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1 Introduction  
 
Color is an important visual attribute for both human vision and computer processing.  This 
chapter provides an overview of MPEG-7 color descriptors. As is the case with the other 
descriptors, extraction of these descriptors and their use in similarity matching are outside the 
scope of the normative components of the standard. Nevertheless, efficient extraction and 
matching techniques are indispensable for a practical system.  For each of the descriptors, we 
provide details of its syntax (and associated semantics, as applicable), descriptor computation 
(extraction), and experimental results on retrieval effectiveness on a controlled dataset with 
known ground truth.  Even though not explicitly stated, all the color descriptors discussed in 
the following can be computed from arbitrarily shaped image regions as well. 
 
Various factors influenced the selection of these color descriptors. These include:  
(a) their ability to characterize the perceptual color similarity, judged by performance of the 
descriptors in matching images and video segments based on color characteristics  
(b) low complexity of the associated extraction and matching techniques, as MPEG-7 systems 
must be able to handle search and retrieval tasks over large multimedia databases, or may be 
small, portable devices with limited computational power  
(c) the sizes of the coded descriptions, which play an important role in indexing, and in 
transmission of the descriptors over bandwidth limited networks  
(d) the scalability and interoperability of the descriptors.     
 
To evaluate the retrieval performance of various color descriptors, experiments based on the 
query by example paradigm were conducted.   To perform these experiments, a Common 
Color Dataset (CCD) consisting of about 5000 images, and a set of 50 Common Color 
Queries (CCQ), each with specified ground truth images, was defined [4]. This means that the 
number of queries was about 1% of the number of images in the database, which guarantees 
sufficient statistical significance of the results. The CCD consists of a variety of still images, 
images from stock photo galleries, screen shots of television programs and animations. The 
query and corresponding ground truth images in CCQ are manually established through a 
process of visual inspection by different groups of participants. The effectiveness of  the 
individual descriptors is evaluated using the averaged normalized retrieval accuracy measure 
(ANMRR) (see Appendix). The final selection of the descriptors was mainly based on their 
retrieval effectiveness on the CCD as well as their overall complexity. 
 
We now briefly summarize the color descriptors that were defined as part of the standard. The 



following sections will describe the individual descriptors in more detail. 
 
• The Color Space Descriptor allows a selection of a color space to be used in the 

description. The associated Color Quantization Descriptor specifies the partitioning of 
the given color space into discrete bins. These two descriptors are used in conjunction 
with other color descriptors.  

• The Dominant Color Descriptor allows specification of a small number of dominant 
color values as well as their statistical properties like distribution and variance. Its 
purpose is to provide an effective, compact and intuitive representation of colors present 
in a region or image. 

• The Scalable Color Descriptor is derived from a color histogram defined in the Hue-
Saturation-Value (HSV) color space with fixed color space quantization. It uses a Haar 
transform coefficient encoding, allowing scalable representation of description, as well as 
complexity scalability of feature extraction and matching procedures.  

• The Group of Frames/Group of Pictures Descriptor is an extension of the scalable 
color descriptor to a group of frames in a video or a collection of pictures. This descriptor 
is based on aggregating the color properties of the individual images or video frames.  

• The Color Structure Descriptor is also based on color histograms, but aims at 
identifying localized color distributions using a small structuring window. To guarantee 
interoperability, the color structure descriptor is bound to the Hue-Min-Max-Difference 
(HMMD) color space (see Section 2.2). 

• The Color Layout Descriptor captures the spatial layout of the dominant colors on a 
grid superimposed on a region or image. Representation is based on coefficients of the 
Discrete Cosine Transform (DCT). This is a very compact descriptor being highly 
efficient in fast browsing and search applications. It can be applied to still images as well 
as to video segments. 

 
The main for defining a standardized description is interoperability. This aspect has been 
extensively investigated in core experiments [6], [7], after which it was concluded to constrain 
the possible variations in the descriptions. In the context of color descriptors, this has led to 
specifying a unique choice of color space for each of the color descriptors (with the exception 
of the dominant color descriptor), as leaving this specification up to the user would have 
deteriorated the retrieval efficiency and raised complexity of the matching process. As a 
consequence, the set of histogram-derived descriptors was strictly limited for two variants – 
Scalable Color and Color Structure – with fixed definition of Color Spaces and limited, 
interoperable set of bin-quantization choices. 
 

2 Color Spaces 
The Color Space Descriptor specifies a selection of a color space to be used in another 

color descriptor, specifically, the Dominant Color Descriptor. The color spaces specified in 
the MPEG-7 are– RGB, YCbCr, HSV, HMMD, Monochrome, and Linear transformation 
matrix with reference to RGB. In addition, a flag is  provided to  indicate  reference to a color 
primary  and mapping to a standard reference white value. 
The Color Space Descriptor defines the color components as continuous-value entities. For 
discrete representation, a quantization is necessary.  The Color Quantization Descriptor 
specifies the number of quantization levels for each color component in the color space.  A 
uniform quantization in each of the color components in a given color space is assumed. The 
only exception is the HMMD color space, the quantization for which is described in detail in 
Section 2.2.1. 



  
The RGB color space is one of the most popular color models. This space is defined as 

the unit cube in the Cartesian coordinate system. The YCbCr is a legacy color space of the 
precedent MPEG standards, MPEG-1/2/4. It is defined by a linear transformation of RGB 
color space as follows: 

Y =   0.299*R + 0.587*G + 0.114*B 
Cb = -0.169*R - 0.331*G + 0.500*B 
Cr =  0.500*R - 0.419*G - 0.081*B 

For the Monochrome color representation, Y component alone in the YCrCb is used. 

2.1 HSV Color Space 
The HSV color space defined as a cylinder (see Figure 2.1) consists of Hue, Saturation and 
Value. Hue (H) represented by the angle from 0 to 360 degrees specifies one color family 
from another, as red from yellow, green, blue or purple. Saturation (=[0,1]) specifies how 
pure a color is; pure red, yellow, green, blue and so on. Value (=[0,1]) specifies how bright 
or dark a color is. The three components are expressed by a non-linear transform of the 
three components of RGB color space as shown below: 

Max = max(R, G, B); 
Min = min(R, G, B); 
Value = Max; 
if( Max == 0 ) then 
  Saturation = 0; 
else 
  Saturation = (Max-Min)/Max; 
if( Max == Min ) Hue=0; /* It is achromatic color */ 
otherwise: 
if( Max == R && G >= B ) 
  Hue = 60*(G-B)/(Max-Min) 
else if( Max == R && G < B ) 
  Hue = 360 + 60*(G-B)/(Max-Min) 
else if( G == Max ) 
  Hue = 60*(2.0 + (B-R)/(Max-Min)) 
else 
  Hue = 60*(4.0 + (R-G)/(Max-Min)) 

When Max value is equal to Min value (Saturation = 0), it is an achromatic color (white, 
black or gray). In this case, Hue is set to 0 degree (means red). 
 
The HSV color space is the color space associated with the scalable color histogram and the 
group of frames histogram descriptors (see Section 4 and Section 5). For these two 
descriptors, the HSV space is uniformly quantized into 256 bins--16 levels in H, 4 levels in 
S, and 4 levels in V. These two descriptors can also be computed using fewer than 256 
histogram bins. Table 1 summarizes the partitioning of the HSV space into 128, 64, and 32 
bins and the corresponding number of coefficients used in the Scalable Color and Group of 
Frames descriptors.  See Section 4 and Section 5 for more details. 
 

