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Overview of Advanced Computer Vision Systems
for Skin Lesions Characterization

llias Maglogiannis, Member, IEEE, and Charalampos N. Doukas, Student Member, IEEE

Abstract—During the last years, computer-vision-based diagno-
sis systems have been used in several hospitals and dermatology
clinics, aiming mostly at the early detection of skin cancer, and
more specifically, the recognition of malignant melanoma tumour.
In this paper, we review the state of the art in such systems by
first presenting the installation, the visual features used for skin
lesion classification, and the methods for defining them. Then, we
describe how to extract these features through digital image pro-
cessing methods, i.e., segmentation, border detection, and color and
texture processing, and we present the most prominent techniques
for skin lesion classification. The paper reports the statistics and
the results of the most important implementations that exist in the
literature, while it compares the performance of several classifiers
on the specific skin lesion diagnostic problem and discusses the
corresponding findings.

Index Terms—Classification methods, computer vision, der-
moscopy, melanoma, pattern analysis, skin cancer.

I. INTRODUCTION

HE INTEREST of the biomedical scientific community

for computer-supported skin lesion inspection and charac-
terization has been increased during the last years. Skin cancer
is among the most frequent types of cancer and one of the
most malignant tumors. Its incidence has increased faster than
that of almost all other cancers, and the annual rates have in-
creased on the order of 3%—7% in fair-skinned population in
recent decades [1]. Currently, between 2 and 3 million non-
melanoma skin cancers and 132000 melanoma skin cancers
occur globally each year. One in every three cancers diagnosed
is a skin cancer, and according to the Skin Cancer Foundation
Statistics, one in every five Americans will develop skin can-
cer in their lifetime [2]. The cutaneous melanoma, which is the
most common type of skin cancer, is still incurable. However,
when it is diagnosed at early stages, it can be treated and cured
without complications. The differentiation of early melanoma
from other pigmented skin lesions (e.g., benign neoplasms that
simulate melanoma) is not trivial even for experienced der-
matologists; in several cases, primary care physicians seem to
underestimate melanoma in its early stage [3]. The latter has
attracted the interest of many researchers, who have developed
systems for automated detection of malignancies in skin lesions.
The main design issues for the proper characterization of skin
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lesions concern the image acquisition, the image processing and
analysis, the feature extraction, and the classification method-
ology. This paper presents an overview of existing systems that
address the aforementioned issues. In addition, an evaluation
of state-of-the-art classifiers is presented in the context of skin
lesion characterization, and performance metrics are discussed
as well.

This review paper is organized as follows. Section II pro-
vides background information on the pathogenic mechanisms
of skin cancer in regards to visual differentiations, while
Section IIl presents the image acquisition and feature ex-
traction methods utilized in the literature. Existing classifica-
tion systems and their corresponding results are discussed in
Sections IV and V. Section VI presents results from the con-
ducted experiments concerning the performance evaluation of
different classifiers, and Section VII concludes the paper.

II. SKIN CANCER BACKGROUND INFORMATION

The skin consists of a number of layers with distinct func-
tion and distinct optical properties. White light shone onto the
skin penetrates superficial skin layers, and while some of it is
absorbed, much is remitted back and can be registered by a
digital camera. The stratum corneum is a protective layer con-
sisting of keratin-impregnated cells, and it varies considerably
in thickness. Apart from scattering the light, it is optically neu-
tral. The epidermis is largely composed of connective tissues.
It also contains the melanin-producing cells, the melanocytes,
and their product, melanin. Melanin is a pigment that strongly
absorbs light in the blue part of the visible and the UV spec-
trum. In this way, it acts as a filter that protects the deeper layers
of the skin from harmful effects of UV radiation. Within the
epidermal layer, there is very little scattering, with the small
amount that occurs being forward directed. The result is that all
light not absorbed by melanin can be considered to pass into the
dermis. The dermis is made of collagen fibers, and in contrast
to the epidermis, it contains sensors, receptors, blood vessels,
and nerve ends (see Fig. 1).

Pigmented skin lesions appear as patches of darker color on
the skin. In most cases, the cause is excessive melanin concentra-
tion in the skin. In benign lesions (e.g., common nevi), melanin
deposits are normally found in the epidermis [see Fig. 3(c)]. In
malignant lesions (i.e., melanoma), the melanocytes reproduce
melanin at a high, abnormal rate (see Fig. 2). While they and
their associated melanin remain in the epidermis, melanoma is
termed “in situ.” At this stage, it is not life threatening, and its
optical properties make it conform to those of the normal, highly
pigmented skin. When malignant melanocytes have penetrated
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Fig. 1. Normal skin lesions and main components (source: MediceNet).
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Fig. 2. [Illustration of Melanocytes and Melanoma on skin (source:
MediceNet).

into the dermis, they leave melanin deposits there, thus changing
the nature of skin coloration.

