Τοπικά Χαρακτηριστικά Εικόνων Local Image Features

Μάθημα: Υπολογιστική Οραση Κ. Δελήμπασης

- Αυτόματη εξαγωγή χαρακτηριστικών σημείων εικόνας, όπως:
 - Ακμές Edges (βάσει παραγώγων 1^{ης} και 2^{ης} τάξης έχει καλυφθεί)
 - Γωνίες –Corners (Harris detector)
 - Blobs (Hessian matrix)
 - Ridges (Hessian matrix)
- Αμεταβλητότητα χαρακτηριστικών κλίμακα της εικόνας
 - LoG, DoG, Harris Laplace, KLT (Kanade-Loukas-Tomasi)
- Εφαρμογές
 - Εύρεση ομόλογων σημείων
 - Χωρική ταύτιση εικόνων –image registration
 - Παρακολούθηση αντικειμένων σε video (object tracking)

Ανίχνευση γωνιών

- Εστω εικόνα I(x,y) και η μετατοπισμένη εικόνα $I(x+\Delta x,y+\Delta y)$ $I(x+\Delta x,y+\Delta y) \approx I(x,y) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y =$ $I(x,y) + I_x \Delta x + I_y \Delta y$
- Υπολογίζουμε τη διαφορά τους γύρω από σημείο (x₀,y₀), με χρήση ενός παραθύρου w.

$$E(u,v) = \sum_{(x,y)\in W} [I(x + \Delta x, y + \Delta y) - I(x, y)]^2$$

$$\approx \sum_{(x,y)\in W} [I_x \Delta x + I_y \Delta y]^2 = \sum_{(x,y)\in W} I_x^2 \Delta x^2 + 2I_x I_y \Delta x \Delta y + I_y^2 \Delta y^2$$

- Οταν το τρέχον pixel είναι σε περιοχή flat
- Οταν το τρέχον pixel είναι σε ακμή:
- Οταν το τρέχον pixel είναι σε οριζόντια γωνία

- Οταν η γωνία έχει τυχαία διεύθυνση, η max και η min τιμή του Ε παρατηρείται οταν η μετακίνηση γίνεται κατά μήκος 2 κάθετων διευθύνσεων.
- Για να βρούμε τις διευθύνσεις αυτές και τις ακρότατες τιμές max, min, γράφουμε το Ε σε μορφή πίνακα:

$$E = \begin{pmatrix} \Delta x & \Delta y \end{pmatrix} w(x, y) \begin{pmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

• Ορίζουμε τον πίνακα M:

$$\mathbf{M} = w(x, y) \begin{pmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{pmatrix} = \begin{pmatrix} \sum_{x, y \in w} I_x^2 & \sum_{x, y \in w} I_x I_y \\ \sum_{x, y \in w} I_x I_y & \sum_{x, y \in w} I_y^2 \end{pmatrix}$$

• Ο Μ μπορεί να γραφεί σα συνέλιξη με g, με σ_I (σ Integration). Συνήθως $\sigma_D=0.7 \sigma_I$

$$\mathbf{M} = (\sigma_D)^2 g(\sigma_I) * \begin{bmatrix} (I_x)^2 & I_x I_y \\ I_x I_y & (I_y)^2 \end{bmatrix}$$

Αν για τον υπολογισμό I_x , I_y χρησιμοποιηθεί $g(x; \sigma_D)$, τότε κανονικοποιούμε τον **M** (βλ. LoG Detector, Harris – Laplace Detector)

Harris corner detection

- Οι διευθύνσεις ν₁, ν₂ και οι αντίστοιχες τιμές δίνονται από τα ιδιοδιανύσματα και τις ιδιοτιμές (λ₁, λ₂) του πίνακα M:
 (λ₁ ·λ₂)=det(M)
 λ₁+λ₂=trace(M)
- Corner pixels are detected by thresholding the following quantities:
 - det(M)-k(trace(M))², 0.04<k<0.06, OR
 - det(M)/trace(M)

Eigenvalues of **M** and classification of image pixels λ_2 Horizontal Edge $\lambda_2 >> \lambda_1$ Corner $\min(\lambda_1, \lambda_2) > T$ Vertical Edge Flat $\lambda_1 >> \lambda_2$