2.2  HMMD Color Space 
The HMMD (Hue-Max-Min-Diff) color space is closer to a perceptually uniform color 
space. The double cone shape confines this color space as shown in Figure 2.2. The 
component names, "Max", "Min" and "Diff" are according to the following transform 
equations between RGB and HMMD:  



Max = max(R, G, B); 
Min = min(R, G, B); 
Diff  =  Max – Min; 

Even though the four components are identified in the name of the HMMD color space, one 
more component, Sum can be defined. 

Sum = (Max+Min) /2; 

Therefore, a total of five components are identified in this color space. However, a set of 
three components, {H, Max, Min} or {H, Diff, Sum}, is sufficient to form the HMMD 
color space and specify a color point. The semantics of each component is distinct and 
described as follows. Hue (H = [0°,360°]) has the same property as Hue in the HSV color 
space. Max (=[0,1]) specifies how much black color is present, giving the flavor of shade or 
blackness. Max has the same RGB related transform as Value in HSV but the valid sub-
space is different in HMMD. Thus, the interpretation is different from Value. Min (=[0,1]) 
specifies how much white color is present, giving the flavor of tint or whiteness. Diff 
(=[0,1]) specifies how much a color is close to pure colors, giving the flavor of tone or 
colorfulness. It has a similar property as Saturation in HSV but the valid sub-space is again 
different. Finally, Sum (=[0,1]) specifies the brightness of the color. 

 
2.2.1 HMMD Color Space Quantisation 
This subsection describes the non-uniform quantisation of the HMMD color space used by the 
Color Structure Descriptor.  

As already discussed, the HMMD space can be defined in three dimensions using, sum- and 
diff-axes as well as hue angle as in Figure 2 .  A three-dimensional quantisation of such a 
space corresponds to a partition1 of the space into 3-D cells. Four non-uniform quantisations 
of HMMD are defined in the MPEG-7 Standard.  The four quantisations partition the space 
into 256, 128, 64, and 32 cells, respectively. 

Each 3-D quantisation is defined via five subspaces of HMMD as follows. The diff-axis, itself 
defined on the interval [0, 255], is cut into five sub-intervals: [0,6), [6, 20), [20, 60), [60, 110) 
and [110, 255]. This 1-D partition of the diff-axis implicitly defines five subspaces numbered 
0, 1,…, 4, respectively.  Each subspace is that subset of HMMD where sum and hue are 
allowed to take all values in their respective ranges, and where diff is restricted to one of the 
five intervals. 

A partition of HMMD is obtained by partitioning the ranges of hue and sum into uniform 
intervals within each subspaces according to Table 4. The table actually consists of four tables 
(one for each quantisation of HMMD) the columns of which are alternately white or shaded.  
For each quantisation the table tells how to partition the subspaces to yield the overall 
partition. 

For example, to partition HMMD space into 128 cells the table instructs us to partition 
Subspace 4 by cutting hue into 8 uniform intervals and sum into 4 uniform intervals, giving 
32 cells in Subspace 4.  The other four subspaces are partitioned in like manner to yield the 
overall non-uniform quantisation of HMMD into 128 cells. 

                                                           
1 A partition of a space, S, is a collection, {p1,…,pN}, of cells such that pi ⊆ S,  pi ∩ pj = ∅ for i ≠ j, 
and .1 SpN

i i==U  

Comment [dsm1]:  Hue angle 
shd. be added to Heon Jun’s 
HMMD color space figure. 



We note that for the 32-cell quantisation the dividing line between subspaces 1 and 2 is 
missing in the table.  This indicates that the two subspaces have been united into a single 
subspace.  Thus the 32-cell partition of HMMD is defined via four subspaces instead of five. 

Figure 3 depicts a slice of HMMD color space in the diff-sum plane for zero hue angle and 
shows the cells for the 128-cell quantisation.  Subspace boundaries are indicated in the figure 
by vertical lines in the plane. The diff-axis values that determine the subspace boundaries are 
shown in black at the top of the dashed cut-point markers along the upper edge of the plane.  

Horizontal lines within each subspace depict the division of the sum-axis into uniform 
intervals. The grey rotation arrows around each cut-point marker indicate the partition of hue 
angle. The grey number to the right of a rotation arrow corresponds to the number of intervals 
into which the range of hue has been partitioned in the subspace to the right of the cut-point. 
For example, Figure 3 states that the range hue associated with the subspace between diff = 60 
and diff = 110 (i.e. subspace 3) is divided into 8 equal intervals. This agrees with the entry in 
Table 4. 

Finally, Figure 3 indicates the scheme for numbering the cells in a partition of HMMD space.  
This is important because of the 1-to-1 association between cells and Color Structure 
Descriptor bin indices discussed in Section 6. 

 
Besides the five color spaces described up to now, the color space descriptor can 

describe any 3 by 3 color transform matrix which specifies the linear transformation 
between RGB and the respective color space. Thus, any linear transformation from the 
RGB color space can be specified in the MPEG-7 color space descriptor.  
 
 

3 Dominant Color Descriptor 
The Dominant Color Descriptor (DCD) provides a compact description of the 
representative colors in an image or image region. Its main target applications are similarity 
retrieval in image databases and browsing of image databases based on single or several 
color values. Unlike the traditional histogram based descriptors, the representative colors 
are computed from each image instead of being fixed in the color space, thus allowing the 
color representation to be accurate and compact..  The DCD allows for efficient indexing 

2of large databases as presented in  [14]. 
 
The dominant color descriptor is defined to be 

{{ , , }, }, ( 1, 2,..., )i i iF c p v s i N= =  
most where N is the number of dominant colors. Each dominant color value ci is a vector of 
corresponding color space component values (for example, a 3-D vector in the RGB color 

                                                           
2 Indexing in the database context refers to an efficient pruning of the search space so as to 
minimize the number of distance computations and disk I/O accesses needed for computing 
the nearest neighbors of a given query feature vector. The feature vector dimensions of 
typical visual descriptors are quite large. For example, the number of bins in a histogtram 
descriptor may be of the order of few hundreds. It is a well known fact that nearest 
neighbor search for similarity retrieval in such high dimensional spaces is quite expensive 
and is often referred to as the dimensionality curse in the database literature. 



space). The percentage pi (normalized to a value between 0 and 1) is the fraction of pixels 
in the image or image region corresponding to color ci, and 1ii

p =∑ . The optional color 

variance vi describes the variation of the color values of the pixels in a cluster around the 
corresponding representative color. The spatial coherency s is a single number that 
represents the overall spatial homogeneity of the dominant colors in the image. The number 
of dominant colors N can vary from image to image and a maximum of eight dominant 
colors was found to be sufficient to represent an image or an image region . The color space 
quantization depends on the color space specifications defined for the entire database and 
need not be specified with each descriptor.  
 
The binary syntax of the dominant color descriptor specifies 3 bits to represent the number 
of dominant colors and 5 bits for each of the percentage values (uniform quantization of 
[0,1]). The Color Space and Color Quantization descriptors are referred to by this descriptor 
and RGB is the default color space. The optional color variances are encoded at 3 bits per 
color with non-uniform quantization.  The table below summarizes the binary syntax of the 
DCD. See [1] for detailed specifications. 
 
