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Abstract
Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with
fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute
respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is
usually correlated with the extent or the severity of the underlying disease. In this paper we
propose a novel pattern recognition framework for the measurement of the extent of
pulmonary infiltrates in routine chest radiographs. The proposed framework follows a
hierarchical approach to the assessment of image content. It includes the following: (a)
sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures
from each sample; (c) classification of the extracted signatures into classes representing
normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability
of belonging to one of the two classes does not reach an acceptable level are rejected and
classified according to their textural content; (e) merging of the classification results of the two
classification stages. The proposed framework has been evaluated on real radiographic images
with pulmonary infiltrates caused by bacterial infections. The results show that accurate
measurements of the infiltration areas can be obtained with respect to each lung field area. The
average measurement error rate on the considered dataset reached 9.7% ± 1.0%.

Keywords: image processing, pattern recognition, medical imaging, chest radiographs,
feature extraction, classification, pulmonary infiltrates

1. Introduction

Medical imaging comprises an exceptional non-invasive
approach to screening of internal structures and processes
of the human body, while providing measurable evidence
regarding volumes [1], densities [2], motion and flows
[3]. Such evidence could provide substantial cues in the
differential diagnosis and monitoring of the progress of
diseases.

3 Author to whom any correspondence should be addressed.

In this light, radiographic imaging of the chest can be
useful to the screening and measurement of fluid, inflammatory
exudates or cells, filling the airspaces of the lungs. These
are usually caused by diseases such as pneumonia, acute
respiratory syndrome, atelectasis, pulmonary oedema and
haemorrhage. A common radiographic manifestation of these
findings is known as pulmonary infiltrates, which appear as
whiter opacities within the lung fields. The grey-level intensity
of these opacities is higher than the opacities of the lung
parenchyma, which is normally filled with air, and lower than
the intensity of the bones, which are generally denser anatomic
structures. The extent of these findings is usually correlated
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with the extent or the severity of the disease. For example,
in the case of pulmonary infections the infiltrates, known as
consolidations, spread as the disease progresses over time
[4, 5].

The presence and the extent of a patient’s pulmonary
infiltrates are assessed by visual examination of his/her chest
radiograph. The assessment is primarily made based on
the grey-level intensity of the infiltrates in relation to the
intensities of the surrounding structures. Intensity is an
image feature correlated with the density of the depicted
objects [4]. The interpretation of a chest radiograph requires
both knowledge and experience from the person evaluating
its content; however it is affected by his/her subjectivity.
Therefore it is widely accepted that a method for automatic
analysis of chest radiographs would be a great asset to the
medical community, contributing to the objectification of
their interpretation. Computational methods for automatic
analysis of chest radiographs have already been proposed in
several studies. Such methods include detection of the lung
fields [6], detection of the ribs [7], lung nodule detection [8],
whereas other methods cope with the detection or assessment
of abnormalities associated with the presence of pulmonary
infections [9, 10]. In [9] a k-nearest-neighbour (k-NN)
approach has been considered for the classification of lung
field patterns into normal and abnormal ones caused by
tuberculosis, which is a pulmonary infection of bacterial
origin. In that study the patterns were represented by
Gabor features estimated as first-order statistics of Gabor-
filtered images. In [10] three classification methods, namely
C4.5, neural networks and CART, have been evaluated for
the detection of patterns of pneumonia and severe acute
respiratory syndrome using feature vectors of both first- and
second-order statistical measures. Recently, in another study
wavelet features have been utilized instead of Gabor-based
features to obtain a less computationally complex feature
extraction phase for the detection of radiographic patterns of
childhood pneumonia under a nearest-neighbour classification
framework [11].

However, most of these studies have not taken into
consideration the diversity of the chest radiographs regarding
the different acquisition settings or the different radiographic
characteristics of the examined bodies. Some of them claim
the use of identical radiographic imaging devices and settings
for the acquisition of the considered datasets. Although this
could be a way to cope with the diversity issue, the intensities
of the same anatomic structures depicted in a chest radiograph
can vary between different patients. For example, the mean
intensity of a normal lung field in a chest radiograph of an
overweight patient is usually higher than the mean intensity
of a thinner patient’s lung field. This is due to a thinner
layer of fat, the intensity of which is superimposed on the
intensities of the underlying lung field. Therefore, an image
normalization method that would reduce this effect, leading
to comparable grey-level intensities for the same specimens
across different chest radiographs, would positively impact
image analysis methods, especially the supervised ones that
utilize features extracted from multiple chest radiographs for
machine learning purposes.