 λ_1

- Εντοπισμός γωνιών: υπολογίζεται ο M και εντοπίζονται τα pixels με min(λ_1 , λ_2) > κατώφλι
- Για την αποφυγή υπολογισμού των λ₁, λ₂, συχνά χρησιμοποιείται το κριτήριο:

 $K = \det(\mathbf{M}) - k (\operatorname{trace}(\mathbf{M}))^2 > \kappa \alpha \tau \dot{\omega} \phi \lambda \iota$

k in [0.02 , 0.06]

Παραγώγιση εικόνας με κεντρικές διαφορές -Central Derivatives

- κεντρικές διαφορές: συνέλιξη της εικόνας με κατάλληλες μάσκες (FIR masks):
 - Sobel, Roberts, Prewit masks, etc.
 - 5-point and 7-point 1st deriv. order FIR masks [Farid, Simoncelli, IEEE TIP, 13 (2004)]
 - Symbolic Generation of Finite Difference Formulas described in [Keller, Pereyra, Mathematics of Computation, 1978]
 - gaussian derivatives

Παραγώγιση εικόνας με χρήση παραγώγων Gaussian

• The Harris corner detection [Harris C., Stephens M., ALVEV Vision Conference, 1988] is based on approximating partial image derivatives with convolutions with gaussians, where σ_D is the standard dev. for the differentiation

$$I_{x}(x, y, \sigma_{D}) = \frac{\partial}{\partial x}g(\sigma_{D}) * I(x, y)$$

$$g(x, y, \sigma_{D}) = g_{\sigma_{D}} = \frac{1}{2\pi\sigma^{2}}e^{-\frac{x^{2}+y^{2}}{2\sigma_{D}^{2}}}$$

$$\frac{\partial}{\partial x}g_{\sigma_{D}} = -\frac{x^{2}}{\sigma_{D}^{2}}g_{\sigma_{D}}$$

Η Γκαουσιανή σαν φίλτρο εξομάλυνσης

- Η γκαουσιανή επιφάνεια g(x,y) οριζεται βάσει της κανονικής κατανομής m διασπορά σ και κορυφή στο (0,0).
 - Μεγαλύτερο σ → πιο ανοικτή και πιο κοντή επιφάνεια, έτσι ώστε ο όγκος που περικλείεται από την επιφάνεια και το επίπεδο XY να είναι ίσος με 1.

$$g(x;\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$
$$g(x,y;\sigma) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^2 e^{-\frac{x^2+y^2}{2\sigma^2}}$$

- Η 2D γκαουσιανή υπολογίζεται σε διακριτή μορφή ως εξής:
 - καθορίζεται το σ
 - Υπολογίζονται οι τιμές σε ένα πίνακα συμμετρικό γύρω από το (0,0), τουλάχιστον [-3σ...3σ]x[-3σ...3σ], ώστε ο πίνακας να περιλαμβάνει μέχρι και πολύ χαμηλές τιμές.
 - Όσο μεγαλύτερο το σ, τόσο ισχυρότερη η εξομάλυνση από τη συνέλιξη της εικόνας με την γκαουσιανή.

Η Γκαουσιανή σαν φίλτρο εξομάλυνσης

Παράγωγιση με γκαουσιανή: επιλογή του σ_D

- Εστω 1D ακμή με μη συσχετισμένο προσθετικό λευκό θόρυβο.
- Εφαρμόζουμε την συνέλιξη με τις μονοδιάστατες μάσκες
 Sobel και τις μονοδιάστατες γκαουσιανές παραγώγους, με διάφορετικό πλήθος στοιχείων.

Παράγωγοι της γκαουσιανής

Η παραγώγιση της γκαουσιανής g⁽ⁿ⁾(x) παράγει συναρτήσεις
 που είναι γινόμενο της ίδιας γκαουσιανής με πολυώνυμα που
 ονομάζονται Hermite

$$g^{(n)}(x) = (-1)^{n} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{n} H_{n}\left(\frac{x}{\sigma\sqrt{2\pi}}\right) g(x)$$
2 x
-2 + 4 x²
-12 x + 8 x³
12 - 48 x² + 16 x⁴
120 x - 160 x³ + 32 x⁵
-120 + 720 x² - 480 x⁴ + 64 x⁶
-1680 x + 3360 x³ - 1344 x⁵ + 128 x⁷