The presence of melanin in the dermis is the most significant
sign of melanoma. However, it cannot be used as a sole diag-
nosis criterion because in situ melanomas do not have dermal
melanin. Moreover, some benign nevi have dermal deposits,
although their spatial patterns tend to be more regular than in
melanoma. Other signs, some of which can be indicative of
melanoma in situ, are thickening of the collagen fibers in the
papillary dermis (fibrosis), increased blood supply at the lesion
periphery (erythematic reaction), and lack of blood within the
lesion in the areas destroyed by cancer. The colors associated
with skin, which has melanin deposits in the dermis, normally
show characteristic hues not found in any other skin conditions.
This provides an important diagnostic cue for a clinician. If the
visual approach corroborates a suspicion of skin cancer, histol-
ogy [4] is needed to make explicit diagnosis. Fig. 3 presents
typical example skin lesions of melanoma, dysplastic (benign)
nevus, and nondysplastic (common) nevus.

III. MATERIALS AND METHODS

In this section, we discuss the discrete modules of an inte-
grated computer-based vision system for the characterization of
skin lesions.

(a) (b)

Fig. 3. [Illustration of (a) typical melanoma, (b) dysplastic nevus, and
(c) nondysplastic (common) nevus.

A. Image Acquisition Techniques

The first step in expert systems used for skin inspection in-
volves the acquisition of the tissue digital image. The main
techniques used for this purpose are the epiluminence mi-
croscopy (ELM, or dermoscopy), transmission electron mi-
croscopy (TEM), and the image acquisition using still or video
cameras. ELM is capable of providing a more detailed inspec-
tion of the surface of pigmented skin lesions and renders the
epidermis translucent, making many dermal features become
visible. TEM, on the other hand, can reveal the typical struc-
ture of organization of elastic networks in the dermis, and thus,
is mostly used for studying growth and inhibition of melanoma
through its liposomes [5]. A recently introduced method of ELM
imaging is side-transillumination (transillumination). In this ap-
proach, light is directed from a ring around the periphery of a
lesion toward its center at an angle of 45°, forming a virtual
light source at a focal point about 1 cm below the surface of the
skin, thus making the surface and subsurface of the skin translu-
cent. The main advantage of transillumination is its sensitivity
to imaging increased blood flow and vascularization and also to
viewing the subsurface pigmentation in a nevus. This technique
is used by a prototype device, called Nevoscope, which can pro-
duce images that have variable amount of transillumination and
cross-polarized surface light [6], [7]. The use of commercially
available photographic cameras is also quite common in skin le-
sion inspection systems, particularly for telemedicine purposes
[8], [95]. However, the poor resolution in very small skin lesions,
i.e., lesions with diameter of less than 0.5 cm, and the variable
illumination conditions are not easily handled, and therefore,
high-resolution devices with low-distortion lenses have to be
used. In addition, the requirement for constant image colors
(necessary for image reproducibility) remains unsatisfied, as it
requires real time, automated color calibration of the camera,
i.e., adjustments and corrections to operate within the dynamic
range of the camera and always measure the same color regard-
less of the lighting conditions. The problem can be addressed
by using video cameras [9] that are parameterizable online and
can be controlled through software (SW) [10], [11]. In addition
to the latter, improper amount of immersion oil or misalign-
ment of the video fields in the captured video frame, due to
camera movement, can cause either loss or quality degradation
of the skin image. Acquisition time error detection techniques
have been developed [11] in an effort to overcome such issues.
Computed tomography (CT) images have also been used [12]
in order to detect melanomas and track both progress of the
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TABLE I
IMAGE ACQUISITION METHODS ALONG WITH THE RESPECTIVE DETECTION
GOALS AS RETRIEVED FROM LITERATURE

Image Acquisition Technique
Video RGB Camera

Detection goal

Tumor, crust, hair, scale, shiny
ulcer of skin lesions [17], [18],
Skin erythema [19], Burn scars
[20], Melanoma Recognition [21],
[22]

Melanoma Recognition [23], [24]
Wound Healing [25]

Melanoma Recognition [26][27]
Melanoma Recognition [28], [29],
[30], [31]. [32]. [33], [34]. [35].
[36], [37], [38]. [39]. [40] [41]
Melanoma Recognition [9], [42],
[43]

Melanoma Recognition [15]

Tissue microscopy

Still CCD Camera
Ultraviolet illumination
Epiluminescence microscopy
(ELM)

Video microscopy

Multi-frequency Electrical
Impedance

Raman Spectra

Side- or Epi-transillumination
(using Nevoscope)