Many studies also consider image texture as an
important feature for the discrimination of chest infiltrates
[9, 11]. Motivated by these studies, in [12] we
proposed an unsupervised methodology for the discovery of
infiltrates associated with bacterial pulmonary infections. The
methodology was based on a hierarchical scheme of partitional
clustering fusing information represented by both intensity and
textural image features. This clustering approach was applied
on each chest radiograph separately, thus avoiding the need
for a training set of radiographs which would require proper
normalization [4].

However, the use of unsupervised methodologies requires
a predefined number of clusters that hinders their use for
the detection of pulmonary infiltrates. For example, aiming
to detect such infiltrates in a chest radiograph with an
unsupervised clustering algorithm, one would set the target
number of clusters to two, so that one cluster would contain the
infiltrates and one cluster would contain the normal samples.
This algorithm has no prior knowledge of what is defined
as normal or infiltrate, therefore it would assign samples
to both clusters based only on their pairwise similarities.
The samples that would be assigned (inevitably) to
the infiltrate cluster would be false positive samples. Thus the
requirement for supervised methodologies not only capable
of assessing the extent of an existing infection but also able
to detect it by including prior knowledge is prevalent. This
requirement comes along with the need for proper feature
normalization between images previously discussed. The
standard normalization techniques such as the z-score and min-
max normalization do not take into account any information
about the settings used for the acquisition of a chest radiograph
or any patient-specific information. Therefore they are
expected to be only approximative when it comes to the
analysis of diverse sets of chest radiographs acquired with
different settings and from patients with different anatomic
characteristics [14].

In order to cope with this problem, we propose a novel
image normalization technique that takes into account patient-
specific characteristics visible in the chest radiographs. More
specifically we consider the region of the mediastinum and
the spinal cord as a reference region for normalization. The
considerations motivating our approach include the following:
(a) this region can be easily detected since it lies roughly
somewhere in the middle of the radiograph and it is generally
characterized by higher intensities than other regions in a
chest radiograph [13, 14]; (b) although the absolute intensity
features may considerably vary between different chest
radiographs, the relative intensities of the different anatomic
structures with respect to the spinal cord/mediastinum region
are expected to be rather invariant. This is explained by the
nature of chest radiographs itself. The radiographic image
intensities represent the densities of the depicted anatomic
structures, whose relative values are similar for all human
patients. Such a patient-specific normalization technique is a
tool to cope with the analysis of multiple chest radiographs
in a supervised classification environment. Towards this
direction, in this paper we extend the unsupervised hierarchical
clustering methodology presented in [12] by incorporating
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prior knowledge to detect whether pulmonary infiltrates exist
or not. Therefore, the contribution of this work, in the context
of a clinically realizable system for the measurement of the
extent of pulmonary infiltrates, is twofold:

• a patient-specific image normalization technique enabling
the application of supervised methodologies for the
analysis of diverse sets of chest radiographs, and

• a supervised hierarchical classification methodology
capable of detecting pulmonary infiltrates and measuring
their extent.

Since the radiographic opacities are the first cues
considered in the reading of a chest radiograph by the experts,
classification of the normalized intensity feature space is first
performed. By computing the distribution over the labels
assigned by a k-NN classifier in the k-neighbourhood, this first
step results in assigning the new data a probability of belonging
to the class representing normal lung parenchyma or to the
class representing the infiltrates. The image signatures (feature
vectors) classified with a higher uncertainty by the classifier
are characterized as ambiguous and their ambiguity is further
resolved in the second step of the proposed methodology
which involves classification of the texture space. An early
version of this approach has been preliminarily studied in [15].
The promising results obtained from that study motivated
its extension for the measurement of the relative extent of
pulmonary infiltrates and its thorough evaluation in this paper.
The proposed methodology and the extended experimental
results from its application on real chest radiographs are
presented in the following sections.

2. Methodology

The proposed pattern recognition framework is based on a
supervised hierarchical classification scheme, extending the
unsupervised approach proposed in [12]. Classification is
enhanced by a novel image normalization technique which
results in patient-specific features used for the discrimination
of pulmonary infiltrates from normal parenchyma in plain
chest radiographs. The radiographs are first normalized using
the mediastinum/spinal cord region as a reference. In the
following, the lung fields are isolated in regions of interest
(ROIs) defined either manually or with a pre-processing lung
field boundary detection algorithm [13, 14]. The proposed
image analysis methodology is applied only in these ROIs.
Finally, the extent of the infiltrates is measured as a ratio of
the number of pixels that belong to infiltrate areas over the
total number of pixels that belong to the area of the lung
parenchyma. The proposed radiograph normalization scheme
along with the extraction of the patient-specific features is
described in sub-section 2.1 and the details of the classification
methodology are presented in sub-section 2.2.

