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Classi cation with color and texture: jointly or separately?
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Abstract

Current approaches to color texture analysis can be roughly divided into two categories: methods that process color and
texture information separately, and those that consider color and texture a joint phenomenon. In this paper, both approaches
are empirically evaluated with a large set of natural color textures. The classi cation performance of color indexing methods
is compared to gray-scale and color texture methods, and to combined color and texture methods, in static and varying
illumination conditions. Based on the results, we argue that color and texture are separate phenomena that can, or even should,
be treated individually.
? 2004 Published by Elsevier Ltd on behalf of Pattern Recognition Society.
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1. Introduction

The use of joint color-texture features has been a popular
approach to color texture analysis. One of the  rst meth-
ods allowing spatial interactions within and between spectral
bands was proposed by Rosenfeld et al. [1]. Statistics de-
rived from co-occurrence matrices and di?erence histograms
were considered as texture descriptors. Panjwani and Healey
introduced a Markov random  eld model for color images
which captures spatial interaction both within and between
color bands [2]. Jain and Healey proposed a multiscale repre-
sentation including unichrome features computed from each
spectral band separately, as well as opponent color features
that capture the spatial interaction between spectral bands
[3]. Recently, a number of other approaches allowing spatial
interactions have been proposed.
In some approaches, only the spatial interactions within

bands are considered. For example, Caelli and Reye pro-
posed a method which extracts features from three spec-
tral channels by using three multiscale isotropic  lters [4].
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Paschos compared the e?ectiveness of di?erent color spaces
when Gabor features computed separately for each channel
were used as color texture descriptors [5]. Segmentation of
color images by taking into account the interaction between
color and spatial frequency of patterns was proposed by
Mirmehdi and Petrou [6]. An interesting approach to com-
bining color and texture with histogram ratio features was
recently published by Paschos and Petrou [7]. For a related
work on color constant ratio gradients, see Ref. [8].
Another way of analyzing color textures is to divide the

color signal into luminance and chrominance components,
and process them separately. A number of approaches us-
ing this principle have also been proposed. Tan and Kittler
extracted texture features based on the discrete cosine trans-
form from a gray level image, while measures derived from
color histograms were used for color description. A color
granite classi cation problem was used as a test bed for the
method [9]. Dubuisson-Jolly and Gupta proposed a method
for aerial image segmentation, in which likelihoods are com-
puted independently in color and texture spaces. Then, the
 nal segmentation is obtained by evaluating the certainty
with which each classi er (color or texture alone) would
make a decision [10].
To our knowledge, there have been no published articles

on whether color and texture should be processed jointly or
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separately. Recently, the issue was touched by Drimbarean
and Whelan in a paper that evaluated the contribution of
color information to the classi cation of color textures [11].
The amount of data in the experimental evaluation was how-
ever quite limited, and di?erent illumination conditions were
not taken into account. Furthermore, opponent color texture
features were not considered, and no attempts were made to
combine color indexing methods and texture features.
In this paper, color image recognition schemes are em-

pirically compared with a large collection of natural color
images from two image databases. Unlike many previous
studies, we do not restrict the evaluation to just texture mea-
sures. Instead, color indexing, gray-scale texture, channel-
wise color texture and opponent color texture methods are
considered. Furthermore, four di?erent methods of combin-
ing separate color and texture measures on a higher level
are evaluated. The performance of these methods is eval-
uated in constant and varying illumination conditions, and
with a number of di?erent color spaces. The goal is to  nd
out whether the increasingly popular approach of using joint
color texture measures should be preferred over separate
color and texture features.

2. Perception of color textures

Research on the human visual system has provided much
evidence that the image signal is composed of a luminance
and a chrominance component. Both of these are processed
by separate pathways [12,13], although there are some sec-
ondary interactions between the pathways [14]. The psy-
chophysical studies of Poirson and Wandell suggest that
color and pattern information are processed separately [15].
In their recent paper on the vocabulary and grammar of

color patterns, Mojsilovic et al. suggest that the overall per-
ception of color patterns is formed through the interaction
of a luminance component, a chrominance component and
an achromatic pattern component [16]. The luminance and
chrominance components approximate signal representation
in early visual cortical areas while the achromatic pattern
component approximates the signal formed at higher pro-
cessing levels. The luminance and chrominance components
are used in extracting color-based information, while the
achromatic pattern component is utilized as texture pattern
information. In their study, features are extracted by combin-
ing three major domains: a nonoriented luminance domain
represented by the luminance component, an oriented lumi-
nance domain represented by the achromatic pattern map,
and a nonoriented color domain represented by the chromi-
nance component [16].
Mojsilovic et al. conclude that human perception of pat-

tern is unrelated to the color content of an image. The
strongest dimensions are “overall color” (presence/absence
of dominant color) and “color purity” (degree of colorful-
ness), indicating that, at the coarsest level of judgment, peo-
ple primarily use color information to judge similarity. The

pure texture-based dimensions are “directionality and orien-
tation” and “regularity and placement rules”. The optional
 fth dimension, “pattern complexity and heaviness” (a di-
mension of general impression), appears to contain both
chrominance and luminance information perceived, for ex-
ample, as “light”, “soft”, “heavy”, “busy” and “sharp”.
In the human eye, chrominance is processed at a lower

spatial frequency than luminance [17]. This fact is utilized,
for example, in image compression and in imaging sen-
sors. Furthermore, our past experience in texture analy-
sis shows that much of the discriminative texture informa-
tion is contained in high spatial frequencies such as edges
[18,19]. Putting these together it seems that texture infor-
mation should be extracted from the luminance component,
whereas color is more a regional property.