Κατασκευή FIR-derivative masks

• Definitions:

$$O_{n} = \begin{bmatrix} 1 & 2 & \cdots & n \\ 1 & 2^{3} & \cdots & n^{3} \\ \vdots & & & \\ 1 & 2^{2n-1} & & n^{2n-1} \end{bmatrix} \qquad E_{n} = \begin{bmatrix} 1 & 2^{2} & \cdots & n^{2} \\ 1 & 2^{4} & \cdots & n^{4} \\ \vdots & \vdots & & \\ 1 & 2^{2n} & & n^{2n} \end{bmatrix}$$

- $DO_{i,k}$ and $DE_{i,k}$ is the determinant of order *n*-1, which follows by deleting the *i*th row, by replacing the *k*th column with the nth column and then deleting the nth column of O_n and E_n respectively.
- $DO_{i,n}$ and $DE_{i,n}$ is the negative of the determinant of order *n*-1, obtained by deleting the ith row and nth column of O_n and E_n respectively

Theorem 1. Given a real sequence f(x), its n-point derivative f⁽²ⁱ⁻¹⁾(x) of any odd order (2i-1) with i=1,....,n-1, is given by

$$f^{(2i-1)}(x) = \frac{(2i-1)!}{2h^{2i-1}\sum_{k=1}^{n}k^{2i-1}DO_{i,k}} \sum_{k=1}^{n}DO_{i,k}\left(f(x+kh) - f(x-kh)\right) + O(h^{2n+1})$$

Theorem 2. Given a real sequence f(x), its n-point derivative f⁽²ⁱ⁾(x) of any even order (2i) with i=1,...,n-1, is given by:

$$f^{(2i)}(x) = \frac{(2i)!}{2h^{2i}\sum_{k=1}^{n}k^{2i}DE_{i,k}} \left[\frac{1}{2}\sum_{k=1}^{n}DE_{i,k}\left(f(x+kh) - f(x-kh)\right) + f(x)\sum_{k=1}^{n}DE_{i,k}\right] + O(h^{2n+1})$$

 Assuming that f(x) is uniformly sampled (h=1), previous equations can be written as linear convolutions

$$f^{(2i-1)}(x) = (f * M_{odd})(x)$$

$$f^{(2i)}(x) = (f * M_{even})(x)$$

• where

$$M_{even}(k) = \frac{(2i)!DE_{i,k}}{2\sum_{k=1}^{n} k^{2i}DE_{i,k}} \left[-1, -1, \dots, -1, \frac{1}{2}, 1, \dots, 1, 1 \right]$$

$$M_{odd}(k) = \frac{(2i-1)!DO_{i,k}}{2\sum_{k=1}^{n} k^{2i-1}DO_{i,k}} [-1, -1, ..., -1, 0, 1, ..., 1, 1]$$

deriv. order	Num. of points in Mask	Mask
1	3	[1/2, 0, -1/2]
1	5	[-1,8,0,-8,1]/12
1	7	[1,-9,45,0,-45,9,-1]/60
1	9	[-1/280, 4/105, -1/4,0,1/4, -4/105,1/280]
1	11	[4, -5, +30, -120, +430, 0, -430, +120, -30, 5, -4]/504
2	3	[1,-2,1]
2	5	[-1/12, 4/3, -2.5, 4/3, -1/12]
2	7	[1/90, -3/20, 1.5, -49/18, 1.5, -3/20, 1/90]
2	9	[-1/560, 8/315, -1/5, 8/5, 205/144, 8/5, -1/5, 8/315, -1/560]

The resulting masks M_{even} and M_{odd} for 1st and 2nd order differentiation, of length up to 11 points

Examples: Sobel and Laplacian masks

• The 3x3 Sobel operator can be generated by linear convolution, using the first mask of prev. Table

$$\begin{bmatrix} 1/2 & 0 & -1/2 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T = \begin{bmatrix} 0.5 & 0 & -0.5 \\ 1 & 0 & -1 \\ 0.5 & 0 & -0.5 \end{bmatrix}$$