2.1. Patient-specific feature extraction

2.1.1. Extraction of grey-level histogram signatures. In order
to extract patient-specific intensity signatures the radiograph is
pre-processed by histogram equalization and normalized using

255

0

mediastinum/
spinal cord

lung fields

(a) 

(b) 

mean intensity

Figure 1. (a) An example of a horizontal image profile; (b) the
detected mediastinum/spinal cord maxima are indicated as black
points. Samples are acquired at the detected points and their mean
intensity is then calculated.

as a reference the mediastinum/spinal cord region. Histogram
equalization of each radiographic image is performed so that
each image would contain a uniform distribution of intensities.
Considering a grey-scale image I with mk being the number of
occurrences of the grey-level k, the probability of occurrence
of a pixel with grey-level k in the image would be:

pI (k) = mk

m
(k = 0, 1, 2, . . . , L − 1), (1)

where m is the total number of pixels in the image and L
is the total number of grey-levels in the image. Histogram
equalization is actually a transformation of image I to a
new image such that the cumulative distribution function that
corresponds to pI (k) would be linearized across its value
range.

After histogram normalization and in order to detect
the region of the mediastinum and the spinal cord, each
radiograph is uniformly sampled from top to bottom using
non-overlapping rectangular sub-images that were further
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processed according to [13, 14]. For each sample an average
horizontal profile, i.e. the mean grey-level of its rows, per
column is estimated. Horizontal profiles of consecutive image
samples are utilized in order to obtain spatial instances of
the radiograph from which the mediastinum area is detectable
even if the patient is bent (figure 1(a)).

Each profile is smoothed by following a moving average
approach so that noise insensitivity is obtained [13]. The
localization of the maxima of each profile remains practically
unaffected by the presence of infiltrates, since their density, and
therefore their intensity, is generally lower than the density of
mediastinum. Mediastinum and spinal cord points are found
by classification of the profile maxima into three sets: (a)
spinal cord points, (b) points of the left side of the ribcage and
(c) points of the right side of the ribcage [14]. The mediastinum
region is then sampled at the detected points. The selection of
the sample size was based on the image size so as not to stray
from the mediastinum’s region (figure 1(b)).

Image normalization is performed using the central
tendency (i.e. mean or median) of the intensity signatures at the
detected mediastinum/spinal cord samples as a normalizing
factor of the pixel intensities in the radiograph. The steps
towards normalization are summarized in figure 2.

The outcome of the proposed normalization approach is to
make image intensities comparable across the whole dataset.
Thus the intensities that correspond to the normal lung areas
should have similar ranges over the different radiographs, and
the intensities of the infiltrate areas should also have similar
ranges over the different radiographs that form the dataset. In
addition, the range of the normal lung intensities should be as
far from the range of the infiltrate intensities as possible. An
example of the effect of the patient-specific normalization on
two chest radiographs from two different datasets is illustrated
in figure 3. The radiograph illustrated in figure 3(a) comes
from the dataset described in section 3 of this study, whereas
the image illustrated in figure 3(b) comes from the publicly
available JSRT dataset [16]. It should be noted that the two
images differ in quality and have been acquired using different
devices. However, after normalization the intensity signatures
of the respective regions of the lung fields fall within the same
range.

Figure 4 illustrates the effect of patient-specific
normalization on the intensities of two radiographs that
demonstrate infiltrate areas. As can be observed, the
histograms of the selected infiltrate areas fall within the same
range. However, it should be noted that although normal lung
parenchyma areas yield comparable intensity signatures after
their patient-specific normalization, the same does not always
hold for areas that demonstrate infiltrates. This happens
because infiltrates of different density, size and degree may
occur, depending on the aetiology and the extent of the
infection.