3. Experimental setup

Three experiments with two di?erent texture sets were
arranged. The sets included 54 color textures from the Vi-
sion Texture database [20], and 68 color textures from the
Outex texture database [21]. The Vision Texture database
contains a large set of natural color textures taken under
noncontrolled conditions. There is no knowledge of illu-
mination sources, imaging geometries, image scale, gamma
correction, camera primaries, etc. Furthermore, the images
are acquired with many di?erent cameras. Therefore, these
textures must be treated “as they are”.
Outex, on the other hand, provides an even larger set of

textures acquired under strictly controlled conditions. The
illumination sources and the imaging geometry are known,
as well as the characteristics of the imaging equipment.
Gamma correction is not used, making the color channels
linear. Each texture sample in the database is imaged under
three di?erent illumination sources, nine rotation angles and
six spatial resolutions. Thus, there are 162 di?erent images
of each texture sample. In contrast to VisTex, the textures in
Outex have been imaged with a three-CCD digital camera.
The selected VisTex textures are shown in Fig. 1. The

image set consists of di?erent natural surfaces including
grass, bark, Oowers, trees, and even food. They all have
quite easily distinguishable color and texture properties.
The Outex textures, shown in the reference illumination in
Fig. 2, are a more challenging set. There are di?erent sub-
sets of images that contain color and/or textures very simi-
lar to each other, in addition to some pick and mix textures.
There are 15 di?erent types of canvases, nine di?erent car-
pets, seven di?erent ceramic tiles, ten Oavors of granite rock,
eight sandpapers with di?erent roughness, and 11 mixtures
of barley and rice. Many of the textures have very similar
color. The barley and rice mixtures also have very similar
textural structures.
First, the 54 VisTex textures were split into 128 × 128

pixel sub-images. Since the size of the original images was
512×512, this makes up a total of 16 sub-images per texture.
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Fig. 1. VisTex textures.

Fig. 2. Outex textures.

Half of the samples from each texture were used in training
while the rest served as testing data. A checkerboard pattern
was used in dividing the sub-images into two sets, the upper
left sub-image being the  rst training sample. This data was
submitted to the Outex site as test suite Contrib TC 00006.
Second, a set of 68 Outex textures were treated in a simi-

lar manner. In this case, the total number of sub-images per
texture was 20 due to the fact that the original size of the
images was 746×538 pixels. Again, the division into train-
ing and testing sets was accomplished using the aforemen-
tioned checkerboard pattern. Thus, there were 680 samples
in both the training and the test set. The selected textures

were imaged with a 100 dpi resolution at 0◦ rotation, and
illuminated with a 2856 K incandescent CIE A light source
(reference illumination). At the Outex site, this test suite has
the ID Outex TC 00013.
Third, the 68 Outex textures were used as training data. As

test samples, two di?erently illuminated samples of the very
same textures were utilized. The illumination sources were
2300 K horizon sunlight and 4000 K Ouorescent TL84. Be-
sides the spectrum, the three illumination sources slightly
di?er in positions, which produces varying local shadow-
ing. Also, there are variations in the intensities of the light
sources. For these reasons, this problem can be considered a
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quite challenging test of illumination invariance. The num-
bers of training and testing samples in this test were 680
and 1360, respectively. This test suite has the Outex ID Ou-
tex TC 00014.
For feature extraction, a number of color, texture and color

texture features were selected. The goal in selecting feature
extraction methods was to collect a representative set of both
straightforwardly implementable and simple methods, and
commonly accepted state-of-the-art methods.

4. Color indexing

4.1. Color spaces

The RGB tristimulus values are very sensitive to illumi-
nation intensity and color changes. Even though good color
discrimination accuracy can be achieved with RGB distribu-
tions under controlled illumination conditions, their perfor-
mance is not stable in varying conditions. This e?ect can be
reduced with normalization or color constancy algorithms
[22]. A problem with these is that useful information may
be lost. Another way to cope with the problem is to use an
indexing method that can tolerate changes in RGB values
[23].
The use of color spaces other than RGB may also aid

in achieving invariance against illumination changes. For
example, the HSV color space separates chromaticity
and intensity information, thereby providing a way to get
intensity-invariant chromaticity measures. Chromaticity
coordinates are another way of eliminating the e?ect of
intensity on color values. There are also a number of meth-
ods for deriving custom color spaces, see, for example,
Ref. [24]. In the experiments,  ve di?erent color spaces
were investigated: RGB, rg chromaticity coordinates, the
approximated K-L expansion-based color system (I1I2I3)
introduced by Ohta et al. [25], the perceptually uniform
CIE 1976 (L∗a∗b∗), and HSV .
To use the L∗a∗b∗, one must  nd a way of converting