Melanoma Recognition [16]
Melanoma Recognition [6], [44],
[45]

disease and response to treatment. Positron emission tomog-
raphy (PET) employing fluorodeoxyglucose (FDG) [13] has
also been proven to be a highly sensitive and suitable diag-
nostic method in the staging of various neoplasms, including
melanoma, complementing morphologic imaging. FDG uptake
has been correlated with proliferation rate, and thus the de-
gree of malignancy of a given tumor. MRI can also be used for
tumor delineation [14]. Such methods are utilized mostly for
examining the metastatic potential of a skin melanoma and for
further assessment. Finally, alternative techniques such multifre-
quency electrical impedance [15] or Raman spectra [16] have
been proposed as potential screening methods. The electrical
impedance of a biological material reflects momentary physical
properties of the tissue. Raman spectra are obtained by pointing
a laser beam at a skin lesion sample. The laser beam excites
molecules in the sample, and a scattering effect is observed.
These frequency shifts are functions of the type of molecules in
the sample; thus, the Raman spectra hold useful information on
the molecular structure of the sample. Table I summarizes the
most common image acquisition techniques found in literature
along with the respective detection goals.

B. Definition of Features for the Classification of Skin Lesions

In this section, we will examine the features, i.e., the visual
cues that are used for skin lesion characterization. Similarly to
the traditional visual diagnosis procedure, the computer-based
systems look for features and combine them to characterize the
lesion as malignant melanoma, dysplastic nevus, or common ne-
vus. The features employed have to be measurable and of high
sensitivity, i.e., high correlation of the feature with skin can-
cer and high probability of true positive response. Furthermore,
the features should have high specificity, i.e., high probability
of true negative response. Although in the typical classification
paradigm both factors are considered important (a tradeoff ex-
pressed by maximizing the area under the receiver operating
characteristic (ROC) curve), in the case of malignant melanoma

detection, the suppression of false negatives (i.e., increase of
true positives) is obviously more important.

In the conventional procedure, the following diagnosis meth-
ods are mainly used [46]: 1) ABCD rule of dermoscopy; 2)
pattern analysis; 3) Menzies method; 4) seven-point checklist;
and 5) texture analysis. The features used for each of these
methods are presented in the following.

1) ABCD Rule: The ABCD rule investigates the asymmetry
(A), border (B), color (C), and differential structures (D) of the
lesion and defines the basis for a diagnosis by a dermatologist.

a) Asymmetry: The lesion is bisected by two axes that are
positioned to produce the lowest asymmetry possible in terms
of borders, colors, and dermoscopic structures. The asymmetry
is examined with respect to a point under one or more axes. The
asymmetry index is computed first by finding the principal axes
of inertia of the tumor shape in the image, and it is obtained
by overlapping the two halves of the tumor along the principal
axes of inertia and dividing the nonoverlapping area differences
of the two halves by the total area of the tumor.

b) Border: The lesion is divided into eight pie-piece seg-
ments. Then, it is examined if there is a sharp, abrupt cutoff of
pigment pattern at the periphery of the lesion or a gradual, indis-
tinct cutoff. Border-based features describing the shape of the
lesion are then computed. In order to extract border information,
image segmentation is performed. It is considered to be a very
critical step in the whole process of skin lesion identification and
involves the extraction of the region of interest (ROI), which is
the lesion and its separation from the healthy skin. Most usual
methods are based on thresholding, region growing, and color
transformation (e.g., principal components transform, CIELAB
color space and spherical coordinates [47], and JSEG algo-
rithm [48]). Additional methods involving artificial intelligence
techniques like fuzzy borders [49] and declarative knowledge
(melanocytic lesion images segmentation enforcing by spatial-
relations-based declarative knowledge) are used for determin-
ing skin lesion features. The latter methods are characterized as
region approaches, because they are based on different coloriza-
tion among the malignant regions and the main border. Another
category of segmentation techniques is contour approaches us-
ing classical edge detectors (e.g., Sobel, Canny, etc.) that pro-
duce a collection of edges leaving the selection of the boundary
up to the human observer. Hybrid approaches [50] use both color
transformation and edge detection techniques, whereas snakes
or active contours [51] are considered the prominent state-of-the
art technique for border detection. More information regarding
border detection as well as a performance comparison of the
aforementioned methods can be found in [52] and [53].