2.1.2. Extraction of textural signatures. A Gabor filter is
a band-pass spatial filter with selectivity to both orientation
and spatial frequency. Gabor filter features are suitable for
detecting local structural patterns from images, whereas they
have been reported as excellent texture descriptors in various

Find Spinal Cord 
points

Radiograph

Sample at the 
detected points

Normalized 
Radiograph

N
orm

alization
 

Extract Intensity 
signatures at the 
detected points

Calculate the 
central tendency 
of the signatures

Histogram 
Equalization

Divide by the 
calculated value of 
central tendency

Figure 2. Patient-specific chest radiograph normalization using
mediastinum/spinal cord sampling.

studies [17–23]. In order to obtain a Gabor-filtered image,
each image I (x, y) is convolved with a two-dimensional Gabor
filter function g(x, y):

r(x, y) =
∫ ∫

�

I (ξ, η)g(x − ξ, y − η)dξdη. (2)

We used the following family of Gabor functions [18, 23]:

gλ,�,ϕ(x, y) = e− x′2 +γ 2y′2
2σ2 cos

(
2π

x ′

λ
+ ϕ

)
, (3)

where

x ′ = x cos(�) + y sin (�) and

y ′ = −x sin(�) + y cos(�). (4)

In equation (3) σ stands for the standard deviation of the
Gaussian factor, γ represents the spatial aspect ratio, λ−1

stands for the spatial frequency of the harmonic factor, � is the
oscillation orientation and finally, the parameter ϕ determines
the symmetry of the Gabor function. For ϕ = 0 and ϕ = π the
function is symmetric with respect to the centre point (0, 0);
for ϕ = ±0.5π the Gabor function is anti-symmetric.
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(a) (b)

(c) (d)

(e) ( f )

Figure 3. The effect of patient-specific normalization on the intensities of the normal lung parenchyma in two chest radiographs from
different datasets. (a) Original chest radiograph from the dataset considered in our experiments. (b) Original chest radiograph from the
JSRT dataset [16]. (c) Patient-specific normalization of (a). (d) Patient-specific normalization of (b). (e) Grey-level histogram of the ROI in
(c) with mean 104 ± 13. (f ) Grey-level histogram of the ROI in (d) with mean 112 ± 14.

  

  

 

(a) (b)

(c) (d)

(e) ( f )

Figure 4. The effect of patient-specific normalization on the intensities of the infiltrates in two chest radiographs from the dataset
considered in our experiments. (a) The chest radiograph from figures 3(a). (b) Another chest radiograph from the available dataset.
(c) Patient-specific normalization of (a), (d). Patient-specific normalization of (b). (e) Grey-level histogram of the ROI in (c) with mean 151
± 18. (f ) Grey-level histogram of the ROI in (d) with mean 159 ± 7.
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In this study Gabor energies have been considered so
as to represent radiographic image texture. This choice has
been motivated by their robustness to noise. Noise may
be introduced mainly during the image acquisition process.
Gabor energy feature is related to a model of complex cells
in the primary visual cortex [24] and is derived by combining
in each image point the output of the symmetric and anti-
symmetric kernel filters into a single quantity:

GEλ,� (x, y) =
√

r2
λ,�,φ=0 (x, y) + r2

λ,�,φ=−0.5π (x, y). (5)

The combination of symmetric and anti-symmetric Gabor
filters in equation (5) results in a new nonlinear filter bank
with the same coverage of the spatial frequency domain.

The patient-specific normalization algorithm proposed in
this study could be applied to other medical imaging domains
as well so as to lead to patient-specific image features. This is
feasible once other salient points are considered instead of the
mediastinum/spinal cord points. For example, in thyroid US
imaging, such points could be sampled across the hyper-echoic
lines bounding the thyroid lobe [25].

2.2. Hierarchical classification

The proposed classification methodology is supervised and
therefore it has two phases: a training and a testing
phase. The training phase requires that the physicians
indicate the infiltration areas within the lung fields by
graphically annotating multiple chest radiographs of patients
with diagnosed pneumonia. Local grey-level histogram
and Gabor energy signature sets are extracted from non-
overlapping square sub-images raster-sampled from the lung
area, as described in the previous sub-sections. These sets
comprise the training data representing the prior knowledge
required for supervised classification. This is implemented by
the k-NN algorithm mainly because it is less parametric than
other classifiers while being nonlinear [26].

The testing phase involves the analysis of new chest
radiographs, not previously used for classifier’s training. It
aims to classify samples extracted from the lung fields into two
classes, representing pulmonary infiltrates and normal lung
parenchyma. The area covered by the samples corresponding
to the pulmonary infiltrates is considered for the measurement
of the extent of infiltrates.