RGB to XYZ . The spectral sensitivities of the primaries of
the imaging equipment are often unknown. In these cases,
it is customary to assume that they can be closely approx-
imated by some standard set of primaries, like the Recom-
mendation ITU-R BT.709 [26]. Furthermore, if the spectral
power density (SPD) of the white point is not known, D65
is typically assumed. Given these assumptions, one can use
a linear transformation to obtain XYZ from RGB [27]:



X

Y

Z


=



0:412453 0:357580 0:180423

0:212671 0:715160 0:072169

0:019334 0:119193 0:950227




×




R709

G709

B709


 : (1)

Obviously, the values obtained this way generally are not
the “real” XYZ tristimuli. The situation becomes a bit di?er-
ent if the SPD of the white point and the spectral sensitiv-
ities of the primaries of the imaging equipment are known,
because this information makes it possible to derive a trans-
formation from custom RGB to XYZ . It should also be noted
that a linear transformation is not the only possibility, but
it might be the most convenient way. The “standard” trans-
formation matrix was used in converting the RGB values in
VisTex images to their XYZ correspondents.
The method of deriving XYZ tristimuli from known RGB

was that presented in Ref. [28]. The transformation equation
for the Outex textures (Sony DXC-755P camera and CIE A
white point) becomes



X

Y

Z


=



0:9176 0:1242 0:0550

0:6690 0:3165 0:0145

0:0013 0:0475 0:3068





ROutex

GOutex

BOutex


 : (2)

The transformation matrix is quite di?erent from the “stan-
dard” one (Eq. (1)), which clearly indicates there is no uni-
versal transformation from RGB to XYZ .

4.2. Color histograms

Color histograms were used as simple color features. The
color indexing method of Swain and Ballard was adopted
for discrimination between histograms [29]. In this method,
histograms are compared using a similarity measure called
histogram intersection that sums up the minimum values of
two histograms for each histogram bin:

d(H1(c1; : : : ; cN ); H2(c1; : : : ; cN ))

=
∑
i1 ;:::; iN

min[H1(i1; : : : ; iN ); H2(i1; : : : ; iN )]; (3)

where H1 and H2 are N -dimensional color distributions.
Here, normalization against changes in image size is not
needed because the images in each experiment are of the
same size.
To make the implicit assumption of uniformly distributed

color values true, the quantization method presented in Refs.
[18,30] was used. The method works by selecting a large
amount of random pixels—or all the pixels—from training
data. An N -dimensional probability density function (his-
togram)H (c1; : : : ; cN ) is constructed out of these pixels. Ob-
viously, in the case of the RGB color space, N equals to
three. Let us denote the N marginal distributions (channel-
wise histograms) of this pdf by hn(c); n∈ [1; N ]. When a
quantization to M levels is needed, M + 1 pieces of his-
togram bin boundaries bm; m∈ [0; M ] are derived from hn(c)
so that, in the case of a discrete color distribution, each
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bin contains an equal number of entries:
bi+1−1∑
c=bi

hn(c) =
bj+1−1∑
c=bj

hn(c); ∀i; j∈ {0; : : : ; M − 1}; (4)

where b0 = 0 and bM is one larger than the original number
of quantization levels.
Later on, the derived bin boundaries were used in quantiz-

ing both sample and model distributions. Each color chan-
nel was quantized separately, and a number of distributions
were created. An N -dimensional quantized histogram for
each color space was created with 16 and 32 levels per
channel. The histograms are denoted by RGB163, RGB323,
rg322; I1I2I3163, I1I2I3323, L∗a∗b∗163, L∗a∗b∗323,HSV163,
and HSV323. Furthermore, the marginal distributions with
256 histogram bins per channel were concatenated into one
256 × N -bin histogram. The resulting histograms are de-
noted by RGB256× 3, I1I2I3256× 3, and so on. As a third
variation, the chrominance and luminance dimensions of the
I1I2I3, L∗a∗b∗, and HSV spaces were used separately, re-
sulting in I2I3322, I1256, a∗b∗322, L∗256,HS322, and V256.
These histograms were used in demonstrating the e?ect of
illumination change on chrominance and luminance.
Summing up all the variations, a total of 19 di?erent color

histograms were used. Furthermore, the RGB histograms
were used both with and without the comprehensive normal-
ization algorithm of Finlayson et al. [22]. To see the con-
tribution of  rst- and second-order statistics of gray values
to the classi cation result, normalized luminance (Y -Z256)
was also included for reference.