The most popular border features are the greatest diameter,
the area, the border irregularity, the thinness ratio [54], the cir-
cularity index (CIRC) [55], the variance of the distance of the
border lesion points from the centroid location [55], and the
symmetry distance (SD) [49]. The CIRC is mathematically de-
fined by the following equation:

CIRC = —— ()
p
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where A is the surface of the examined area and p is its perimeter.
SD calculates the average displacement among a number of
vertexes as the original shape is transformed into a symmetric
shape. The symmetric shape closest to the original shape P is
called the symmetry transform (ST) of P. The SD of an object
is determined by the amount of effort required to transform the
original shape into a symmetrical shape, and can be calculated
as follows:

n—1

1 —
sD=-S"|P - Py 2
n;:OII [ 2

Apart from regarding the border as a contour, emphasis is
also placed on the features that quantify the transition (swift-
ness) from the lesion to the skin [42]. Such features are the
minimum, maximum, average, and variance responses of the
gradient operator applied on the intesity image along the lesion
border.

c¢) Color: Color properties inside the lesion are examined,
and the number of colors present is determined. They may in-
clude light brown, dark brown, black, red (red vascular areas are
scored), white (if whiter than the surrounding skin), and slate
blue. In addition, color texture might be used for determining
the nature of melanocytic skin lesions [56]. Typical color im-
ages consist of the three-color channels red, green, and blue
(RGB). The color features are based on measurements on these
color channels or other color channels such as cyan, magenta,
yellow (CMY), hue, saturation, value (HSV), Y-luminance, UV
(YUV) chrominance components, or various combinations of
them, linear or not. Additional color features are the spheri-
cal coordinates LAB average and variance responses for pixels
within the lesion [17]

R? + G? + B? 3)
B
Angle A = cos™! [L} 4)
R
-
Angle B = cos [Lsin(Angle A)} . (®)]

Color variegation may be calculated by measuring minimum,
maximum, average, and standard deviations of the selected
channel values and color intensity, and by measuring chromatic
differences inside the lesion [57], [58]. Another method for com-
puting skin colors based on the normal skin structure model is
presented in [4].

d) Differential structures: The number of structural com-
ponents present is determined, i.e., pigment network, dots
(scored if three or more are present), globules (scored if two
or more are present), structureless areas (counted if larger than
10% of lesion), and streaks (scored if three or more are present).

2) Pattern Analysis: The pattern analysis method seeks to
identify specific patterns, which may be global (reticular, glob-
ular, cobblestone, homogeneous, starburst, parallel, multicom-
ponent, nonspecific) or local (pigment network, dots/globules/
moles [59], streaks, blue-whitish veil, regression structures, hy-
popigmentation, blotches, vascular structures).

3) Menzies Method: The Menzies method looks for nega-
tive features (symmetry of pattern, presence of a single color)
and positive (blue-white veil, multiple brown dots, pseudopods,
radial streaming, scar-like depigmentation, peripheral black
dots/globules, multiple (five to six) colors, multiple blue/gray
dots, broadened network).

4) Seven-Point Checklist: The seven-point checklist [60],
[61] refers to seven criteria that assess both the chromatic char-
acteristics and the shape and/or texture of the lesion. These
criteria are atypical pigment network, blue-whitish veil, atyp-
ical vascular pattern, irregular streaks, irregular dots/globules,
irregular blotches, and regression structures. Each one is consid-
ered to affect the final assessment with a different weight. The
dermoscopic image of a melanocytic skin lesion is analyzed in
order to evidence the presence of these standard criteria; finally,
a score is calculated from this analysis, and if a total score of
three or more is given, the lesion is classified as malignant,
otherwise it is classified as nevus.

5) Texture Analysis: Texture analysis is the attempt to quan-
tify texture notions such as “fine,” “rough,” and “irregular” and
to identify, measure, and utilize the differences between them.
Textural features and texture analysis methods can be loosely
divided into two categories: statistical and structural. Statistical
methods define texture in terms of local gray-level statistics that
are constant or slowly varying over a textured region. Differ-
ent textures can be discriminated by comparing the statistics
computed over different subregions. Some of the most common
textural features are as follows.

Neighboring gray-level dependence matrix (NGLDM) and
lattice aperture waveform set (LAWS) are two textural ap-
proaches used for analyzing and detecting the pigmented net-
work on skin lesions [62]. Dissimilarity, d, is a measure related
to contrast using linear increase of weights as one moves away
from the gray level co-occurrence matrix (GLCM) diagonal.
Dissimilarity is calculated as follows:

N-1
d= > P;li—jl (6)
i,j=0
where ¢ is the row number, j is the column number, IV is the
total number of rows and columns of the GLCM matrix, and

Vij
Ez‘, j=0 V’i,j
is the normalization equation in which V] ; is the digital number
(DN) value of the cell 7, j in the image window (i.e., the current
gray-scale pixel value).
Angular second moment (ASM), which is a measure related

to orderliness, where P; ; is used as a weight to itself, is given
by

P = @)

N-1
ASM = ) " iP};. (8)
i,j=0
GLCM mean, p;, which differs from the familiar mean equa-

tion in the sense that it denotes the frequency of the occurrence
of one pixel value in combination with a certain neighbor pixel
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value, is given by

pi= > i(P). ©)

GLCM standard deviation, o;, which gives a measure of the
dispersion of the values around the mean, is given by

N-1
gi = | D Pijli— ).