 

Field Number of Bits Meaning 
 

NumberofColors 3 Specifies number of dominant 
colors. 

SpatialCoherency 5 Spatial Coherency value. 
Percentage[ ] 5 Noralized percentage 

associated with each dominant 
color. 

ColorVariance[ ] [ ] 1 Color variance of each 
dominant color. 

Index[ ][ ] 1-12 Dominant color values 
 

3.1 EXTRACTION 
The extraction procedure described in [12] for the dominant color uses the Generalized 
Lloyd Algorithm [13] to cluster the pixel color values.  It is recommended that the 
clustering be performed in a perceptually uniform color space such as the CIE LUV. The 
distortion iD in the i-th cluster is given  

2( ) ( ) , ( )i i i
n

D h n n c x n C= − ∈∑ x , 

 
where ci  the centroid of cluster Ci, x(n) is the color vector at pixel n, and h(n) is the 
perceptual weight for pixel n. The perceptual weights are calculated from local pixel 
statistics to account for the fact that human visual perception is more sensitive to changes in 
smooth regions than in textured regions [15]  The update rule for the above distortion 
metric can be derived to be: 

( ) ( )
, ( )
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The procedure is initialized with one cluster consisting of all pixels and one representative 
color computed as the centroid (center of mass) of the cluster. The algorithm then follows a 
sequence of centroid calculation and clustering steps until a stopping criterion (minimum 
distortion or maximum number of iterations) is met. The clusters with highest distortion are 
divided by adding perturbation vectors to the centroids until the maximum distortion falls 
below a predefined threshold or the maximum number of clusters is generated. The 
percentage or fraction of pixel in the image belonging to each of the quantized colors is 
then calculated and these resulting percentages  are uniformly quantized to 5 bits. The color 
values are quantized according to the specifications of the color space and the associated 
color quantization descriptors.  
 
 A simple connected component analysis is performed to identify groups of pixels of the 
same dominant color that are spatially connected. Four connectivity (the four nearest 
neighbors of a pixels) is assumed. The normalized average number of connecting pixels of 
each dominant color is then computed. A 3x3 masking window is used for this purpose. 
This is used as a measure of spatial coherency for that dominant color. The overall spatial 
coherence is then a linear combination of the individual spatial coherence values with the 
corresponding percentages pi being the weights. The spatial coherence value is then non-
uniformly quantized to 5 bits, where 31 means highest confidence and 1 means no 
confidence. The value 0 is used for cases where it is not computed.  Finally, the color 
variances are computed as variances of the pixel values within each cluster and non-
uniformly quantized to 1 bit per color component. 
 

3.2 Similarity Matching 
Each object or region in the database is represented using the dominant color descriptor as 
defined above. Typically, 3-4 colors provide a good characterization of the region colors. 
Given a query image, similarity retrieval involves searching the database for similar color 
distributions as the input query. Since the number of representative colors is small, one can 
first search the database for each of the representative colors separately, and then combine the 
results. Searching for individual colors can be done very efficiently in a 3-D color space. 
Consider two dominant color descriptors,  

{ }{ }1 1 1 1 1 1, , , , ( 1, 2, , )i i iF c p v s i N= = L and 

{ }{ }2 2 2 2 2 2, , , , ( 1, 2, , )i i iF c p v s i N= = L .  

Ignoring the optional variance parameter and the spatial coherence, the dissimilarity D(F1, F2) 
between the two descriptors can be computed as:  
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where the subscripts 1 and 2 in all variables stand for descriptions F1 and F2 respectively, and 
ak,l is the similarity coefficient between two colors ck and cl, 
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where lklk ccd −=,  is the Euclidean distance between two colors ck and cl, Td is the 
maximum distance for two colors to be considered similar, and dmax = αTd. In particular, this 
means that any two dominant colors from one single description are at least Td distance apart. 
A recommended value for Td is between 10-20 in the CIE-LUV color space and for α is 
between 1.0-1.5. The above dissimilarity measure can be shown to be equivalent to the 
quadratic distance measure that is commonly used in comparing two color histogram 
descriptors.  
 
One variation of the above distance is to use the spatial coherence field. For example, in the 
MPEG-7 experiments the following distance was used:  

1 1 2 2( )SD w abs s s D w D= − +  
where s1 and s2 are the spatial coherencies of the query and target descriptors, and w1 and 
w2 are fixed weights, with recommended settings to 0.3 and 0.7, respectively. 
 
This distance can be modified to take into account the optional variance. If the color variance 
field is present, the matching function is based on modeling of the color distribution as a 
mixture of Gaussian distributions with parameters defined as color values and color variance 
[14]. Calculation of the squared difference between the query and target distributions then 
leads to the following formula for the matching function: 
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In the equations above, cxi
(l) and vxi

(l) are dominant color values and color variances, x,y 
index the query and target descriptors, i,j index the descriptor components and l, u and v the 
components of the color space.  

3.3 Experimental Results: 
Table 2 shows a comparison of ANMRR results for two average descriptor sizes using the 
CCD/CCQ. It can be seen that reasonable results are obtained even for the basic version of 
the descriptor and a significant improvement can be achieved by using the optional fields. 
Table 3 gives results using the spatial variance parameter and comparing with the DC 
descriptor (without variance). These experiments suggest that using 5 bits for the spatial 
coherence field is a reasonable trade-off between complexity and effectiveness of the 
descriptor. It should be noted that one of the main objectives of the dominant color 
descriptor is to provide a compact and intuitive representation of salient colors in a given 
region of interest.  
 

4 Scalable Color Descriptor 
The Scalable Color Descriptor (SCD) can be interpreted as a Haar transform based encoding 



scheme applied across values of a color histogram in the HSV color space (see Section 2.1). 
The histogram values are extracted, normalized and non-linearly mapped into a  4-bit integer 
representation, giving higher significance to small values. The Haar transform is applied to 
the 4-bit integer values across the histogram bins. The basic unit of the transform consists of a 
sum operation and a difference operation (see Figure 4 (a)), which relate to primitive low pass 
and high pass filters. Summing pairs of adjacent bins is equivalent to the calculation of a 
histogram with half number of bins. From the sums of every two adjacent Hue bin values out 
of the 256-bin histogram , we get a representation of a 128-bin histogram with 8 levels in H, 4 
levels in S and 4 levels in V. If this process is repeated, the resulting 64, 32 or 16 sum 
coefficients from the Haar representation are equivalent to histograms with 64, 32 or 16 bins. 
Table 1 shows the equivalent partitioning of the HSV color space for different number of 
coefficients of the Haar transform. If an application does not require the full resolution, 
limited number of Haar coefficients may simply be extracted from a 128, 64 or 32 bin 
histogram; this would still guarantee interoperability with another representation where all 
coefficients were extracted, but only to the precision of the coefficients that are available in 
both of the representations. Note that since all partitions in the original color space 
quantization are powers of 2, the combination with the Haar transform appears to be very 
natural. 
 
The high pass (difference) coefficients of the Haar transform express the information 
contained in finer-resolution levels (with higher number of bins).  Histograms of natural 
image signals usually exhibit high redundancy between adjacent histogram bins. This can be 
explained by the “impurity” (slight variation) of colors caused by variable illumination and 
shadowing effects. Hence, it can be expected that the high pass coefficients expressing 
differences between adjacent histogram bins usually have only small values. Exploiting this 
property, it is possible to truncate the high pass coefficients to an integer representation with 
only a small number of bits. 
 