4.3. Color ratio histograms

It is well known that the indexing performance of color
histograms drops drastically if illumination conditions can-
not be kept constant. There are, however, color descriptors
that are in some sense invariant to illumination color and
intensity changes [23,31]. The color constant color index-
ing method of Funt and Finlayson [23] was chosen for its
theoretically appealing yet simple construction. The authors
also report promising results on retrieval problems.
The color constant color indexing method is implemented

by taking the logarithm of an RGB image and by calculating
a distribution of the derivative values of the resulting image.
The authors propose three ways of approximating the deriva-
tive, from which the Laplacian of Gaussian was chosen be-
cause it was reasoned to work well on our high-resolution
test images. The calculation of color ratios can be de ned
as follows:

dc(x; y) = ∇2G ∗ ln ic(x; y); (5)

where ic stands for color channel c, c∈ {1; 2; 3}, and G
stands for a Gaussian  lter. A three-dimensional distribution
of derivative values is created out of dc(x; y) after quantiza-
tion. Color ratios are actually neither color nor texture fea-
tures, but something in between. In some sense, the color ra-
tios measure local texture on each color channel by utilizing

the di?erences between neighboring pixels. The authors do
however consider it a color indexing method. Consequently,
this method was treated separately.
The color constant color indexing method requires a uni-

form quantization of the derivatives. Even though the au-
thors describe a di?erent method, the uniform quantization
scheme described in Section 4.2 was used in achieving the
very same goal. This time, however, the distributions were
essentially continuous, and a slight modi cation of Eq. (4)
is needed in de ning bin boundaries:∫ bi+1

bi

Dc(t) dt =
∫ bj+1

bj

Dc(t) dt;

∀i; j∈ {0; : : : ; M − 1}; (6)

where Dc(t) represents the probability density function of
derivative values on color channel c. b0 and bM can be set to
−∞ and ∞, respectively. In the experiments, quantization
into 16 and 32 levels was used. The corresponding operators
are denoted by CR163 and CR323.

5. Texture features

5.1. Gray-scale texture

With gray-scale texture operators, only the luminance of
the images was considered. For VisTex images, no knowl-
edge of camera sensitivities or light sources was available,
rendering any simple way of calculating the luminance use-
less. Therefore, the average of the RGB values was used:
Y = (R+G+B)=3. For Outex textures, all necessary infor-
mation was available. Following the derivation represented
in Ref. [28], the equation for calculating luminance becomes
Y = 0:6534R+ 0:3190G + 0:0277B. The weighting factors
are not equal to those in the middle row of the transforma-
tion matrix in Eq. (2) because the L∗a∗b∗ values must be
calculated from the 1931 speci cation of XYZ , whereas the
more recent 1964 version can be used for luminance.
In both cases, the luminance values were further scaled

so that the mean and standard deviation of the luminance
in each image were 127 and 20, respectively. This trans-
formation (Z-normalization) removes the e?ect of mean lu-
minance and overall contrast changes, but may fail in nor-
malizing the images against illumination color or geometry
variations. The normalization was applied to make sure tex-
ture operators really depend on texture information and not
on the  rst-order statistics of gray values.
As gray-scale texture operators, the Gabor  lter design of

Manjunath and Ma [32] and the local binary pattern (LBP)
operator [18,19] were selected because they have been
demonstrated to perform very well on di?erent texture
discrimination problems. Furthermore, they represent two
di?erent approaches to texture analysis:  ltering and pattern
(micro-texton) statistics. Both Gabor  lters and LBP also
have a generalization for opponent colors. The use of the
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Fig. 3. Three circular neighborhoods.

term “opponent color” here follows the convention adopted
by Jain and Healey [3]: all pairs of color channels are
called “opponent colors”. It should not be confused with
the opponent color mechanism of the human eye.
In addition to the four scales and six orientations used by

Manjunath and Ma, a Gabor  lter bank with three scales and
four orientations was used. This choice was made to keep
the  lter bank designs for the gray scale and the opponent
color Gabor methods as close to each other as possible.
These operators are later denoted by Gabor4;6 and Gabor3;4.
As a feature vector, the means and standard deviations of
each  ltered input image were used:

f = (%11&11%21&21 · · · %SO&SO); (7)

where each %so and &so represent the mean and the standard
deviation of the input image convolved with the Gabor  lter
at scale s and orientation o. The capital letters S and O are
used to denote the total numbers of scales and orientations,
respectively.
As suggested by the authors, a city-block distance scaled

with the standard deviations of the features was used as a
dissimilarity measure for the gray-scale Gabor features:

d(s; m) =
N−1∑
i=0

|si − mi|
&i

; (8)

where s andm are feature vectors, &i is the standard deviation
of feature i, and N is the length of the feature vectors, in
this case either 48 or 24.
The LBP is a gray scale invariant texture primitive statis-

tic. For each pixel in an image, a binary code is produced by
thresholding a circularly symmetric neighborhood with the
value of the center pixel. A histogram is created to collect up
the occurrences of di?erent binary patterns. The basic ver-
sion of the LBP operator considers only the eight-neighbors
of a pixel, but the de nition can be extended to include all
circular neighborhoods with any number of pixels. By ex-
tending the neighborhood one can collect larger-scale tex-
ture primitives. However, the spatial support of the LBP
operator is much smaller than that of the Gabor  lters.
In Fig. 3, three circular neighborhoods are shown. The ra-

dius of the neighborhood is denoted by R, and the number of
samples in it by P. Values for the samples that do not exactly