1,j=0

(10)

The researchers that seek to automatically identify skin le-
sions exploit the available computational capabilities by search-
ing for many of the features stated before, as well as additional
features.

6) Other Features Utilized: The differential structures as de-
scribed in the ABCD method, as well as most of the patterns
that are used by the pattern analysis, the Menzies method, and
the seven-point checklist are very rarely used for automated
skin lesion classification, obviously due to their complexity. A
novel method presented in [56] uses 3-D pseudoelevated images
of skin lesions that reveal additional information regarding the
irregularity and inhomogeneity of the examined surface.

Several efforts concern measuring the kinetics of skin lesions;
e.g., [25] and [63]. The ratio of variances RV in [64] has been
defined as

SDy:

RV =
SDg:2 + SDp2 + SDjy

Y

where standard deviation between days (SDg2) is the between
day variance of the color variable computed using the mean val-
ues at each day of all wound sites and subjects, standard devia-
tion intraday (SDy2 ) is the intraday variance of the color variable
estimated from the computations at each day of all wound sites
and subjects, and standard deviation analytical (SDy2) is the
variance of the color variable computed using normal skin sites
of all subjects and times.

Finally, wavelet analysis has also been used for decomposing
the skin lesion image and utilizing wavelet coefficients for its
characterization [41]. A combination of both ABCD rules and
wavelet coefficients has been shown to improve the classifica-
tion accuracy by 60% [28]. A distribution of the aforementioned
feature categories as used by existing works in literature is il-
lustrated in Fig. 4, whereas Table II presents a more detailed
overview of the latter with the corresponding references.

The extraction of the previously described features from dig-
ital dermatological images is occasionally hindered by noise
caused due to dark hairs surrounding the skin lesion. Techniques
relying on the identification of the hair location by utilizing mor-
phological operators and replacing the hair pixels by the nearby
nonhair pixels have been developed to deal with this issue. Such
an algorithm is presented in [68].

C. Feature Selection

The success of image recognition depends on the correct se-
lection of the features used for the classification. The latter is
a typical optimization problem, which may be resolved with

Fluorescence

Dermal inensity Border
features 4y Information
9% 21%

ABCD Rule
13%
Color
36% Histogram
TextureFeatures
Analysis

wavelet 9%
Coefficients
4%

Fig. 4. Illustration of the feature distribution as used by existing systems in
literature.

TABLE II
FEATURES UTILIZED FOR SKIN LESION CHARACTERIZATION AND THE RELATED
REFERENCES TO EXISTING WORK IN LITERATURE

References
[17], [18], [22], [39]

Special Features
Chromaticity
coordinates
CIE L*a*b* - CIE
L*u* v* color space,
RGB, HSV and HIS

Features Category
Color

[19], [22], [36]

[21], [25], [29]. [65],
[30], [33]. [34]. [35],
[66], [37]

Dermal Features Skin Elasticity, Skin [20], [15], [16]
impedance, Raman

spectra

Epidermis volume, 23]

thickness, dermal

epidermal junction

ratio, cellular and

collagen densities

Fluorescence Intensity
Border Information

Imax, Imin
Border, Boundary
shape

[26], [27]
[29], [91. [42]. [35],
[43], [66], [36]

Irregularity, [65], [22]
Asymmetry Index
Correlation [6]

coefficient, edge
strength and Lesion
size.

ABCD Rule [44], [28], [31], [67],

[43], [38], [58]

Mean value, standard ~ [32], [34]

deviation, skewness,

kurtosis and entropy

of the grey level

distribution

Entropy, ASM

Histogram Features

[45], [35]. [43], [39]
[28], [41]

Texture Analysis
Wavelet coefficients

heuristic strategies, greedy or genetic algorithms, other com-
putational intelligence methods [69], or special strategies from
statistical pattern recognition [e.g., cross-validation (XVAL),
leave-one-out (LOO) method, sequential forward floating se-
lection (SFFS), sequential backward floating selection (SBFS),
principal component analysis (PCA), and generalized sequen-
tial feature selection (GSFS)] [29]. The use of feature selection
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algorithms is motivated by the need for highly precise results,
computational reasons, and a peaking phenomenon often ob-
served when classifiers are trained with a limited set of learning
samples. If the number of features is increased, the classifica-
tion rate of the classifiers decreases after a peak [70], [71]. A
detailed description of feature selection methodologies may be
found in [72].

IV. SKIN LESION CLASSIFICATION METHODS

In this section, the most popular methods for skin lesion clas-
sification are examined. The task involves mainly two phases
after feature selection, learning and testing [57], which are ana-
lyzed in the following paragraphs.

A. Learning Phase

During the learning phase, typical feature values are extracted
from a sequence of digital images representing classified skin
lesions. The most classical recognition paradigm is statistical
[73]. Covariance matrices are computed for the discriminative
measures, usually under the multivariate Gaussian assumption.
Parametric discriminant functions are then determined, allowing
classification of unknown lesions (discriminant analysis). The
major problem of this approach is the need for large learning
samples.