• The well-known Laplacian operator can be generated as following

$$\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Corner Harris detection with different derivative approximations

gaussian

FIR 7p

IIR 10,8

IIR derivative mask with order of accuracy=10

the 7-point FIR derivative mask generated by the proposed algorithm

Αμεταβλητότητα: Invariance

- Η ανίχνευση γωνιών με τον πίνακα M είναι ανεξάρτητη από μετατόπιση, περιστροφή και αλλαγές φωτεινότητας.
- Εξαρτάται όμως από την αλλαγή κλίμακας
 - Το ίδιο σχήμα εκλαμβάνετα ως γωνία, ή όχι, ανάλογα με την κλίμακα του παραθύρου
 - Ισοδύναμα, παράθυρο w ίδιου μεγέθους δίνει διαφορετικά αποτελέσματα, όταν η κλίμακα της εικόνας αλλάζει

Ανίχνευση της κλίμακας της εικόνας (Image scale space) Laplacian of Gaussian LoG Detector

• Ορισμός της Laplacian of Gaussian LoG

• Scale-normalized LoG: $L(x;\sigma) = \sigma^2(g_{xx} + g_{yy})$

 LoG για σ=2 και σ=8 (μη κανονικοποιημένα γραφηματα με διαφορετικές κλίμακες)

- Η Log έχει <0 τιμές στο κέντρο, >0 τιμές περιφερειακά και →0 όταν |x|,|y|→ άπειρο
- Τα (x,y): Log(x,y)=0, είναι σημεία κύκλου με ακτίνα ανάλογη του σ.
- Ετσι, η συνέλιξη της Log με μία εικόνα παράγει: υψηλές απόλυτες τιμές σε θέσεις που υπάρχουν κύκλοι, όταν η ακτίνα του κύκλου είναι r=σ/√2
- Για να είναι συγκρίσιμες οι αποκρίσεις LoG (συνέλιξη της LoG με την εικόνα) πρέπει να κανονικοποιηθούν ως προς το σ: Scale-normalized LoG: $LoG_{\sigma} = \sigma^2(g_{xx} + g_{yy})$

s=4

28

Αλγόριθμος υπολογισμού Image scale

- Επιλέγονται τα όρια μεταβολής του σ, σ₁, σ₂,
- Για όλα τα σ από σ₁ έως σ₂, Υπολογίζεται η συνέλιξη της αρχικής I_0 με την κανονικοποιημένη $\sigma^2 \cdot LoG_\sigma$, : $I_\sigma = I_0 * \sigma^2 \cdot LoG_\sigma$,
- end
- For each pixel (i,j)
 - $-m \leftarrow \max(I_{\sigma}(i,j))$
 - Επιλέγεται το $σ_{max}$ με τη μέγιστη απόκριση $σ_{max}$ ← argmax($I_{\sigma}(i,j)$)
 - Ιf m τοπικό μέγιστο σε περιοχή με ακτίνα R, τότε σ_{max} είναι ανάλογο της κλίμακας της εικόνας στο (i,j)

- Υπολογισμός $σ_{max}$ για 2 διαφορετικά pixel.

Προσέγγιση της LoG με διαφορά Gaussians (DoG)

- Η συνέλιξη 2 gaussians με σ₁ , σ₂ παράγει gaussian με
 $\sigma^2 = \sigma_1^2 + \sigma_2^2$,
 - [http://www.tina-vision.net/docs/memos/2003-003.pdf, page 6]

$$g_{1}(x) = \frac{1}{\sigma_{1}\sqrt{2\pi}} e^{-\frac{x^{2}}{2\sigma_{1}^{2}}} \leftrightarrow G_{1}(\omega) = e^{-\frac{\sigma_{1}^{2}\omega^{2}}{2}}$$
$$g_{2}(x) = \frac{1}{\sigma_{2}\sqrt{2\pi}} e^{-\frac{x^{2}}{2\sigma_{2}^{2}}} \leftrightarrow G_{2}(\omega) = e^{-\frac{\sigma_{2}^{2}\omega^{2}}{2}}$$
$$g_{1} * g_{2} \leftrightarrow G_{1}G_{2} = e^{-\frac{(\sigma_{1}^{2} + \sigma_{2}^{2})\omega^{2}}{2}}$$