match pixels are calculated using bilinear interpolation. The
variations of the LBP operator are denoted by LBPP;R. In
the experiments, circular neighborhoods with 8, 16 and 24
samples and neighborhood radii 1, 2, 3, and 5 were used.
It is also possible to create multi-resolution LBP operators
by concatenating the histograms produced by operators with
di?erent parameters. For example, LBP(8;1+16;2) stands for
a multi-resolution LBP operator in which the  rst operator
uses a neighborhood radius of one pixel and eight neighbor-
hood samples. The second operator uses two as the neigh-
borhood radius, and considers 16 neighborhood samples.
The LBP24;R operator produces histograms with over 16

million bins, which would be overwhelmingly sparse for any
image of reasonable size. For that reason, a majority of the
bins was discarded, and only “uniform” LBP codes were se-
lected for further scrutiny [19]. This procedure was applied
to the LBP16;R versions as well. The resulting operators are
denoted by LBPu216;R, and LBP

u2
24;R, and their histograms con-

tain 242 and 554 entries, respectively. As a dissimilarity
measure for LBP distributions, the suggested log-likelihood
measure was utilized:

d(s; m) = −
N−1∑
i=0

si logmi; (9)

where s and m are sample and model distributions, respec-
tively, andN stands for the number of bins in the histograms.

5.2. Color texture

Most gray-scale texture operators can be straightfor-
wardly applied on color images by combining the results
of channelwise operations. Often, this simple technique
works well even though the operators have been designed
for gray-scale textures (See, for example, Ref. [11]). Since
this method does not consider inter-channel di?erences, it
is supposed to be robust against illumination color changes,
compared to the opponent color texture methods that utilize
cross-channel di?erences. Furthermore, as the goal is not
to model biological signal processing, practically any color
space can be used. We experimented with the Gabor3;4
and LBP8;1 operators in the RGB, I1I2I3, L∗a∗b∗, and HSV
spaces. The feature vectors obtained from di?erent color
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channels were simply concatenated into a color texture
description. To account for illumination intensity changes,
texture features were also calculated from Z-normalized
color channels (RGB-Z).
The opponent color Gabor  ltering technique of Jain and

Healey [3] and an opponent color version of the LBP op-
erator were used in opponent color texture analysis. There
are some minor di?erences between the  lter bank designs
of Manjunath and Ma and that of Jain and Healey, but these
were minimized by using the same number of  lter scales
and orientations for both. The main di?erence between the
gray-scale method and its opponent color counterpart is that,
in addition to unichrome features derived from  ltered color
channels, the latter also uses di?erences between  ltered
color channels to mimic the opponent color processing of
the eye. If the  ltered color channels of an image are de-
noted by i(c)so (x; y), where c, s, and o stand for channel, scale,
and orientation, respectively, the unichrome features can be
written as

%(c)so =
√∑

x;y

i(c)so (x; y)2: (10)

The total number of unichrome features becomes 4×3×
3 = 36.
Opponent color features are calculated from the di?er-

ences of  ltered color channels. The di?erences are calcu-
lated between all color channel pairs in the RGB space (3),
for all orientations (4), and for each pair of scales i; j sat-
isfying |i − j|6 1 (7). The total number of opponent color
features thus becomes 84. Opponent color features are de-
 ned as

%(c1c2)s1s2o =

√√√√∑
x;y

(
i(c1)s1o (x; y)
%c1s1o

− i(c2)s2o (x; y)
%c2s2o

)2
: (11)

The unichrome and opponent color features are concate-
nated into one 120-dimensional feature vector. In the experi-
ments, a squared Euclidean distance scaled with feature vari-
ances was used as the dissimilarity measure, as suggested
by the authors:

d(s; m) =
N−1∑
i=0

(si − mi)2

&2i
; (12)

where &2i is the variance of feature i.
The LBP operator can be extended to color texture in

a similar manner. Given an RGB image, the LBP operator
is applied on each color channel separately. In addition,
each pair of color channels is used in collecting opponent
color patterns so that the center pixel for a neighborhood
and the neighborhood itself are taken from di?erent color
channels. Since opposing pairs, like R − G and G − R, are
highly redundant, only three opponent color pairs need to be
considered, in addition to the three intra-channel operators.
The resulting six feature distributions are concatenated into
a single distribution. In the experiments, the log-likelihood
dissimilarity measure (Eq. (9)) was used.

6. Combining separate color and texture features

The fusion of separate color and texture descriptions can
happen on three levels. They will be called feature vector,
similarity measure, and classi er levels. On feature vector
level, color and texture features can be simply concatenated
into a single feature vector. This method, however, requires
that feature values are properly scaled, and that feature vec-
tors of di?erent lengths are weighted. Furthermore, using a
di?erent similarity measure for color and texture measures
would be a problem. For these reasons, fusion on feature
vector level was not considered