4.1 Extraction and Matching 
Figure 4b shows the block diagram of the of the SCD extraction process. The output 

representation is scalable in terms of numbers of bins, by varying the number of coefficients 
used. Interoperability between different resolution levels is retained due to the scaling 
property of the Haar transform. Thus, matching based on the information from subsets of 
coefficients guarantees an approximation of the similarity in full resolution. Furthermore, as 
mentioned above, also the feature extraction operation can be scaled to lower levels (less bins 
in the source histogram). 
Besides the  scalability in the number of histogram bins, another form of scalability is 
achieved by scaling the quantized (integer) representation of the coefficients to different 
numbers of bits. The “difference” coefficients in the Haar transform can take either positive or 
negative values. The sign part is always retained whereas the magnitude part can be scaled by 
skipping the least significant bits. Using the sign-bit only (1 bit / coefficient) leads to an 
extremely compact representation, while good retrieval efficiency is retained. At the highest-
accuracy level, 1-8 bits are defined for integer representations of the magnitude part, 
depending on the relevance of the respective coefficients. Between these extremes, it is 
possible to scale to different resolution levels. For example, consider a set of five coefficients 
whose magnitudes are encoded using 8,4,7,3, and 7 bits, respectively, as shown in Figure 5. If 
the lowest 3 bits are discarded in the scalable bit representation, only 5,1,4,0, and 4 bits 
remain to encode the absolute value.  
l1-norm based matching (sum of absolute differences) can be applied in the Haar transform 



domain; however, results are not identical with l1-norm based matching in the histogram 
domain. In the case where only the sign bit is used (all bit planes representing the absolute 
value discarded), the l1-norm degenerates to a Hamming distance, allowing very low 
complexity in the distance calculation. 

4.2 Representation 
The scalability in the number of histogram bins and the number of bit planes are represented 
by the fields  NumberofCoefficients and NumberofBitplanesDiscarded.  The 
NumberofCoefficients is used to indicate whether 16, 32, 64, 128 or 256 bins (coefficients) are 
used. The NumberofBitplanesDiscarded specifies the number of bitplanes of the coefficients 
that are discarded, ranging from 0 to 8. In the case this value is 8, the magnitude of the 
coefficients are not present, only the sign of each coefficient is retained which is represented 
by the CoefficientSign. The magnitudes of the coefficients are represented in a bit-plane 
fashion, which means that the most significant bits of all coefficients are taken first, followed 
by the next most significant, etc. The bit plane representation allows the transmission of only 
a certain amount of most significant bits for bandwidth constrained applications. The 
representation is as follows: 
 
 

Field Number of 
Bits 

Meaning 

NumberofCoefficients 3 Specifies the number of histogram 
bins = 16,32,64,128,256 

NumberofBitplanesDiscarded 3 Specifies discarding 0 to 8 bitplanes 
CoefficientSign[ ] NumberofCoe

fficients 
The sign of each coefficient 

BitPlane[ ][ ] See text Coefficient magnitudes represented 
in a bitplane fashion 

 

4.3 Experimental Results 
Retrieval results achieved by the SCD are shown in Figure 6. In addition, the ANMRR 

quality measure was calculated from matching in the histogram domain, after performing an 
inverse Haar transform. The results show that a reasonable performance can be achieved even 
with small numbers of bits, while the performance saturates between 256 and 512 bits.  

5 Group of Frame/Group of Picture Descriptor  
The Group-of-frame/Group-of-picture (GoF/GoP) color descriptor is used for the joint 
representation of color-based features for multiple images or multiple frames in a video 
segment.  This descriptor can be used to represent a collection of contiguous or non-
contiguous video frames or a group of images. Traditionally for a group of frames or pictures, 
a key-frame or a key-image is selected from such a group, and the color-related features of the 
entire collection are represented by those of the chosen sample. Such methods are highly 
dependent on the quality of the representative sample selection, and may lead to unreliable 
results. The GoF/GoP color descriptors are histogram-based descriptors that reliably capture 
the color content of multiple images or video frames. 



5.1 Extraction and Matching 
GoF/GoP color descriptors are obtained by aggregating the histograms of multiple images or 
video frames and representing the aggregated histograms using the SCD. The individual 
image or video frame histogram is computed based on the uniform quantization of the HSV 
color space as detailed in Table 1.  Three different ways  are defined to compute the aggregate 
color histogram values for the whole series of images or video frames: average, median or 
intersection aggregation. The aggregated histogram is then input to the Haar transform to 
build the SCD representation as presented in the previous section. 
 
The average histogram is computed by accumulating the frame/picture histograms in the 
group and subsequently normalizing each accumulated bin value by N, where N is the number 
of frames in the GoF or the number of images in the GoP. The average histogram is simple to 
compute. The descriptor can be updated easily if additional images or video frames are added 
to the group. A potential problem with using sample averages to compute the GoF/GoP 
histogram is the sensitivity of the mean operator to outliers. The median histogram is obtained 
by constructing, for each bin, the ascending list of N frame/picture histogram values over the 
length of the GoF/GoP, and assigning the median of this list to the corresponding bin in the 
GoF/GoP histogram. The median histogram eliminates aberrant effects such as lighting 
changes, occlusion, text overlays, etc., which the average histogram is vulnerable to. One 
concern regarding the use of the median histogram is the increased computational complexity. 
The intersection histogram (Int_Histogram) is obtained by computing for each bin  the 
minimum value over all the N frame/picture histograms in the group. Each bin value in the 
intersection histogram thus represents the number of pixels of a particular color that appear in 
all of the GoF frames. The intersection histogram is characteristically different from the 
average and median histograms, in that it provides the “least common” color traits of the 
given GoF/GoP, rather than an estimate of the color distribution.  
 
The matching for the GoF/GoP descriptor is performed exactly similar to the SCD descriptor. 
It should be ensured that the aggregation method used for the descriptors that are being 
matched are the same.  
 

5.2 Descriptor Representation 
As alluded to before, the GoF/GoP color descriptor is an extension of the SCD. The 
representation for the GoF/GoP descriptor is identical to the SCD with an additional attribute 
aggregation. The three different possible methods of aggregation is represented by this 
attribute using two bits. This is followed by the associated SCD descriptor. 
 