- Η LoG προσεγγίζεται από τη διαφορά 2 gaussian με σ_1 , $k\sigma_1$,

$$g(x;k\sigma)-g(x;\sigma)\approx(k-1)\sigma^{2}LoG$$

- Αποτελεσματική υλοποίηση του LoG με χρήση:
 - Προσέγγισης DoG αντί LoG

Harris-Laplace corner detection

- O Harris detector
 - είναι αμετάβλητος ως προς αλλαγή φωτεινότητας και περιστροφή,
 - Εξαρτάται από την κλίμακα (Image scale)
- Harris-Laplace: συνδιάζει το Harris corner detection με LoG image scale detection, ώστε να είναι:
 - αμετάβλητος ως προς αλλαγή κλίμακας (Image scale invariant) [K. Mikolajczyk, C. Schmid, IJCV 1(60), 2004, ICCV 2001].

Αλγόριθμος Harris - Laplace

- Η απόκριση του Harris K_n υπολογίζεται για διάφορες τιμές του σ_l . Συνήθως σ_I =sⁿ σ_0 , n=1,2,...N, 0.7<s<1.4, σ_D =0.7 σ_I .
- Για κάθε Pixel της εικόνας:
 - Κατωφλιώνονται τα K_n και
 - Εντοπίζονται τα pixel με K_n τοπικό μέγιστο σε μία περιοχή της εικόνας με ακτίνα R pixels (συνήθως R=1)
- Για κάθε Pixel του προηγούμενου βήματος:
 - Υπολογίζεται η συνέλιξη της I_0 με τη LoG για διαφορετικά σ= sⁿ σ_0 : $I_\sigma = I_0 * \sigma^2 \cdot LoG_\sigma$
- Αν το I_σ παρουσιάζει τοπικό μέγιστο για τις τιμές του σ, τότε το τρέχον pixel θεωρείται pixel γωνίας.

Παραλλαγή του Αλγορίθμου Harris - Laplace

- Μία παραλλαγή του Harris Laplace χρησιμοποιεί αυστηρότερο κριτήριο για την επιλογή των γωνιών:
 - Το τοπικό μέγιστο στην κλίμακα της εικόνας για ένα σημείο πρέπει να εμφανίζεται στο ίδιο σ, στην απόκριση του Harris και στην απόκριση της LoG.
Example of the application of Harris-Laplace

The points of interest that have been identified are illustrated in the figure, along with their estimated scale (radius of circle =3σ, σ the standard dev. of the LoG mask size that produced maximum response).

Derivative of Gaussian

Harris-Laplace feature points with the proposed FIR 7p

IIR derivatives, order of accuracy 10,8

Εσσιανός πίνακας

- Η μέθοδος βασίζεται στην θεώρηση της εικόνας ως επιφάνεια και στις ιδιότητες της διαφορικής γεωμετρίας
- Βασικά στοιχεία διαφορικής γεωμετρίας
- Εστω επιφάνεια S(u,v). Σε κάθε σημείο της ορίζεται το κάθετο διάνυσμα, 2 κάθετα μεταξύ τους εφαπτόμενα διανύσματα και 2 καμπυλότητες:

Οι 2 καμπυλότητες:

- Κύριες κ₁, κ₂, ή ισοδύναμα:
- Gaussian και μέση καμπυλότητα
 Οι κατεύθνσεις και οι τιμές των κ₁, κ₂, υπολογίζονται από τα ιδιοδιαδύσματα και τις ιδιοτιμές του Εσσιανού πίνακα

$$\mathbf{H}(u,v) = \begin{pmatrix} S_{uu} & S_{uv} \\ S_{uv} & S_{vv} \end{pmatrix}_{(u,v)}$$

Παράδειγμα: image blobs

Τα κεντρικά pixels των image blobs έχουν σχεδόν ίσες κύριες ulletκαμπυλότητες

Εντοπισμός Αγγείων

 Τα pixels του κεντρικού άξονα αγγείων έχουν πολύ μικρή κύρια καμπυλότητα κ1 παράλληλα στον άξονα και πολύ μεγάλη κ2 κάθετα στον άξονα

Τμήμα εικόνας με αγγείο

Τμηματοποίηση αγγείων Vessel segmentation

 Αγγεία απεικονίζονται σε πολλά είδη εξετάσεων, σε 2Δ και 3Δ.