The testing phase proceeds in two steps. Initially,
normalized local grey-level histogram signatures (section
2.1.1) capturing image intensity information are extracted from
non-overlapping square sub-images raster-sampled from the
lung area. The empirical distribution over class labels is
computed by normalizing the counts for each class leading
to a probabilistic interpretation of the classification result.
Such a probabilistic classifier returns a probability distribution
over classes for each signature feature vector according to the
equation

P(y|x) = 1

k

∑
xi∈Nk(x)

yi P (y|x) ∈ [0, 1] , (6)

where x is a point of the test space, Nk(x) is the neighbourhood
of x defined by the k closest points xi in the training sample and

P(y|x) is the resulting probability of a test point x to belong
to the class yi . A probability threshold (T) is used only in
the first step of the proposed methodology as a certainty level
that determines that a sub-image can be classified as normal
or as demonstrating infiltration. If the resulting probability
P(y|x) of a test signature to belong to a specific class is
higher than a threshold T, the certainty of this signature
to belong to this class is high. The system classifies the
signature as representing normal lung parenchyma or infiltrate
areas, otherwise the corresponding sub-image is considered
as ambiguous. Thus, the ambiguous class represents the
sub-images that demonstrate a certainty level that is lower
than the threshold. Their ambiguity is further resolved in
the second step of the proposed methodology which involves
classification of the texture space.

The need for a class representing ambiguous samples
that have to be further declared stems from the fact that,
in contrast to normal parenchyma areas, infiltrate areas do
not always yield comparable intensity signatures after their
patient-specific normalization. As was mentioned in the
previous sub-section, this is due to the different density, size
and degree that an infiltrate may demonstrate, depending on
the aetiology and the extent of the infection. Thus, the ability
to discriminate the class of a sample in this case is now more
dependent on its textural properties than on their mean grey-
level or variance. For this reason, the proposed framework
takes into consideration the textural features of the radiograph
as well, so as to enhance its ability to discriminate normal from
infiltrate patterns for those patterns whose classification is not
possible in only the first step.

Therefore, as a second step, textural features are extracted
from the ambiguous sub-images yielding a texture signature
for each sub-image. These signatures are formed by the
energies estimated from the outputs of two Gabor filter
banks: one with symmetric and one with anti-symmetric
Gabor kernels as was described in section 2.1 [18, 19]. The
textural signatures are subsequently classified using the k-NN
algorithm in its simple binary form.

The classification results of the two steps are aggregated.
The sub-images classified as normal lung parenchyma and the
sub-images classified as infiltrates from both steps are merged
together to form the final classification result. A block diagram
describing the proposed methodology is illustrated in figure 5.

The existence of sub-images classified as representing
infiltrates denotes the existence of a possible infection. The
relative extent of the infection can be calculated as the ratio
R of the pixels corresponding to infiltrates (ninf) to the total
number of pixels of the corresponding lung fields (n):

R = ninf

n
· 100%. (7)

3. Experimental evaluation

3.1. Description of the dataset

Extensive experiments were conducted for the evaluation of
the proposed methodology. The dataset used in this study
is composed of chest radiographs obtained from 144 patients
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Figure 5. Block diagram describing the proposed methodology. P-S stands for patient specific.

Table 1. Radiograph normalization methods.

Method no Description

1 Raw images (without any normalization)
2 Histogram equalization
3 Normalization by dividing with mediastinum’s mean intensity
4 Histogram equalization followed by normalization by dividing with mediastinum’s mean intensity
5 Normalization by subtracting mediastinum’s mean intensity
6 Histogram equalization followed by normalization by subtracting mediastinum’s mean intensity
7 Contrast stretching by min-max normalization

hospitalized in intensive care unit with pulmonary infections
manifested as infiltrates. The chest radiographs have been
acquired from different x-ray devices using different image
acquisition settings. They have been digitized at a spatial
resolution of 2k × 2k pixels with grey-level depth of 8 bits
per pixel, and stored in DICOM format. The lung fields were
isolated by being delineated by experts, whereas pulmonary
infiltrates were localized and delineated. Lung fields were
further sampled to 32 × 32 pixel rectangular sub-images
leading to a dataset of 29 657 sub-images corresponding to
infiltrate areas and 63 069 sub-images for the normal areas.
Both intensity and texture features were then calculated for
each sub-image.

In order to evaluate the effectiveness of the proposed
methodology, extensive experiments were conducted so as to
tune the parameters of the system and compare to the state of
the art. These experiments have been conducted in two phases.

• Qualitative comparison of the proposed radiograph
normalization scheme with alternative ones for the
extraction of patient-specific features.

• Assessment of the classification performance of
the proposed methodology for different posterior
probability thresholds following a leave-one-radiograph-
out approach and comparison with the state of the art.