Field Number of 
Bits 

Meaning 

aggregation 2 Specifies the three different types of 
aggregation 

ScalableColorDescriptor See Section 
4.2 

Specifies the SCD 

5.3 Experimental Results 
The joint representation of a collection of video frames or images obtained using the 

GoF/GoP color descriptor can be used in different applications in video content management, 
namely, query-by-example based retrieval applications, shot grouping, fast search and 



browsing  of a image or video databases. A description of the experimental results for video 
segment matching is presented here. The experiments were conducted on about 3 hours of 
video in the MPEG-7 data set. The data set contained various types of video, including sports 
programs, news clips, videos of natural scenes etc. Shot segmentation was performed on this 
data using cut, dissolve, fade and wipe detection resulting in 1544 shots (groups-of-frames).  
For each GoF,  histograms were computed for the individual frames and the three different 
types of aggregation were performed to obtain the GoF descriptor. In addition, for each GoF, 
a key frame was identified to compare the performance GoF descriptor based search against 
the key-frame based search. The key frame was selected by searching through all the frames 
in a GoF to find the optimal frame that had the minimum mean absolute error with all the 
other frames within that GoF. From the 1544 GoFs, 31 queries were selected and for each 
query a set of ground truth GoFs were manually identified [10]. The queries ranged from 
almost static GoFs to dynamic scenes with edit effects and transitions. Table 5 shows the 
ANMRR retrieval results using the average and median aggregation based GoF matching 
against the key-frame based matching. From the table, it can be seen that the GoF descriptor 
performs better than the optimum key frame based matching. Results of another application to 
find if a given frame belongs to a  GoF  using the intersection aggregation can be found in [9]. 
Experimental results on the use of GoP descriptor for fast search of image databases and 
content-based browsing can be found in [8], [11].  

6 Color Structure Descriptor (CSD) 

The Color Structure Descriptor (CSD) represents an image by both the color distribution of 
the image (similar to a color histogram) and the local spatial structure of the color. The 
additional information about color structure makes the descriptor sensitive to certain image 
features to which the color histogram is blind.  Figure 7 illustrates this with a pair of images 
each of which consists of two iso-color planes3, one grey and one black. The grey iso-color 
plane on the left is highly structured whereas the one on the right is less so.  The structure of 
an iso-color plane is the degree to which its pixels are clumped together relative to the scale of 
an associated structuring element. 

Each image contains exactly 50 pixels in its grey plane and 250 pixels in its black plane. 
Hence they are indistinguishable based solely on the information in their two-bin color 
histograms. But their two-bin CS Descriptors are very different and thus the images can be 
easily distinguished in an indexing or retrieval application based on the CSD.  

The CSD is identical in form to a color histogram but is semantically different. Specifically, 
the CSD is a one-dimensional array of 8-bit quantised values, 

},,1{),(CSD Mmmhs K∈= , 

where M is chosen from the set {256, 128, 64, 32} and where s is the scale of the associated 
square structuring element. In the example of  

, s = 32. The M bins (array elements) of sh are associated in an injective4 manner to the M 
cells of the non-uniformly quantised HMMD color space (see Section 2). 

                                                           
3 An image quantised to N colors is composed of N iso-color planes.  The n-th plane is the set of all 
pixels having the n-th quantised color, n∈{1,…, N}. 
4 A map,  f : A→B, is said to be injective if f maps set A onto set B in a one-to-one manner. 



6.1 CSD Interoperability 
Descriptor interoperability was discussed generally in Section 1. There is, however, an aspect 
of interoperability that is peculiar to the CSD.  In retrieval applications it may be the case that 
a query descriptor presented (e.g., via the Web) to a remote search engine has a length that 
differs from the descriptors in the database.  In order to compute the similarity between query 
and database descriptors the lengths must be equalised. 

Now in the case of color histograms a length N histogram can be obtained either 
• by extracting it directly from an image quantised to N colors or 
• by extracting from the same image, quantised to M > N colors, a length M histogram 

and then unifying (summing) appropriate subsets of its bin values to form the N-bin 
histogram. 

Either method results in the same histogram as long as a scalability condition is met by the 
quantised color space as discussed in [16]. 

The CSD does not enjoy this property because the color quantisation of an image affects its 
color structure. The reader is directed to [16] for a discussion of the somewhat subtle reason 
for this. The salient point is that a CS Descriptor obtained from image I by one scheme will, 
in general, lead to different retrieval results than a CSD from I by the other scheme.  That is, 
the two extraction / re-sizing methods are not interoperable.  

Consequently, and in contrast to most other MPEG-7 visual descriptors, extraction and re-
sizing of the CSD is a normative process within the standard, by which we mean that the 
major steps are specified by the standard.  Deviation from these steps risks breaking the 
interoperability of the descriptor. 

6.2 Extraction 
The CSD is best understood in terms of the Color Structure Histogram, hs, upon which sh  is 
based.  Extraction of a CSD is a three-step process: 

i. A 256-bin CS Histogram is extracted (i.e., accumulated) from an image represented in 
the 256 cell quantised HMMD color space. If the image is in another color space then it 
must be converted to HMMD and re-quantised prior to extraction. 

ii. If  N < 256 is desired then bins are unified to obtain a N-bin CS Histogram. 

iii. The values (amplitudes) of each of the N bins are non-linearly quantised in accordance 
with the statistics of color occurrence in typical consumer imagery. 

We now discuss these steps in more detail, a full description of which are given in [1] and [2]. 

6.2.1 Accumulation of CS Histogram 
In the context of the CSD, the length and color space of the CS Histogram are fixed. Outside 
this context, however, the CS Histogram can, in general, be of any length and can be 
accumulated from an image represented in any quantised color space. The procedure is 
depicted in Figure 8 where a simple five-color “image” is shown together with a 4×4 
structuring element. Also shown in tabular form on the right is an 8-bin CS Histogram, hs(m), 
whose bins are associated with 8 quantised colors, cm, m∈{1,…,8}, in which the image is 
represented. 

In nominal operation, the structuring element scans the image such that 



• the element visits every position in the pixel grid, and  
• the element always lies entirely within the image.  

At each position the CS Histogram is updated based on the colors present within the element. 
The operation is illustrated in Figure 8 where, in its current position, 4 colors are present 
within the structuring element. Therefore, each of the four corresponding bins of the CS 
Histogram is incremented by one. Observe that in any given position, the increase in h(m) is 
determined by whether color cm is present or absent within the element rather than by how 
much of cm is enclosed.  Hence the final value of h(m) is determined (up to normalisation) by 
the number of positions at which the structuring element contains cm. 

It is interesting to note that the CS Histogram may be viewed as a generalised color histogram 
since it reduces precisely to an ordinary color histogram when a 1×1 structuring element is 
used. 

Although a 4×4 element is shown in Figure 8, the MPEG-7 Standard defines the scale to be 
8×8. This was determined by experiment to be the optimal scale.  In conjunction with this, the 
Standard calls for images that deviate from a nominal size to be uniformly subsampled, both 
horizontally and vertically, in order to reduce the computational load.  The subsampling factor 
is given by pK 2= where 

⎣ ⎦}5.7log,0{max 2 −⋅= HWp , 

where W and H are the picture width and height respectively, and where ⎣⋅⎦ is the floor 
operator. The reader is directed to [1] and [2] for an equivalent formulation where the 
accumulation requires no explicit sub-sampling of the image. 

The CS Histogram (and hence the CSD) can be extracted from arbitrarily shaped, possibly 
disconnected, regions of an image.  This is done in practice by means of a binary mask that 
defines the regions. Movement of the structuring element is as above (i.e., over the entire 
extent of the image) but the histogram is accumulated only with pixels that lie in the 
transparent portions of the mask. 

6.2.2 Bin Unification 
When a CSD of length N ∈{128, 64, 32} is required, the 256-bin CS Histogram is reduced in 
length by bin unification. This process adds the values in each of N disjoint subsets of bins 
from the full-length histogram to form the N bins of the shorter histogram. 