http://www.isi.uu.nl/Research/Databases/DRIVE/results.php

Εγχρωμη εικόνα αμφιβληστροειδούς

Αγγεία τμηματοποιημένα από ειδικό

Τμηματοποίηση αγγείων βάσει του Hessian πίνακα της εικόνας

 Για κάθε pixel (x,y) της εικόνας / υπολογίζεται ο Hessian πίνακας που παρέχει πληροφορία για την τοπική δομή (σχήμα) της Ι.

$$\mathbf{H}(x, y) = \begin{pmatrix} I_{xx}(x, y) & I_{xy}(x, y) \\ I_{xy}(x, y) & I_{yy}(x, y) \end{pmatrix}$$

 Οι δείκτες συμβολίζουν παραγώγιση. Ο υπολογισμός των παραγώγων γίνεται με συνέλιξη με την παράγωγο μίας γκαουσιανής με σ της επιλογής του χρήστη

$$g(x, y; \sigma) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^2 e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

 Η πάράμετρος σ χρησιμοποιείται για να επιλεγεί ή διάμετρος του αγγείου που θα τμηματοποιηθεί Η τιμή της παραγώγου κανονικοποιείται με χρήση του παράγοντα, ώστε οι αποκρίσεις της συνάλιξης να είναι συγκρίσιμες για διαφορετικά σ.

$$I_{xx}(x,y;\sigma) = \sigma^{2\gamma} I(x,y) * \frac{\partial^2 g(x,y;\sigma)}{\partial x^2}$$

- Συνήθως γ=1.
- Ο Hessian Η της εικόνας Ι προσεγγίζεται ως εξής:.

$$\mathbf{H}(x, y; \sigma) = \sigma^{2} \begin{pmatrix} g_{xx} & g_{xy} \\ g_{xy} & g_{yy} \end{pmatrix} * I(x, y)$$

- Εστω λ_1 , λ_2 οι πραγματικές ιδιοτιμές (eigenvalues) του **H** σε κάθε pixel (*x*,*y*) για συγκεκριμένο *σ*.
- $\lambda_{max} = \max(\lambda_1, \lambda_2) >> \lambda_{min} = \min(\lambda_1, \lambda_2) \rightarrow 0$

$$\lambda_{1} = \frac{q}{a}, \lambda_{2} = \frac{D}{q}$$
$$q = -\frac{1}{2} \left(b + \operatorname{sgn}(D) \right) \sqrt{Tr^{2} - 4D}$$

- D: ορίζουσα, *Tr*: ίχνος του **H**.

- $| \lambda_{max} | >> \lambda_{min} → 0$ KAI $\lambda_{max} > 0$ TOTE το (x,y) ανήκει σε **σκούρο** αγγείο
- $| \lambda_{max} | >> \lambda_{min} → 0$ KAI $\lambda_{max} < 0$ TOTE το (x,y) ανήκει σε φωτεινό αγγείο

• Το ιδιοδιάνυσμα με λ_{max} , καθορίζει την κατεύθυνση με τη maximum καμπυλότητα

$$\mathbf{u} = \left(u_x, u_y\right), u_x = \frac{1}{\sqrt{1 + \left(\frac{\lambda_{\max} - I_{xx}}{I_{xy}}\right)^2}}, u_y = \frac{\lambda_{\max} - I_{xx}}{I_{xy}}u_x$$

• The large eigenvalue l_{max} of Hessian for $\sigma=1$

• The large eigenvalue l_{max} of Hessian for $\sigma=4$

• The small eigenvalue l_{min} of Hessian for $\sigma=4$

max(Hessian Lmax)

• The $max(l_{max})$ of Hessian for $\sigma=1,2,3,4$

Vesselness: δείχνει αν ένα pixel είναι σε αγγείο

 Τα προηγούμενα συνδυάζονται στην ακόλουθη έκφραση που ποσοτικοποιεί την πιθανότητα να ανήκει ένα pixel σε αγγείο

$$vesselness = \left(1 - e^{-\frac{\left(\lambda_{\max}^2 + \lambda_{\min}^2\right)}{2c^2}}\right) e^{-\frac{1}{2b^2}\frac{|\lambda_{\min}|}{|\lambda_{\max}|}} = A \cdot B$$