3.2. Evaluation of the normalization scheme

As was described in section 2.1, the need for a specific
normalization scheme arose so as to obtain similar intensity
ranges for either normal or infiltrate patterns across different
radiographs. A successful normalization technique would
yield well-separated classes in terms of their intensity
signatures. For this reason two requirements were identified to
assess the quality of the normalized features: (a) the intensity
signatures of the two pattern classes (normal parenchyma
and infiltrates) should be as separated as possible, and (b)
the intensity signatures of each class should be as similar as
possible.

Several image normalization techniques were considered
that take into account the patient-specific information provided
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(a)

(b)

(c)

Figure 6. For each one of the methods shown in table 1: (a) t-value between the samples comprising infiltrate and normal groups, (b) mean
HID between infiltrate samples, (c) mean HID between normal samples. Calculations were made using a set of samples where all infiltrate
samples from the dataset were included so as to form the infiltrate group of samples and an equal number of normal samples were randomly
selected so as to form the normal group. The error represents two standard deviation units.

by the mediastinum/spinal cord area. The tested techniques
are summarized in table 1. For the evaluation of the
best normalization scheme in terms of the above-mentioned
requirements, Welch’s t-test was used as a measure of the
separation of two sets. In order to measure how similar are
the intensity signatures of each class, the mean overlap of the
samples’ intensity histograms was taken into consideration as
it was expressed by the mean histogram intersection distance
(HID) [27] between the samples of each class.

Welch’s t-test [28] is used for testing the null hypothesis
that samples in two groups are independent random samples
that possibly demonstrate unequal variance:

t = X̄i − X̄n√
s2
i

Ni
+ s2

n

Nn

, (8)

where X̄i and X̄n demonstrate the group means, si and sn

the respective standard deviation and Ni and Nn the group
size. Indices i and n are indicative of the class representing
the infiltrates and the class representing the normal samples,
respectively.

In order to determine the normalization scheme that best
meets the requirements discussed earlier, the t-test value
between the samples that represent the two classes was
calculated (figure 6(a)). The mean HID was calculated
between the samples of each class (figures 6(b), (c)). The
obtained results for each normalization method are illustrated
in figure 6.

Figure 6 shows that the normalization technique that
best meets the two requirements is the one described in
method 4 (histogram equalization of the radiograph followed
by normalization by dividing with mediastinum mean). In this
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Figure 7. Classification performance of the proposed methodology in terms of average CE for different probability thresholds. The
performance of the proposed methodology is compared with the unsupervised [12] and the wavelet-based methodologies [11]. The error-bar
represents two standard deviation units.

case the second highest value of t is demonstrated (t = 337.34),
which indicates good separation between the classes, while at
the same time exhibits the smallest mean distance between the
members of each class (0.60 for infiltrate group and 0.59 for
normal group). Small mean distance means greater overlap
between the histograms of the samples of each group.

3.3. Evaluation of the hierarchical classification scheme

The performance of the proposed scheme was evaluated
in terms of its pattern classification ability, whereas its
measurement capabilities were further compared with the
ones of the unsupervised methodology proposed in [12], and
the wavelet-based approach presented in [11]. In order to
train the classifiers, a training set for the classification was
constructed for infiltrate as well as normal regions using a
balanced proportion of signatures from normal and infiltrate
samples in a way that all abnormal samples were included and
an equal number of normal samples was randomly selected.
The resulting training set comprised 59 314 labelled features.
Moreover, the mean was selected as a more computationally
efficient measure of data central tendency since preliminary
experimentation demonstrated that both mean and median
yield comparable results. The importance of learning from
a balanced class distribution was stressed in [29]. In
this case the classifiers generally come up with fewer but
more accurate classification rules for the minority class than for
the majority class. So, such an approach is expected to enhance
the classification of abnormal samples and thus increase the
system’s sensitivity.

In order to proceed with the experiments, the optimal
value of the k nearest neighbours was chosen by ten-fold cross-
validation employed on the training data. The chosen k-values
were those that exhibited the smallest prediction error for each
feature set. Thus, for intensity features, the selected value for k
was 15 with negligible differences in the system’s performance
for the range between 13 and 18, whereas 5 nearest neighbours
were selected for the textural feature set. Table 2 summarizes
the selected k-values.

In order to determine the probability threshold (T) above
which a sample is considered as classified in the first step and
not ambiguous the performance of the proposed methodology

Table 2. k-values selected.