We now describe the procedure for a general size reduction from  M  to N < M bins.  For the 
case at hand one merely lets M = 256 and N ∈{128, 64, 32}.  Let P = {p1,…, pM} and Q = 
{q1,…, qN} be two scalable quantisations of a color space, S, where the pm and qn are the 
individual cells of the two quantisations and where M >N.  Quantisation scalability is 
equivalent to the conditions: 
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The first condition insures that both P and Q cover the space, S.  The second condition 
implicitly defines the index subsets, Jn. The third condition is a consequence of the fact that 
quantisation cells are, themselves, disjoint. Hence it is redundant, following from the second 
condition.  We include it for clarity. 

In light of the bijection between bins and color space cells, the bin unification is defined by 
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where the superscripts denote the respective histogram lengths. The index subsets, Jn, for 
reducing a length 256 CS Histogram to a shorter length can be derived from the four scalable 
quantisations of the HMMD color space defined in Section 2.2. 

6.2.3 Bin Value Quantisation 
The final step in extracting a  N-bin CSD is to normalise to the range [0, 1] the bin values 
(amplitudes) of the N-bin CS Histogram from the preceding step, and then to non-linearly 
quantise the normalised values to 8-bits according to the quantisation table in [1]. The non-
linear quantisation was derived using several heuristics as well as experiments conducted 
with the Comon Color Dataset and dramatically increases the retrieval accuracy of the 
CSD.  The chief effect of the non-linearity is to give the small values greater weight in the 
Similarity Measure than they would otherwise have. 

6.3 CSD Re-sizing 
The extraction procedure of Section 6.2 insures that lengths, say N and M >N, of two different 
length CS Descriptors can always be equalised.  The re-sizing procedure adjusts the longer 
descriptor to match that of the shorter.  First the bin values must be de-quantised so that linear 
values participate in the bin unification. Next the M bins are unified just as discussed for the 
general case in Section 6.2.2.  Finally bin values of the new N-bin histogram are non-linearly 
re-quantised to obtain the desired N-bin CS Descriptor.  It can be shown that this re-sizing 
process gives the same result as having extracted an N-bin CS D in the first place. 

6.4 Retrieval Results 

As with other histogram descriptors, the CSD uses the l1-norm for matching in its Similarity 
Measure. The Common Color Dataset was modified by the addition of a few more query 
images to further differentiate the retrieval performance between the CSD and Scalable Color 
Descriptors.  Table 6(a) shows CS Descriptor retrieval accuracy for the four lengths defined 
by the standard. The longest descriptors yield the best results. 

To motive the choice of the non-uniformly quantised HMMD color space, Table 6(b) lists the 
retrieval results in the case where the CS histograms were extracted in the HSV color space 
followed by non-linear bin value quantisation.  The (uniform) color space quantisation of the 
HSV space for each descriptor length is shown in the 2nd column of Table 2.  A comparison of 
the results in the two tables clearly shows the performance gained by using the non-uniformly 
quantised HMMD color space. 

 

7 Color Layout Descriptor 
The Color Layout Descriptor (CLD) is a very compact and resolution-invariant representation 



of color for high-speed image retrieval. It is designed to efficiently represent spatial 
distribution of colors. This feature can be used for wide variety of similarity-based retrieval, 
content filtering, and visualization. It is especially useful for spatial-structure based retrieval 
applications, for example, sketch based retrieval and video segment identification. The 
sketch-based retrieval is considered to be a very important functionality since it can offer very 
user-friendly interfaces, especially when the search is fast enough.  
The functionalities of this descriptor are image-to-image matching and video-clip-to-video-
clip matching, and sketch to image/video-clip matching.. Description of the color layout can 
also be achieved using the Grid Layout data type of MPEG-7 and the Dominant Color 
Descriptor. However, this combination would require a relatively large number of bits, and 
matching will be more complex and expensive. CLD provides more precise and faster 
retrieval using more compact description.  

7.1 Extraction 
This descriptor is obtained by applying the DCT transformation on a two dimensional array of 
local representative colors in Y/Cb/Cr color space. Figure 9 illustrates the extraction process of 
the descriptor from an image. It consists of four stages, image partitioning, representative 
color detection, DCT transformation, and non-linear quantization of the zigzag-scanned 
coefficients. In the first stage, an input picture is divided into 64 blocks to guarantee the 
resolution or scale invariance. In the next stage, a single dominant color is selected from each 
block. Any method to select representative color can be applied, but it is recommended to use 
the average of pixel colors as the representative color since it is most simple and the 
description accuracy is enough in general. The selection results in a tiny image icon of size 
8x8. In the third stage, each of the three color-components is transformed by 8x8 DCT, so 
three sets of 64 DCT-coefficients are obtained. They are zigzag scanned and the first few 
coefficients are non-linearly quantized (using 64 and 32 levels for DC and AC coefficients, 
respectively). The standard allows scalable representation of the feature by controlling the 
number of enclosed coefficients. It is recommended to use a total of 12 coefficients, 6 for 
luminance and 3 for each chrominance, for most of the images. However, another option to 
use a total 18 coefficients (6 for both luminance and chrominance) can also be considered to 
apply this descriptor for high-quality still pictures. The total bit-length of the recommended 
descriptor (12 coefficients) is just 64 bits including one signaling bit, which specifies the 
extension of the number of coefficients. It should be noted that this descriptor is one of the 
more compact descriptors in the MPEG-7/Visual and is quite suitable for applications having 
limitations on storage and/or bandwidth 
 
 
7.1.1 Representation 
The number of DCT coefficients used in the CLD is variable and is represented by the 
CoefficientPattern field. The CoefficientPattern field can take three possible values. The first 
value indicates the  use of six DCT coefficients for luminance and three each for 
chrominance, the second values indicates the use of  six coefficients for both luminance and 
chrominance. For the third value of the CoefficientPattern , the number of DCT coefficients 
are represented by the NumberofYCoeff and NumberofCCoeff fields.  The possible number 
of coefficients is one of  3, 6, 10, 15, 21, 28, and 64. The actual values of the coefficients are 
represented by the arrays Ycoeff, CbCoeff and CrCoeff.  The lengths of each of these is either 
five or six bits depending on the coefficient.  
 

Field Number of 
Bits 

Meaning 



CoefficientPattern 1-2 Specifies the number DCT 
coefficients 

NumberofYCoeff 3 Number of DCT coefficients for the 
luminance 

NumberofCCoeff 3 Number of DCT coefficients for the 
chrominance 

YCoeff[ ] 5-6 The DCT coefficients values for the 
luminance 

CbCoeff[] 5-6 The DCT coefficients values for the 
chrominance 

CrCoeff[ ] 5-6 The DCT coefficients values for the 
chrominance 

 

7.2 Matching 
This descriptor is applicable both to an  image as a whole and any parts of an image with 
arbitrary shapes. On applying to an arbitrary shaped region, the representative color 
selection should be performed using only valid pixel values, and a padding process is 
required before the DCT transform. Representative colors of grid blocks containing no 
valid pixels are substituted with the average color of all valid pixels in the image. 
 
For matching two CLDs, {DY, DCr, DCb} amd {DY’, DCr’, DCb’}, the following distance 
measure can be used : 
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Here, the subscript i represents the zigzag-scanning order of the coefficients. The perceptual 
characteristic of human vision system could be included for similarity calculation since the 
feature description is in frequency domain. The distances should be weighted appropriately, 
with larger weights given to the lower frequency components, to match the characteristic. 
Since the complexity of the similarity matching process shown above is low (about 110 
clocks with Intel SSE instruction set), super high-speed image matching can be achieved.  