Neural networks are networks of interconnected nodes com-
posed of various stages that emulate some of the observed prop-
erties of biological nervous systems and draw on the analogies of
adaptive biological learning. Learning occurs through learning
over a large set of data where the learning algorithm iteratively
adjusts the connection weights (synapses) by minimizing a given
error function [17], [74].

The support vector machine (SVM) is a popular algorithm for
data classification in two classes [75]-[77], [36]. SVMs allow
the expansion of the information provided by a learning dataset
as a linear combination of a subset of the data in the learn-
ing set (support vectors). These vectors locate a hypersurface
that separates the input data with a very good degree of gen-
eralization. The SVM algorithm is based on learning, testing,
and performance evaluation, which are common steps in every
learning procedure. Learning involves optimization of a convex
cost function where there are no local minima to complicate the
learning process. Testing is based on model evaluation using the
support vectors to classify a test dataset. Performance evaluation
is based on error rate determination as the test dataset size tends
to infinity.

The adaptive wavelet-transform-based tree-structure classifi-
cation (ADWAT) method [44] is a specific skin lesion image
classification technique that uses statistical analysis of the fea-
ture data to find the threshold values that optimally partitions the
image-feature space for classification. A known set of images
is decomposed using 2-D wavelet transform, and the channel
energies and energy ratios are used as features in the statistical
analysis. During the classification phase, the tree structure of the
candidate image obtained using the same decomposition algo-
rithm is semantically compared with the tree-structure models of
melanoma and dysplastic nevus. A classification variable (CV)

is used to rate the tree structure of the candidate image. CV is set
to a value of 1 when the main image is decomposed. The value
of CV is incremented by one for every additional channel de-
composed. When the algorithm decomposes a dysplastic nevus
image, only one level of decomposition should occur (channel
0). Thus, for values of CV equal to 1, a candidate image is as-
signed to the dysplastic nevus class. A value of CV greater than
1 indicates further decomposition of the candidate image, and
the image is accordingly assigned to the melanoma class.

B. Testing Phase

The performance of each classifier is tested using an ideally
large set (i.e., over 3000 skin lesion image sets) of manually
classified images. A subset of them, e.g., 80% of the images,
is used as a learning set, and the other 20% of the samples
is used for testing using the trained classifier. The learning
and test images are exchanged for all possible combinations
to avoid bias in the solution. Most usual classification perfor-
mance assessment in the context of melanoma detection is the
true positive fraction (TPF) indicating the fraction of malig-
nant skin lesions correctly classified as melanoma and the true
negative fraction (TNF) indicating the fraction of dysplastic or
nonmelanoma lesions correctly classified as nonmelanoma, re-
spectively [7], [44]. A graphical representation of classification
performance is the ROC curve, which displays the “tradeoff” be-
tween sensitivity (i.e., actual malignant lesions that are correctly
identified as such, also known as TPF) and specificity (i.e., the
proportion of benign lesions that are correctly identified, also
known as TNF) that results from the overlap between the distri-
bution of lesion scores for melanoma and nevi [9], [28], [78]. A
good classifier is one with close to 100% sensitivity at a thresh-
old such that high specificity is also obtained. The ROC for
such a classifier will plot as a steeply rising curve. When differ-
ent classifiers are compared, the one whose curve rises fastest
should be optimal. If sensitivity and specificity were weighted
equally, the greater the area under the ROC curve (AUC), the
better the classifier is [79]. An extension of ROC analysis found
in literature [40] is the three-way ROC analysis that applies to
trichotomous tests. It summarizes the discriminatory power of
a trichotomous test in a single value, called the volume under
surface (VUS) in analogy to the AUC value for dichotomous
tests.

V. RESULTS FROM EXISTING SYSTEMS

The development of automated systems for the diagnosis of
skin lesions is considered as a significant classification task,
which preoccupies many biomedical laboratories and research
groups; e.g., [21], [23], [27], [29], [66], [80], and [97]. The re-
sults of the most important implementations are summarized in
this section. Most of the surveyed systems focus on the detection
of malignant melanoma and its discrimination from dysplastic
or common nevus. However, there exist systems aiming at the
detection of different modalities. These lesions include among
others tumor, crust, hair, scale, shiny and ulcer [17], [18], ery-
thema [19], burn scars [20], and wounds [25], [63].
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The most common installation type seems to be the video
camera, obviously due to the control features that it provides
[17], [18]—[21]. The still camera is of use in some installations
[25], [63], while infrared or UV illumination (in situ or in vivo)
using appropriate cameras is a popular choice as well [26], [27],
[801], [94], [96]. Microscopy (or ELM) installations are applied
in the works of [23] and [29] and digital videomicroscopy in [9]
and [42].