Feature set k-value Prediction error (%)a

Intensity 15 4.2 ± 0.31
Texture 5 3.2 ± 0.22

a As obtained by ten-fold cross-validation.

for different probability thresholds was assessed in terms of
its classification error (CE) [30]:

CE =
(

1 − tp + tn

tp + fp + tn + fn

)
· 100%, (9)

where tp stands for true positive (the total number of
pixels classified as infiltrates by both the methodology under
evaluation and the expert), tn for true negative (total number
of pixels classified as normal lung parenchyma by both the
methodology under evaluation and the expert), fp for false
positive (total number of pixels classified as normal lung
parenchyma by the expert and as infiltrate by the methodology
under evaluation) and fn for false negative (total number of
pixels classified as infiltrate by the expert and as normal by the
methodology under evaluation).

For this reason, a leave-one-radiograph-out cross-
validation scheme was employed on the available dataset. In
each iteration of the validation scheme the test set consisted of
samples extracted from one radiograph. Furthermore, a set of
samples with balanced class distribution was extracted from
the rest of the radiographs so as to make the classifier’s training
set. This was repeated until all radiographs were used for
testing. The results obtained by the proposed methodology for
the different probability thresholds along with those obtained
by the unsupervised scheme proposed in [12] and the wavelet-
based methodology proposed in [11] are summarized in
figure 7.

As can be observed in figure 7, for a probability
threshold equal to 0.8 the lowest CE rate achieved by the
proposed methodology is 9.2% ± 1.4%. For higher thresholds
(T = 0.9), the CE obtained by the proposed methodology is
comparable to the one obtained for T = 0.8, however, with a
decreasing mean and an increasing variance (11.1% ± 2.4%).
This is justified by the fact that for such high probability
thresholds there is a rise in the number of samples that are
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Figure 8. Relative error in the measurement of the extent of
pulmonary infiltrates. The performance of the proposed
methodology is compared with the unsupervised [12] and the
wavelet-based methodologies [11]. The error represents two
standard deviation units.

  
(a) (b)

Figure 9. Ground truth areas of infiltrates as they have been
annotated by experts

classified as ambiguous in the first step. Thus, for T < 0.8
the predicted class of a sample depends more on its textural
properties than on the distribution of its intensity values and
as such its classification is not possible in only the first step.
Moreover, by conveying more samples in the second step, not
only the variance introduced in the final result rises, but also the
processing time increases. The latter is a consequence of the
higher computational complexity involved in the calculation
of the textural features in contrast to the calculation of the
intensity distribution signatures.

On the other hand, for thresholds less than 0.8 a sharp
decrease in the CE values is observed. This can be attributed
to the fact that for the specific threshold range, many samples,
that otherwise would have been classified as ambiguous, are
incorrectly classified from the first step as infiltrates or as
normal ones. This leads to an increase in the number of false
positives (fp) and false negatives (fn) that is subsequently
reflected in the CE rates. In contrast to the proposed
classification method, both the unsupervised scheme and
the wavelet-based scheme demonstrated inferior performance,
yielding error rates of 33.2% ± 2.1% and 28.7% ± 3.7%,
respectively. It should be noted that if a chest radiograph is
normal, without any sign of infiltrates, then the unsupervised
scheme will always produce a false positive result because it
should split the data into two target clusters. As a result the use
of the unsupervised scheme is restricted only to radiographs
that demonstrate infiltrates.

In order to assess the measurement capabilities of the
proposed scheme a series of experiments was performed

that followed the leave-one-radiograph-out cross-validation
process described earlier. To this end, the measurement error
was employed so as to evaluate how effectively the proposed
methodology measures the relative extent of the infection
(R) in a radiograph. Measurement error was calculated by
considering the threshold value that yielded the lowest CE rate
(T = 0.8).

Since the radiographs under test may comprise both
radiographs that may manifest infiltrates as well as normal
radiographs, the error is measured in terms of N = (1 − R),
i.e. the ratio of normal pixels to the total number of pixels,
so as to be properly quantified. Thus error is defined here
as the relative error [31] between the true value of N as
was derived from the ground truth (Ntrue = 1 − Rtrue) and
the value of N approximated by the proposed methodology
(Napprox = 1 − Rapprox):

ε = |Ntrue − Napprox|
Ntrue

· 100%. (10)

This calculation was repeated for every radiograph in the
dataset and finally, the total mean measurement error and
the total standard deviation were used so as to validate the
proposed measurement methodology. Figure 8 illustrates
a diagram with the estimated error rates obtained with the
proposed methodology, the unsupervised scheme proposed in
[12] and the wavelet-based methodology proposed in [11]. As
can be observed, the proposed classification method results in
comparable results to the one achieved by the unsupervised
methodology while it outperforms the wavelet-based method,
yielding error rates of 9.7% ± 1.0%, 9.1% ± 1.2% and 14.4%
± 2.4%, respectively.