6.1. Similarity measure level

On similarity measure level, a single classi er is used to
classify samples with color and texture descriptions. A sep-
arate similarity measure is used for both feature vectors. The
results of the similarity measurements between correspond-
ing feature vectors are then scaled to make them commen-
surable, and combined to obtain a  nal similarity estimate.
If it is possible to scale the similarity measures in the range
[0,1], they can be treated as probabilities or as fuzzy deci-
sions. For fuzzy decisions, a number of aggregation methods
are available, see, for example, Ref. [33]. If the results of
the similarity measures are treated as probabilities, the mea-
surement of the similarity between a sample and a model is
equivalent to assigning a probability to the class the model
represents. Kuncheva et al. have carried out a comprehen-
sive comparison of fusion methods for this kind of soft de-
cisions [34]. A method based on maximum likelihood clas-
si cation and certainty based fusion criterion was presented
by Dubuisson-Jolly and Gupta [10]. Also, Horikawa has
empirically evaluated combining methods in a color texture
classi cation problem [35].
The similarity measures used in this study are not

directly interpretable as probabilities. Even though one can
derive estimations of minimum and maximum values for
a similarity measure from training data, the distribution of
the values may not be quite suitable for a probabilistic
interpretation. Besides that, this type of scaling is very
sensitive to outliers. Therefore, scaling the measures to the
correct value range poses a serious problem. For this reason,
the fuzzy and probabilistic interpretations were discarded.
Instead, the values given by di?erent similarity measures
were normalized using their mean and variance:

d′
i = (di − %i)=&

2
i ; (13)

where di and d′
i represent the original and the normalized

similarity between the ith feature vector, respectively. %i
and &2i are the mean and variance of the similarity values
over a representative training set. Despite the fact that the
scaled similarities cannot be treated as probabilities, and that
the methods represented in Ref. [34] actually handle class
assignment, some of the methods of combining probabili-
ties are still applicable for combining similarity measures.
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Among the represented methods the applicable ones, namely
minimum,maximum and averagewere selected. These were
also used in Ref. [35]. In classi cation, average is equiva-
lent to sum. Thus, the total similarity can be derived from
any of the three following equations:

dmin =min(d′
1; d

′
2); (14)

dmax =max(d′
1; d

′
2); (15)

dsum = d′
1 + d′

2; (16)

where d′
1 and d′

2 are the scaled similarities between color
and texture feature vectors, respectively. Using dissimilar-
ities instead of similarities causes no problems, as one can
just  nd the minimum dissimilarity instead of the maximum
similarity.

6.2. Classi:er level

In a case where complementary color and texture infor-
mation is used, it is unlikely that both color and texture
make exactly the same mistakes. Therefore, a method of
combining these two that can take the strengths and weak-
nesses of each feature type into account is needed. With
scaled similarity measures the danger of incorrect scaling is
always present. The problems with incompatible similarity
measurements can be reduced by combining representations
on classi er level. In this case, a separate classi er is used
for both features. The classi ers may now use incompatible
similarity measures, and one does not need to worry about
scaling. The  nal classi cation result is derived by com-
bining classi cation results—or class rankings, to be exact.
Here, the method of Ho et al. [36] was used in combining
the classi cation results with color and texture features. The
Borda count was used as a decision criterion because, in ad-
dition to the average (or sum, see Eq. (16)), it was reported
to give the best results in Ref. [35]. The Borda count for
a class is de ned as the sum of the number of classes that
are ranked below it by each classi er. Therefore, it can be
considered a generalization of the majority vote.

7. Results and discussion

The classi cation (retrieval) principle in both [3,32] was
the nearest neighbor rule, with a custom dissimilarity mea-
sure. With the LBP, the k-NN classi er has been success-
fully utilized. Using the NN classi er was considered fair
play, and it was consequently used in all experiments.
The color histograms, the color constant color indexing

method, the gray-scale texture features, and the color tex-
ture features were all used in classifying the three color tex-
ture sample sets. The classi cation results are summarized
in Tables 1–5. For the Outex 14 test suite, results are re-
ported both with and without the comprehensive normaliza-
tion, where applicable.

Table 1
Results for color histograms

Histogram type VisTex Outex 13 Outex 14

RGB163 99.1 94.6 9.3/34.3
RGB323 99.5 94.3 9.3/32.1
RGB256 × 3 95.8 91.5 19.0/28.9
I1I2I3163 99.8 94.7 11.8
I1I2I3323 100 94.1 12.0
I1I2I3256 × 3 98.1 90.7 21.8
L∗a∗b∗163 99.8 95.1 8.8
L∗a∗b∗323 99.8 94.1 8.1
L∗a∗b∗256 × 3 98.4 93.7 12.2
HSV163 99.8 95.4 9.7
HSV323 99.8 94.6 10.7
HSV256 × 3 97.5 94.7 14.0
rg322 99.1 93.4 6.0
I2I3322 97.7 87.9 6.9
a∗b∗322 98.8 91.9 4.3
HS322 99.3 93.3 5.8
I1256 87.3 91.3 36.6
L256 85.4 80.9 34.6
V256 89.1 75.6 39.9
Y -Z256 47.7 30.1 11.0

Table 2
Results for color ratio histograms

Feature VisTex Outex 13 Outex 14

CR163 98.4 84.0 42.7
CR323 98.8 74.9 39.2

Table 3
Results for gray-scale texture

Feature VisTex Outex 13 Outex 14

Gabor4;6 89.6 77.1 66.0
Gabor3;4 89.8 78.4 64.2
LBP8;1 97.7 81.0 59.3
LBPu216;2 96.8 79.7 69.3
LBP(8;1+u2