7.3 Experimental Results 
Figure 10 shows the retrieval efficiency of this descriptor evaluated using the Common Color 
Dataset and Queries. These results demonstrate that the color layout descriptor is quite 
effective in image retrieval in spite of its compact size. The retrieval efficiency is compared 
with a traditional approach (GRC) wherein the image is partitioned and representative colors 
for each partition is used to represent the layout feature. The results in Figure 10 indicate that  
CLD achieves a much superior performance than GRC. 
 
Video-clip retrieval is one of the more promising applications of the Color Layout Descriptor 
[17]. It requires repetitive use of the matching computation, so very fast matching is necessary 
to obtain the retrievals in a reasonable time. A temporal series of CLDs can be used to 
implement this functionality. The similarity between video-clips is obtained by averaging the 
distances between corresponding frames of the video clips to be matched.  
 



Summary 
Within the Visual part of MPEG-7, a set of color descriptors has been defined that are able 
to capture the important aspects of color feature, allowing color similarity computations.  
These descriptors are compact, hence allowing efficient description of color properties. 
Extensive effort, based on fruitful cooperation of a large group of people, has been spent to 
achieve optimized solutions.  It can be expected that the MPEG-7 color descriptors will be 
extremely useful in those applications that are based on color similarity judgment. 

References 
 
[1] ISO/IEC/JTC1/SC29/WG11 : “Text of ISO/IEC 15938-3 Multimedia Content Description 

Interface – Part 3 : Visual. Final Committee Draft”, document no. N4062, Singapore, March 
2001. [LESZEK] 

[2] ISO/IEC/JTC1/SC29/WG11 : “MPEG-7 Visual Experimentation Model (XM), Version 10.0”, 
document no. N4063, Singapore, March 2001. [LESZEK] 

[3] W.K. Pratt : "Digital Image Processing", second edition, Wiley 1991 
[4] D. Zier, J. -R. Ohm : "Common Datasets and Queries in MPEG-7 Color Core Experiments ", 

ISO/IEC JTC1/SC29/WG11 (MPEG) document no. M5060, Melbourne, October 1999. [pdf file 
enclosed] 

[5] P. Ndjiki-Nya, J. Restat, T. Meiers, J. -R. Ohm, A. Seyferth, R. Sniehotta : "Subjective 
Evaluation of the MPEG-7 Retrieval Accuracy Measure (ANMRR)", ISO/IEC 
JTC1/SC29/WG11 (MPEG) document no. M6029, Geneva, May 2000. [pdf file enclosed] 

[6] H. J. Kim, J. E. Lee : "CE Result of CT1 : Interoperability between color histogram descriptors 
using different color spaces and quantization methods", ISO/IEC JTC1/SC29/WG11 (MPEG) 
document no. M5744, Noordwijkerhout, March 2000.  [pdf file enclosed] 

[7] J.-R. Ohm, B. Makai : "Results of CE CT1 on interoperability of different color histograms", 
ISO/IEC JTC1/SC29/WG11 (MPEG) document no. M5755, Noordwijkerhout, March 2000. 
[pdf file enclosed] 

[8] S. Krishnamachari and M. Abdel-Mottaleb, "Hierarchical clustering for fast image retrieval", 
SPIE Proceedings, Proc. Storage and Retrieval for Image and Video Databases VIII, pp 427-
435, Jan. 1999.  

[9] A. Mufit Ferman, S. Krishnamachari, A. Murat Tekalp, M. Abdel-Mottaleb, and R. Mehrotra,  
"Group-of-Frame/Picture Color Histogram Descriptors for Multimedia Applications", Proc. of 
the IEEE Intl. Conf. On Image Processing (ICIP’2000), vol. 1, pp. 65-68, Vancouver, Canada, 
September 2000. 

[10] A. Mufit Ferman, S. Krishnamachari, A. Murat Tekalp, M. Abdel-Mottaleb, and R. Mehrotra,  
"Core Experiment on Group-of-Frames/Pictures Histogram Descriptors (CT7)", ISO/IEC 
JTC1/SC29/WG11 (MPEG) document no. M5124, Melbourne, October 1999. [pdf file 
enclosed] 

[11] S. Krishnamachari and M. Abdel-Mottaleb, "Image Browsing using Hierarchical Clustering", 
Proceedings of the Fourth IEEE Symposium on Computers and Communications, ISCC’1999. 
Red Sea, Egypt, July 1999, pp. 301-307.  

[12] Y. Deng, B.S. Manjunath, C. Kenney, M.S. Moore and H. Shin, “An Efficient Color 
Representation for Image Retrieval”, IEEE Transactions on Image Processing, vol. 10 (1) 
January 2001, pp. 140-147. 

[13] A. Gersho and R.M. Gray, “Vector Quantization and Signal Compression”, Kluwer Academic 
Publishers, 1993. 

[14] L. Cieplinski, “Results of Core Experiment CT4 on Dominant Color Extension”, ISO/IEC 
JTC1/SC29/WG11 (MPEG) document no. M5775, Nordwijkerhout, March 2000. [LESZEK] 

[15] C. Kenney, Y. Deng, B. S. Manjunath, and G. Hewer, “Peer group image enhancement,” IEEE 
Transactions on Image Processing, vol. 10 (2), February 2001, pp. 326-334. 

[16] D. S. Messing, P. van Beek, and J. Errico, “The MPEG-7 Colour Structure Descriptor: Image 
Description Using Colour and Spatial Information,” in IEEE Proc. Int’l Conf. on Image 
Processing, Thessaloniki, Greece, Oct. 2001. (PDF FILE ENCLOSED) 

Formatted: Bullets and
Numbering

Comment [BSM2]: Page: 1 
 Eventually this will be a 
reference to the IS ,right? 
 

Comment [BSM3]: Page: 1 
 Ref to CD content as this will be 
included on the cd/dvd. 

Comment [BSM4]: Page: 1 
 Same comment for the MPEG 
doc 



[17] E.Kasutani and A.Yamada, "THE MPEG-7 COLOR LAYOUT DESCRIPTOR:  A COMPACT 
IMAGE FEATURE DESCRIPTION FOR HIGH-SPEED IMAGE/VIDEO SEGMENT 
RETRIEVAL", Proc of Int.Conf. on Image Processing 2001, Oct.2001. 

 
 
 
 
 
 
 
 
 

Sat
Hue

Val

Val=0

Val=1

Sat=0 Sat=1

Hue=0

Hue=180

 

Figure 1. HSV color space. 

 
 
 
 



 
Figure 2.  Double cone representation of the HMMD color space. 

 
 



 
Figure 3: A slice of 128-cell quantised HMMD color space at hue = 0 the indexing scheme used to 
number the cells. 
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Figure 4.  a Basic unit of Haar transform  b A schematic diagram of Scalable Color 
Descriptor generation. 
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Figure 5. Illustration of bit plane scalability. 
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Figure 6. Retrieval results with different numbers of Haar coefficients (16-256) 
quantized at different numbers of bits. H-Rec signifies retrieval results after 
reconstruction of histogram from Haar coefficients at full bit resolution, which 
constitutes a lower limit of the efficiency curve. 
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Figure 7. Two iso-color planes with differing amounts of structure. 
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Figure 8. Accumulation of Color Structure Histogram  
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Figure 9. The extraction process of the Color Layout descriptor. 
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Figure 10. The retrieval efficiency of Color Layout compared with grid-based representative Color. 