The most common features that are used for automated le-
sion characterization are the ones that are associated with color
in various color spaces (RGB, HIS, CIELab), e.g, color values
in [17], [18], [19], [65], and colorbin (i.e., the percentage of
the lesion colored foreground pixels) [65]. Some of them com-
bine features in more than one color spaces for better results,
e.g., HIS and RGB in [21], [23], [25], [29] and [63], or RBG
and colors peculiar to malignant melanomas [30]. The inten-
sity characteristics are also used in works such as [20], and the
ratios of maximum to minimum intensity value are incorpo-
rated [27]. Asymmetry and border features are quite common,
e.g., [29], [42], and [65], while features based on differential
structures are very rare. Some works [7], [31], [58], [67] also
rely on the whole ABCD rule for lesion characterization. Shape
and color features, like area and elevation, calculated mannually
by dermatologists have also been used [65].

The most common classification methods are the statistical
and rule-based ones; e.g., [19], [21], [23], [26], [27], [40], [42],
[43], [66], and [67]. More advanced techniques such as neural
networks are presented in works like [16]-[18], [22], [31], [35],
[37], [41], and [65], while the k-nearest neighborhood classi-
fication scheme is applied in [29]. Evidence theory (upper and
lower probabilities induced by multivalued mapping) based on
the concept of lower and upper bounds for a set of compatible
probability distributions is used in [33] for melanoma detec-
tion. Classification and regression trees (CART) [81] analysis
has been used in [32]. Finally, the ADWAT method for lesion
classification is used in [7] and [44].

The success rates for the methods presented in the literature
indicate that the work toward automated classification of lesions
and melanoma, in particular, may provide good results. Accu-
racy rates can vary from 70% [45] to 95% [6], whereas sensitiv-
ity can score between 82.5% [27] and 100% [9] and specificity
between 63.65% [9] and 91.12% [44], respectively. Fig. 5 dis-
plays the distribution of the existing systems per classification
method, along with the best performance results for each cate-
gory of classifiers. Detailed results regarding the performance
of the classification methods used in existing systems are pre-
sented in Table III. As indicated, SVM seems to achieve higher
performance in terms of sensitivity and specificity, folowed by
ADWAT and CART algorithms.

It should be noted at this point that the aforementioned re-
sults refer mostly to the detection of melanotic lesions against
nevus or nondysplastic lesions (i.e., two different classes). Fur-
thermore, these results are not comparable but rather indicative,
mainly due to the fact that different images from different cases
are used. The classification success rates are not applicable to
the methods calculating healing indexes. In order to evaluate the
performance of several of the presented classification methods

f Sensitivity:

100%

l Specificity: , | B200%
S23% 52.74%

Other

Neural Networks

= Highest
Performance

Fig. 5. Distribution and best performance results of existing classification
systems. The Y -axis represents the percentage of the distribution. The label
presents the highest performance reported for the specific category in terms
of either accuracy or sensitivity and specificity. “Other” refers to rule-based
classification, scoring based on segmentation results, and ADWAT and CART
systems.

TABLE III
CLASSIFICATION PERFORMANCE RESULTS FROM EXISTING SYSTEMS

Classification Performance Results
Method

Neural Networks Accuracy of 85-89% [17][18], Sensitivity of
81%, specificity of 86.7% [65], 90% correlation
between manual and automated assessment [31],
Accuracy of 80% [22], Accuracy of 94% [35],
average AUC 0.7943 [40], average AUC 0.96
[41], Accuracy of 77% [37], Accuracy of 80.5-
95.8% [16], Average AUC 0.832 [38]

5% deviation from manual diagnosis [21],
5.33% difference from manual diagnosis [23],
77% [26], Sensitivity of 82.5%, specificity of
78.6% [27], Sensitivity of 87%, specificity of
92% [29], Sensitivity of 85.2%, specificity of
72.22% [33], Sensitivity of 85.9%, specificity of
74.1 % [42], Accuracy of 84% [43], Sensitivity
of 91%, specificity of 68% [66], average AUC
0.8288 [40], average AUC 0.89 [15], Sensitivity
of 100%, specificity of 79-85% [28], Accuracy
of 71.8% [39]

Detection rate of 26% [30], Sensitivity between
74.2%-86%, specificity between 83.2%-86.3%
[67]

Up to 95% success [6]

Statistical

Ruled-based
classification

Scoring system based
on segmentation

results

SVM Sensitivity of 100%, specificity of 63.65% [9],
Sensitivity of 92.09%, specificity of 92.734%
[45], Sensitivity of 93.3%, specificity of 92.34%
[36], average AUC 0.8305 [40], average AUC
0.937 [41]

ADWAT Sensitivity of 93.33%, specificity of 91.12%
[44]