16;2) 98.6 83.4 66.5
LBP(8;1+u2

16;3+
u2
24;5) 98.6 82.4 69.5

The VisTex textures are almost faultlessly classi ed by
most of the features tested, and I1I2I3323 and LBPu216;2 L

∗a∗b∗

yield a 100% score. Thus, these textures give not much
useful information for comparison purposes. It suTces to
summarize that with such a diverse set of natural textures,
most methods work. Even a two-dimensional distribution of
chromaticities (e.g. HS322 or rg322) is enough. Compared
to the simple color indexing methods, no performance in-
crease is achieved with any of the gray-scale or color texture
methods. The di?erences between di?erent methods can be
better analyzed with the Outex textures, the classi cation of
which reveals a number of interesting phenomena. The next
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Table 4
Results for color texture

Feature VisTex Outex 13 Outex 14

Gabor3;4 RGB-Z 92.6 84.0 62.4
Gabor3;4 RGB 96.1 86.9 35.4/43.5
Gabor3;4 I1I2I3 98.6 83.8 44.0
Gabor3;4 L∗a∗b∗ 99.1 86.8 55.2
Gabor3;4 HSV 97.5 86.5 25.4
LBP8;1 RGB-Z 98.4 86.8 54.0
LBP8;1 RGB 97.9 87.8 53.9/43.8
LBP8;1 I1I2I3 98.8 84.7 57.1
LBP8;1 L∗a∗b∗ 99.3 82.9 60.1
LBP8;1 HSV 98.8 85.9 44.9
LBPu216;2 L

∗a∗b∗ 100 85.3 63.2
LBP(8;1+u2

16;3+
u2
24;5) 99.5 87.8 67.8

L∗a∗b∗

Table 5
Results for opponent color texture

Feature VisTex Outex 13 Outex 14

Gabor 97.9 81.2 53.3/47.4
LBP8;1 98.8 92.5 13.5/45.1
LBPu216;2 99.5 92.4 15.4/47.1

three sections discuss the  ndings. The best results for each
experiment are summarized in Table 7.

7.1. Static illumination

With the Outex TC 00013 test set (static illumination),
even the 256-level intensity histogram (I1256) gives a 91.3%
score, showing that the  rst- and second-order statistics of
gray values carry lots of useful information if they can
be relied on. If the images are normalized with respect to
these variations, the descriptive power of the gray level his-
togram drops drastically, as shown by the 30.1% score of
Z-normalized luminance (Y -Z256). On the other hand, good
accuracy can be achieved even when the intensity infor-
mation is totally discarded: HS322 or rg322 both provide a
better accuracy than any of the gray-scale or color texture
methods.
With gray-scale texture, the best score (83.4%) was

achieved by the multi-resolution LBP(8;1+u2
16;2). Channel-

wise color texture descriptors perform somewhat better, but
with a tripled computational overhead and a three times
longer feature vector. It should be noted that the color
channels also carry intensity information. Therefore, the
channelwise texture features contain practically the same
information as the gray-scale features, supplemented with
some additional information from the chromaticities. The
best results with channelwise Gabor and LBP features are
obtained in the RGB color space, while the color spaces
with intensity and chromaticity separated work slightly

worse. This is important because it shows that the texture
information obtained from the chromaticity channels is not
very useful. In the RGB space, intensity is present on each
color channel.
Neither Gabor nor LBP features are signi cantly a?ected

by the Z-normalization of color channels. Unexpectedly, the
opponent color Gabor features are weaker than the chan-
nelwise features. With the LBP, the opponent color version
performs clearly better, coming close to the performance
of the color histograms. Anyhow, the use of complex color
texture methods is not easily justi ed because no signi cant
performance increase can be achieved compared even to the
gray-scale histogram, not to speak about color histograms.
In the Outex TC 00013 experiment, the di?erence be-

tween color and texture descriptors can be mainly attributed
to the last 11 texture classes (mixtures of barley and rice),
and partially to the eight di?erent sandpapers. While color
descriptors are able to distinguish between these classes
quite well, the di?erences in their textural structures seems
not to be prominent enough for the texture measures.

7.2. Varying illumination

Gray-scale texture measures show their teeth with the Ou-
tex TC 00014 experiment in which the light source changes.
The changes in the color of the illumination immediately
render all color histograms practically useless. With the RGB
color space, the comprehensive normalization however helps
a bit. The color ratios also survive somewhat better than
color histograms, but are no match for the texture measures.
It is the chromaticity that causes most of the erroneous clas-
si cations, which is shown with the color histograms with
intensity and chromaticity separated. For example, the score
of HS322 is 5.8%, whereas the V256 histogram achieves a
39.9% accuracy.
The best score (69.5%) in this experiment was achieved

by the multi-resolution LBP(8;1+u2
16;3+

u2
24;5). The perfor-

mance increase compared to the LBP8;1 is over 10 percent-
age units, showing that a large neighborhood is needed to
cope with the changes caused by varying illumination. The
gray-scale Gabor features stand the illumination change
quite well, most probably for the same reason.
The color texture measures perform clearly worse than

their gray-scale counterparts. Especially the opponent color
texture descriptors su?er from the illumination change.
Again, the channelwise Gabor features outperform the
opponent color version, but only if the Z-normalization is
applied. With the opponent color LBP, the comprehensive
normalization helps a lot, but the result is still weaker than
that of the channelwise features. The color spaces with
intensity and chromaticity separated now work better with
the channelwise features, because the distorted chromatic-
ity information is in a sense limited to just two channels.
An exception is the HSV space, which seems to be very
instable in varying illumination.
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Table 6
Results for combined color and texture