 
 
 
 
 
 
 
 
 
 
 

 
# of 

coeff’s 
# of bins H # of bins S # of bins V 

16 4 2 2 
32 8 2 2 
64 8 2 4 
128 8 4 4 
256 16 4 4 

Table 1. Equivalent partitioning of the HSV colour space for different numbers of coefficients in the 
Scalable Color Descriptor. 

 
 



average number 
of colors 

ANMRR(D) ANMRR (DS) ANMRR(DV) 

3 0.31 0.30 0.25 
5 0.25 0.21 0.16 

Table 2: ANMRR results for Dominant Color. 

 
 
 
 
 
 
 
 
 

ANMRR # bits 
for the spatial coherence Spatial coherence field with 

dominant colors 
Spatial coherence for each  

dominant color 
5 0.221  
4 0.227  
3 0.246  
2 0.250 0.197 
1 0.252 0.202 
0 0.252 (without spatial coherence value) 

Table 3. ANMRR results for the dominant color with spatial coherence. An average of 
5.3 colors per image are used for the MPEG-7 common color dataset. Increasing the 
number of bits beyond 5 bits did not give significant improvements. While assigning the 
bits to individual dominant colors gave better performance, the increased complexity of the 
descriptor was the main factor in choosing a single spatial coherence value. 
 
 

 

 
 

No. of cells 256 128 64 32 

Subspace Hue Sum Hue Sum Hue Sum Hue Sum 

0 1 32 1 16 1 8 1 8 

1 4 8 4 4 4 4 

2 16 4 8 4 4 4 
4 4 

3 16 4 8 4 8 2 4 1 

4 16 4 8 4 8 1 4 1 

Table 4.  HMMD subspace quantisation for each of the four partitions of the space.    

 



 
 L1 L2 

GoF - Average 0.041367 0.089982 

GoF - Median 0.042614 0.090640 

Optimal Keyframe 0.053500 0.101852 

Table 5. Comparison of ANMRR video segment retrieval results using average, median 
GoF descriptor and the key-frame based histogram.  

 
 
 

Descriptor Size

256 bins
128 bins
64 bins
32 bins

16×4×4
8×4×4
8×2×4
8×2×2

quant.
H×S×V ANMRR

0.08707
0.09204
0.10700
0.14832

Descriptor Size

256 bins
128 bins
64 bins
32 bins

0.06799
0.07613
0.09374
0.14438

ANMRR

 
 
(a)      (b) 

Table 6. Color Structure Descriptor retrieval results using  (a) HMMD color space and  
(b) HSV color space. 

 
 
 
 
 

Number of quantization levels for different 
numbers of histogram bins Component Subspace 

256 128 64 32 
0 1 1 1 1 
1 4 4 4 
2 4 3 
3 

Hue 

4 

 
16 

 

 
8 8 2 

0 32 16 8 8 
1 8 
2 4 4 

3 2 
Sum 

4 

 
4 
 

 
4 
 

1 1 

Table 7. HMMD color space quantization for Color Structure Descriptor. 

 
 
 



APPENDIX: Quantitative Evaluation 
.   
 Experiments were conducted during the MPEG-7 standardization process to compare 
different competing technologies as well as to optimize adopted methods. Comparing and 
evaluating technologies for MPEG-7 visual descriptors presented a different set of challenges 
compared to previous MPEG standardization efforts, since there was no common ground 
rules for evaluating different methods. For visual descriptors, the retrieval application was 
found to be the best model to perform experiments. A good retrieval result in response to a 
visual-feature based query would be a good indicator for the expressiveness of the descriptor.  
In the experiments, the so-called query by example paradigm has been employed as the 
primary method for evaluation. In query-by-example, the respective descriptor values are 
extracted from the query image, and then matched to the corresponding descriptors of images 
contained in a database. In order to be objective in the comparisons, a quantitative measure 
was developed  based on the specification of a dataset, a query set and the corresponding 
ground-truth data. The ground-truth data is a set of visually similar images for a given query 
image.  

In defining an objective measure of retrieval effectiveness given a set of queries and the 
corresponding ground truth, the following factors are considered: 
• The measure should be normalized to account for the variation in the size of the ground 

truth among different queries  
• The measure should favor algorithms that retrieve the ground truth items as the top 

matches 
• The measure should assign a penalty for each of the missed ground truth items. If a 

ground truth item is not retrieved within a certain number of top matches, then it is 
considered as missed.   

• the order in which the ground truth items are retrieved the measure should favour 
algorithms that retrieve ground truth items in highest ranks 

• the number of missed ground truth items by assigning a penalty. The penalty should be 
selected such that beyond a certain limit  on the rank, it should not  matter whether a 
ground truth item is found or not e.g. at the 200th or at the 2000th rank 

The following solution was adopted. Consider a query q with a ground truth size of NG(q); 
the rank Rank(k) of the kth ground truth image is defined as the position at which this ground 
truth image is retrieved ( a rank value of one corresponds to the top match). Further, a number 
K(q) ≥ NG(q) is defined that specifies the "relevant ranks", i.e. retrieval with rank larger than 
K(q) should be considered as a miss. For relatively large NG(q) (20-25 items), subjects would 
judge the retrieval results as  useful if items are found within ranks around 2xNG(q), while for 
smaller ground truth sets, even more tolerance would be allowed. For ground truth items that 
are not retrieved in the top K(q) ranks, the penalty assigned should be  greater than equal to 
K(q). But  a penalty just equalling K(q) would place retrievals with too many misses at an 
advantage. A good compromise derived from this reasoning was found by defining a Rank(k) 
as: 
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From  (A1) we get the Average Rank for query q 
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However, with ground truth sets of different sizes (actually, NG varies between 3 and 32 in 
the CCQ), the AVR counted from ground truth sets with small and large NG(q) values would 
largely differ. To eliminate influences of different NG(q), the Modified Retrieval Rank   

[ ])(15.0)()( qNGqq +⋅−= AVRMRR   (A3) 

is defined, which is always larger than or equal to 0, but with upper margin still dependent on 
NG. This finally leads to the Normalized Modified Retrieval Rank  
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Note that NMRR(q) can  take values between 0 (indicating whole ground truth found) and 1 
(indicating nothing found), irrespective of the size of the ground truth items for query q, 
NG(q). From (A4), it is straightforward to define the Average Normalized Modified Retrieval 
Rank (ANMRR), giving just one number indicating the retrieval quality over all queries. This 
has been used as the evaluation criterion in all MPEG-7 color experiments (as well as for the 
texture and shape descriptors discussed in the following  chapters): 
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where NQ is the number of queries. There is evidence that the ANMRR measure 
approximately coincides linearly with the results of subjective evaluation about retrieval 
accuracy of search engines [5]. It was found in the experiments that there is a strong 
interrelationship between the compactness of a descriptor (as measured by the numbers of bits 
needed for the representation), and the retrieval accuracy. This allows the setup of "rate-
accuracy curves" (similar to SNR based rate-distortion curves widely used in image and video 
coding).  
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