗ E(m2)modn2) = m1 ∗m2modn (1)

∙ Έστω Public key (e,N) = (66617,76201) και Private key (d,N) =
(4553,76201)

∙ Εάν m1 = 66624 και m2 = 18532
∙ m1 ∗m2modn = 67366
∙ E(m1) = 64959 και E(m2) = 6778
∙ c1 ∗ c2modn2 = 440292102
∙ D(c1 ∗ c2modn2) = 67366
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paillier additively homomorhpic

Ο αλγόριθμος Paillier παρουσιάζει τις εξής ιδιότητες:

D(E(m1) ∗ E(m2)modn2) = m1 +m2modn (2)

D(E(m)kmodn2) = k ∗mmodn (3)

D(E(m1) ∗ gm2modn2) = m1 +m2modn (4)
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σύστηµα ψηϕοϕορίας

Βάσει της ιδιότητας 1 της προηγούμενης διαφάνειας λειτουργεί το
εξής σύστημα ψηφοφορίας

∙ Σε μία εκλογική διαδικασία συμμετέχουν Nc υποψήφιοι
∙ Έστω ότι υπάρχουν Nv ψηφοφόροι
∙ Ο κάθε ψηφοφόρος μπορεί να ψηφίσει όσους θέλει από τους
υποψήφιους ή και κανέναν
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επιλογή βάσης

Επιλέγουμε έναν αριθμό βάση b έτσι ώστε b > Nv και αναπαριστούμε
την ψήφο σε κάθε υποψήφιο με τον εξής αριθμό :

1ος υποψ. : b0
2ος υποψ. : b1
...................
Nc υποψ. : bNc−1

Ο ψηφοφόρος αθροίζει τους
αριθμούς που σχετίζονται με
τους υποψηφίους της επιλογής
του

Εάν κάποιος επιλέξει όλους τους υποψηφίους τότε ο αριθμός στον
οποίο αθροίζονται οι προτιμήσεις του είναι

mmax=

Nc∑
i=1

bi−1 (5)
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παράδειγµα

∙ Έστω ότι έχουμε Nc = 3 υποψηφίους και Nv = 9 ψηφοφόρους
∙ Υπολογίζουμε την βάση του συστήματος ως b = Nv + 1 = 10

∙ Η ψήφος στον 1ο γίνεται 100 = 1
∙ Η ψήφος στον 2ο γίνεται 101 = 10
∙ Η ψήφος στον 3ο γίνεται 102 = 100
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παράδειγµα

∙ Έστω ότι οι 9 ψηφοφόροι ψήφισαν ως εξής :
∙ Ο 1ος ψήφισε τον 2ο υποψήφιο → 10
∙ Ο 2ος ψήφισε τον 1ο υποψήφιο → 1
∙ Ο 3ος ψήφισε τον 3ο υποψήφιο → 100
∙ Ο 4ος ψήφισε τον 1ο υποψήφιο → 1
∙ Ο 5ος ψήφισε τον 3ο υποψήφιο → 100
∙ Ο 6ος ψήφισε τον 3ο υποψήφιο → 100
∙ Ο 7ος ψήφισε τον 1ο υποψήφιο → 1
∙ Ο 8ος ψήφισε τον 2ο υποψήφιο → 10
∙ Ο 9ος ψήφισε τον 3ο υποψήφιο → 100

∙ Αθροίζοντας τις ψήφους προκύπτει το 423
∙ Τα ψηφία 3,2,4 αντιστοιχούν στις ψήφους των τριών υποψηφίων
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µέγιστο άθροισµα

∙ Πρόκειται να αθροίσουμε τις ψήφους όλων των ψηφοφόρων
∙ Μας ενδιαφέρει το μέγιστο δυνατό άθροισμα

Tmax = Nv ∗mmax (6)

Το άθροισμα αυτό αντιστοιχεί στο ενδεχόμενο να ψηφίσουν όλοι
οι ψηφοφόροι όλους τους υποψηφίους
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επιλογή p,q

∙ Για να είναι εφικτή η λειτουργία του αλγόριθμος Paillier θα
πρέπει το n να είναι μεγαλύτερο από το μέγιστο δυνατό απλό
κείμενο οπότε

n > Tmax,n = p ∗ q (7)

∙ Οπότε επιλέγουμε κατάλληλα τα p,q π.χ.

p,q ≥
√
Tmax + 1 (8)

∙ Στην συνέχεια επιλέγονται/υπολογίζονται οι τιμές για τις
υπόλοιπες παραμέτρους του αλγορίθμου
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κρυπτογράϕηση

∙ Ο κάθε ψηφοφόρος κρυπτογραφεί τον αριθμό που υπολόγισε
αθροίζοντας τις ψήφους του

∙ Επιλέγει ένα τυχαίο r ∈ Z∗n και υπολογίζει το κρυπτοκείμενο

E(mi) = ci = gmi ∗ rni modn2 (9)

∙ Στην συνέχεια στέλνει το κρυπτόγραμμα ci στην αρχή που
διενεργεί την ψηφοφρία
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υπολογισµός αποτελέσµατος

∙ Στην συνέχεια η αρχή που διενεργεί τις εκλογές πολλαπλασιάζει
όλα τα ci που έλαβε από τους ψηφοφόρους

∙ Ο πολλαπλασιασμός αυτός αντιστοιχεί στην πράξη της
πρόσθεσης στο πεδίο των απλών μυνηματών

T =
Nv∏
i=1

cimodn2 (10)

∙ στην συνέχεια αποκρυπτογραφείται το αποτέλεσμα και θα
πρέπει να προκύψει το άθροισμα των αρχικών ψήφων

D(T) =
Nv∑
i=1

mimodn (11)
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tallying example
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tallying example
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tallying example
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tallying example
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tallying example
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tallying example
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