The present results were obtained on a set of chest
radiographs exhibiting infiltrates in at least one of the two
lungs so as to assess the measurement capabilities of all
three schemes. In the proposed supervised classification
approach the number of classes is predefined; however, it
has the advantage of classifying the image patterns based
on prior knowledge, and according to this knowledge it is
allowable for a class to have zero members. Therefore, unlike
the unsupervised approach, in the case of a chest radiograph
without any sign of infiltrates, the supervised one is capable
of returning a zero measurement for the infection’s extent.

An illustrative example of the results obtained by the
application of the proposed supervised framework versus the
unsupervised methodology in [12] and the wavelet-based
approach in [11], applied in the radiograph of figure 9 is
presented in figure 10. The radiograph in figure 9 demonstrates
infiltrates. The error rates obtained by equation (10) are
8.1% for the proposed scheme, 9.7% for the unsupervised one
and 19.4% for the wavelet-based approach. In general, it is
observed that the accuracies obtained by the proposed scheme
outperform those obtained by the wavelet-based approach.
Moreover, the proposed scheme demonstrates results that are
better or close to those obtained by the unsupervised scheme,
whereas the proposed one is better in classifying the infiltrates
correctly. This derives from the fact that the areas identified
as infiltrates are much closer to the ground truth than those
identified by the unsupervised methodology. An example
of normal chest radiograph where the unsupervised scheme
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Figure 10. Images resulting from the assessment of figure 8(a) by the proposed supervised hierarchical classification scheme (left column),
by the unsupervised scheme [12] (middle column) and by the wavelet-based approach [11] (right column). (a) Infiltrates as identified by the
proposed scheme. (b) Infiltrates as identified by the unsupervised scheme. (c) Infiltrates as identified by the wavelet-based approach.
(d) Normal lung parenchyma as identified by the proposed scheme. (e) Normal lung parenchyma as identified by the unsupervised scheme.
(f ) Normal lung parenchyma as identified by the wavelet-based approach.

   
(a) (b) (c)

Figure 11. Application of the unsupervised method on a normal chest radiograph. (a) Original image, (b) false detection of an infiltrate
with the unsupervised scheme proposed in [12], resulting in a false measurement of the relative extent of the infection, (c) normal lung
parenchyma as identified by the unsupervised scheme.

results in a false measurement (error 6%) is illustrated in
figure 11. In this case the proposed method returns zero
infiltrates, i.e. the error is 0%.

4. Conclusions

We presented a novel pattern recognition framework enabling
the assessment of the relative extent of pulmonary infiltrates
in chest radiographs. This framework involves the extraction
of patient-specific features suitable for the representation of
radiographic intensity and texture across a diverse set of chest
radiographs. The extracted features form patterns which are
classified according to a supervised hierarchical classification
scheme extending the one proposed in [12].

The conclusions that can be derived from this study are
summarized as follows.

• The introduction of patient-specific information into the
feature extraction process through image normalization
enhances the analysis of chest radiographs.

• The proposed normalization approach results in intensity
patterns of normal lung parenchyma and pulmonary
infiltrates that exhibit high similarity across diverse sets
of chest radiographs.

• The accuracy of the proposed supervised hierarchical
classification scheme in the case of chest radiographs with
pulmonary infiltrates is comparable to the one obtained
by its predecessor classification approach which was
unsupervised [12]. However, its advantage over the latter
is that it has the ability to distinguish whether infiltrates
exist or not.

• The proposed framework has been applied on chest
radiographs; however, it could be applicable to a variety
of medical imaging modalities. For example, the
patient-specific normalization could be achieved using
another characteristic region of normal tissue instead
of the mediastinum/spinal cord region as a reference.
There are also other imaging modalities where grey-level
intensity and texture are significant features that could be

11



Meas. Sci. Technol. 22 (2011) 114017 S Tsevas and D K Iakovidis

hierarchically considered, as for example in ultrasound
imaging [25].

Future perspectives include the application of the
proposed methodology in a decision support framework that
will serve as a second opinion tool to support physicians in
daily clinical practice, and integration into a multimodal data
mining system for related adverse event detection.
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