Combination method VisTex Outex 13 Outex 14

RGB163 and Gabor3;4
Minimum 89.8 78.4 64.2/64.2
Maximum 99.1 94.6 14.0/40.2
Sum 91.0 80.6 64.2/64.3
Borda count 98.1 91.8 33.9/59.1

I1I2I3256 × 3 and Gabor3;4
Minimum 89.8 78.4 64.2
Maximum 99.1 91.2 28.2
Sum 90.5 78.8 64.3
Borda count 97.9 90.9 55.6

RGB163 and LBPu216;2
Minimum 97.5 88.8 49.2/58.4
Maximum 98.4 85.4 31.7/47.1
Sum 97.2 81.3 69.4/69.4
Borda count 99.8 91.2 35.9/59.7

I1I2I3256 × 3 and LBPu216;2
Minimum 97.5 85.7 53.7
Maximum 97.7 85.1 39.7
Sum 97.0 80.1 69.3
Borda count 99.3 90.7 56.2

7.3. Combined color and texture

So far, it seems that neither color nor texture features are
successful in both static and varying illumination conditions.
Unfortunately, none of the methods of combining color and
texture on a higher level was universally applicable either.
In the  rst two experiments where both color and texture
give reasonable results, the Borda count and the maximum
dissimilarity method work best, as shown in Tables 6 and
7. In the third experiment, however, the sum of dissimi-
larities seems to be the most robust method. Therefore, if
these methods are used, they must be selected based on the
application at hand.
Although all combinations of color and texture features

were not tested, it seems that the utility obtained in combin-
ing color and texture features is at most minimal. In most
cases, either of the combined features would have produced
a better result by itself.

8. Conclusions

Many previous studies have compared gray-scale texture
features with their color counterparts, concluding that adding
color information to texture measures increases accuracy.
According to our results, this is indeed the case, but only in
static illumination conditions. It has been mostly forgotten
that much of the di?erence can be explained by the multi-
ple amount of information. One can pick some numbers to

Table 7
Best results for each problem

Result Best method

VisTex
Color histogram 100 I1I2I3323

Color ratios 98.8 CR323

Gray-scale texture 98.6 LBP(8;1+u2
16;2)

Color texture 100 LBP16;2 L∗a∗b∗
Opponent color 99.5 LBPu216;2
texture

Color + texture 99.8 RGB163 + LBPu216;2 Borda count

Outex 13
Color histogram 95.4 HSV163

Color ratios 84.0 CR163

Gray-scale texture 83.4 LBP(8;1+u2
16;2)

Color texture 87.8 LBP8;1 RGB
Opponent color 92.5 LBP8;1
texture

Color + texture 94.6 RGB163 + Gabor3;4 Max
dissimilarity

Outex 14
Color histogram 39.9 V256
Color ratios 42.7 CR163

Gray-scale texture 69.5 LBP(8;1+u2
16;3+

u2
24;5)

Color texture 67.8 LBP(8;1+u2
16;3+

u2
24;5) L

∗a∗b∗

Opponent color 53.3 Gabor
texture

Color + texture 69.4 RGB163 + LBPu216;2 Dissimilarity
sum

demonstrate this with the results presented above. For exam-
ple, LBP(8;1+u2

16;2) scores 82.8% on average with a feature
distribution of 599 bins (see Table 3). The same mean score
is achieved by LBPu216;2 L

∗a∗b∗, but with 729 bins (Table
4). It is tempting to compare this result with that of LBPu216;2
(81.9%) to demonstrate that adding color information in-
creases accuracy. The increase is, however, obtained with a
three times longer feature vector.
Overall, comparing gray-scale texture to color texture is

a rather limited approach. The results here show that the
cases in which color texture is better than gray-scale tex-
ture could be better resolved by very simple color indexing
methods. In static illumination conditions one can rely on
color measurements, which is a necessary precondition to the
functioning of color texture and color histograms. In vary-
ing illumination, gray-scale texture works clearly better than
either color, channelwise color texture or opponent color
texture.
The evidence presented in this study suggests that using

color and texture in parallel is not the most powerful way
of utilizing this complementary information. All joint color
texture descriptors and all methods of combining color and
texture on a higher level are outperformed by either color
or gray-scale texture alone. The utility attained with a joint
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description is at most minimal. However, even a minimal
performance increase may be important in some applications
[37].
There are applications where both color and texture need

to be used for maximum performance [38,39]. Typically,
they have been used in parallel. It should however be consid-
ered whether a sequential use could better exploit the capa-
bilities of each feature space. Either can be used in drawing
a preliminary decision, which is then re ned with the other.
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