- Ο όρος A → 1 όταν $|\lambda_{max}|$ και $|\lambda_{min}| > 0$ (χρησιμοποιείται για να εξαιρέσει pixels του υποβάθρου)
- $B \rightarrow 1$ όταν $|\lambda_{max}| >> \kappa \alpha \iota |\lambda_{min}| \rightarrow 0$

Εντοπισμός αγγείων με διαφορετικές διαμέτρους

- Για κάθε pixel της εικόνας:
 - Το vesselness υπολογίζεται για διαφορετικές τιμές του σ
 που καλύπτουν την ακτίνα διαμέτρου του αγγείου
 - Υπολογίζεται το μέγιστο vesselness για όλα τα σ.
 - Αν το μέγιστο vesselness είναι Μεγαλύτερο ή ίσο από ένα κατώφλι, τότε το pixel ανήκει σε αγγείο

Αρχική εικόνα αμφιβληστροειδούς

Συνάρτηση Vesselness

Illustration of eigenvector **u** for λ_{max} >0 in the case of an image with dark vessels, for σ =2.

The SIFT (Scale Invariant Feature Transform) Detector and Descriptor

- SIFT is quite an involved algorithm.
- <u>Constructing a scale space</u> representations of the original image to ensure scale invariance.
- <u>LoG Approximation</u> LoG is computationally expensive. So approximate it using the representation created earlier.
- Finding keypoints These are maxima and minima in the Difference of Gaussian image we calculate in step 2
- <u>Get rid of bad key points</u> Edges and low contrast regions are excluded using <u>the Harris Corner Detector</u>.
- <u>Assigning an orientation to the keypoints</u> An orientation is calculated for each key point. Any further calculations are done relative to this orientation. This effectively cancels out the effect of orientation, making it rotation invariant.
- <u>Generate SIFT features</u> for each point. This helps uniquely identify features. Lets say you have 50,000 features. With this representation, you can easily identify the feature you're looking for

Lowe's Pyramid Scheme

SIFT Steps - Review

(1) Scale-space extrema detection

Extract scale and rotation invariant interest points (i.e., keypoints).

(2) Keypoint localization

- Determine location and scale for each interest point.
- Eliminate "weak" keypoints

(3) Orientation assignment

- Assign one or more orientations to each keypoint.

(4) Keypoint descriptor

- Use local image gradients at the selected scale.

D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", **International Journal of Computer Vision**, 60(2):91-110, 2004.

Key point localization rence images. top and bottom ignored. s planes searched.

- Detect maxima and minima of difference-of-Gaussian in scale space
- Each point is compared to its 8 neighbors in the current image and 9 neighbors each in the scales above and below

For each max or min found, output is the **location** and the **scale**.

Scale-space extrema detection: experimental results over 32 images that were synthetically transformed and noise added.

- Sampling in scale for efficiency
 - How many scales should be used per octave? S=?
 - More scales evaluated, more keypoints found
 - S < 3, stable keypoints increased too
 - S > 3, stable keypoints decreased
 - S = 3, maximum stable keypoints found

Scale Invariant Detectors

Experimental evaluation of detectors
 w.r.t. scale change

Repeatability rate:

correspondences

possible correspondences

K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

Keypoint localization

- Once a keypoint candidate is found, perform a detailed fit to nearby data to determine
 - location, scale, and ratio of principal curvatures
- In initial work keypoints were found at location and scale of a central sample point.
- In newer work, they fit a 3D quadratic function to improve interpolation accuracy.
- The Hessian matrix was used to eliminate edge responses.

3. Orientation assignment

- Create histogram of local gradient directions at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable
 2D coordinates (x, y, scale, orientation)

If 2 major orientations, use both.

Keypoint localization with orientation

4. Keypoint Descriptors

- At this point, each keypoint has
 - location
 - scale
 - orientation
- Next is to compute a descriptor for the local image region about each keypoint that is
 - highly distinctive
 - invariant as possible to variations such as changes in viewpoint and illumination

Normalization

- Rotate the window to standard orientation
- Scale the window size based on the scale at which the point was found.

Lowe's Keypoint Descriptor (shown with 2 X 2 descriptors over 8 X 8)

In experiments, 4x4 arrays of 8 bin histogram is used, a total of 128 features for one keypoint

Lowe's Keypoint Descriptor

- use the normalized region about the keypoint
- compute gradient magnitude and orientation at each point in the region
- weight them by a Gaussian window overlaid on the circle
- create an orientation histogram over the 4 X 4 subregions of the window
- 4 X 4 descriptors over 16 X 16 sample array were used in practice. 4 X 4 times 8 directions gives a vector of 128 values.

SURF: Speeded Up Robust Features

 Speed-up computations by fast approximation of (i) Hessian matrix and (ii) descriptor using "integral images".

$$\mathcal{H}(\mathbf{x},\,\sigma) = \begin{bmatrix} L_{xx}(\mathbf{x},\,\sigma) & L_{xy}(\mathbf{x},\,\sigma) \\ L_{xy}(\mathbf{x},\,\sigma) & L_{yy}(\mathbf{x},\,\sigma) \end{bmatrix},$$

• What is an "integral image"?

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, "SURF: Speeded Up Robust Features", **European Computer Vision Conference (ECCV),** 2006.

Integral Image

The integral image I_Σ(x,y) of an image I(x, y) represents the sum of all pixels in I(x,y) of a rectangular region formed by (0,0) and (x,y).

 $I_{\Sigma}(i,j) = I_{\Sigma}(i-1,j) + I_{\Sigma}(i,j-1) - I_{\Sigma}(i-1,j-1) + I(i,j)$

Using integral images, it takes only four array references to calculate the sum of pixels over a rectangular region of any size.

$$S = A - B - C + D$$

SURF: Speeded Up Robust Features (cont'd)

• Approximate L_{xx} , L_{yy} , and L_{xy} using box filters.

(box filters shown are 9 x 9 – good approximations for a Gaussian with σ =1.2)

• Can be computed very fast using integral images!
In SIFT, images are repeatedly smoothed with a Gaussian and subsequently subsampled in order to achieve a higher level of the pyramid.

- Alternatively, we can use filters of larger size on the original image.
- Due to using integral images, filters of any size can be applied at exactly the same speed!

(see Tuytelaars' paper for details)

• Approximation of H:

From: InterestPointDescriptorsMatching.ppt by G. Bebis

- Instead of using a different measure for selecting the location and scale of interest points (e.g., Hessian and DOG in SIFT), SURF uses the determinant of H_{approx}^{SURF} to find both.
- Determinant elements must be weighted to obtain a good approximation:

$$\det(H_{approx}^{SURF}) = \hat{L}_{xx}\hat{L}_{yy} - (0.9\hat{L}_{xy})^2$$

- Once interest points have been localized both in space and scale, the next steps are:
 - (1) Orientation assignment
 - (2) Keypoint descriptor

• Orientation assignment

Can be computed very fast using integral images!

• Keypoint descriptor (square region of size 20σ)

- Sum the response over each sub-region for d_x and d_y separately.
 - To bring in information about the polarity of the intensity changes, extract the sum of absolute value of the responses too.

```
Feature vector size:
4 x 16 = 64
```


- SURF-128
 - The sum of d_x and |d_x| are computed separately for points where d_y < 0 and d_y >0
 - Similarly for the sum of d_y and |d_y|
 - More discriminatory!

- T. Tuytelaars, K. Mikolajczyk (2008), "Local Invariant Feature Detectors: A Survey", Foundations and Trends[®] in Computer Graphics and Vision: Vol. 3(3), pp 177-280.
 - <u>http://epubs.surrey.ac.uk/726872/</u>
- D. G. Lowe, Distinctive image features from scale-invariant keypoints. IJCV, vol. 2, no. 60, pp. 91-110, 2004
- K. Mikolajcyk and C. Schmid, An affine invariant interest point detector. ICCV, vol. 2350, pp. 128-142, 2002
- K. Mikolajcyk, PhD Thesis
- [https://courses.cs.washington.edu/courses/cse576/06sp/notes/Interest2.pdf]

- Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998, October). Multiscale vessel enhancement filtering. In *International Conference on Medical Image Computing and Computer-Assisted Intervention* (pp. 130-137). Springer Berlin Heidelberg.
- Delibasis, K. K., Kechriniotis, A., & Maglogiannis, I. (2013, September). On centered and compact signal and image derivatives for feature extraction. In *IFIP International Conference on Artificial Intelligence Applications and Innovations* (pp. 318-327). Springer Berlin Heidelberg.