CART Sensitivity of 92.09% and a specificity of

92.734% [32]

and validate the reported results, a skin lesion characterization
experiment has been performed utilizing the most prominent
feature extraction, feature selection, and classification methods.
The results of the performed evaluation are provided in the fol-
lowing section.
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TABLE IV
CONFIGURATION PARAMETERS FOR EACH CLASSIFIER

TABLE V
EVALUATION RESULTS FOR THE FEATURE SELECTION ALGORITHMS

Classifier Input Parameters  Classifier Input Parameters
(Category) (Category)
Bayes Simple RBF Network  num clusters: 2, min
Networks Estimator, A: 0.5, [82] stdev: 0.1, ridge:
[82] search algorithm:  (Functions — 1.0E-8
(Bayes) hill cllmbmg Neural

Networks)
NBL [83] No input KStar [84] global Blend: 20
(Bayes) (Lazy)
MLR [85] Ridge LWL [86] KNN: -1, Classifier:
(Functions — estimator:1.0E-8 (Bayes) Decision Stump,
Neural Linear NN Search
Networks)
SVM [83] Kernel: RBF, Classification  Classifier M5P,
(Functions — C=1024,g= via minNumlnstances: 4
Neural 0.125 Regression
Networks) [87]

(Regression)
Multi-Layer learning rate: 0.3, NBTree [88] No input
Perceptron learning time: (Trees)

[98] 500 validation

(Functions — threshold: 20,

Neural num of epochs:

Networks) 500

CART [89] heuristic: true,

(Trees) numFold
Pruning: 5

In the case of Bayes Networks numeric estimator precision values are chosen
based on analysis of the training data.

VI. PERFORMANCE OF DIFFERENT CLASSIFIERS FOR SKIN
LESION CHARACTERIZATION

This section describes the experiments that were conducted
in order to evaluate the performance of different classification
methods in the context of skin lesion characterization. In order
to evaluate the performance of different classification methods,
the Weka open-source classification tool has been used avail-
able from the University of Waikato [82]. Eleven classifiers have
been selected in order to cover all different categories accord-
ing to the utilized methods (e.g., statistical, rule based, neural
networks, regression trees, etc.). The examined classifiers are
summarized in Table IV, which presents references for the im-
plementation of each algorithm, the classification category each
algorithm belongs to, and the corresponding input parameters,
respectively.

A. Description of Image Dataset

The image dataset used in this study is an extraction of the
skin database that exists at the Vienna Hospital, kindly provided
by Dr. Ganster. The whole dataset consists of 3639 images, 972
of them are displaying nevus (dysplastic skin lesions), 2598
featuring nondysplastic lesions, and the rest of the images con-
tain malignant melanoma cases. The number of the melanoma
images set is not so small considering the fact that malignant
melanoma cases in a primordial state are very rare. This dataset
is completed by a smaller image dataset containing 26 melanoma

Selection Algorithm CFS PCA GSFS None
(Search Algorithm) (BestFirst)  (Ranker)
Number of Features 6 11 18 31
Bayes Net
Train model time, 0.1, 3.1 0.13,3.3 0.22,3.5 0.33,5.0
validation time
Accuracy,TP,FP 70.41%, 66.2%, 66.2%, 68.70%,
1.0, 0.0 0.42,0.04 0.4, 0.92,
0.09 0.01
SVM
Train model time, 3.56,21.2 442,352  5.36, 7.13,
validation time 423 60.0
Accuracy,TP,FP 73.05%, 73.42%, 74.11%  100%,
1.0, 0.0 0.21,0.02 , 1.0,0.0
0.3,0.02
CART
Train model time, 3.05,22.9 4.13,434 5.89, 7.72,73
validation time 69.8
Accuracy, TP, FP 73.05%, 71.28%, 71.65%  73.50%,
1.0, 0.0 0.029,0.0 ,0.072, 1.0, 0.0
2 0.03

The train model and validation times are in seconds. The feature selection experiments have been
performed on a 2.0-GHz Intel CPU with 2 GB RAM and MacOSX operating system.

and 42 dysplastic nevus cases, captured from patients in the
General Hospital of Athens G. Gennimatas with the help of
the medical personnel of the Department of Plastic Surgery and
Dermatology.

B. Feature Selection and Utilization

Three types of features are utilized in this study: border fea-
tures that cover the A and B parts of the ABCD rule of der-
matology, colour features (i.e., RGB color plane average and
variance responses for pixels within the lesion, intensity, hue,
saturation color space average, spherical coordinates LAB av-
erage, etc.) that correspond to the C rules, and textural features
(i.e., dissimilarity, ASM, GLCM mean, GLCM standard devi-
ation, etc.) that are based on D rules. All the aforementioned
31 utilized features are analyzed in Section III-B. Three feature
selection algorithms (i.e., CFS, PCA, and GSFS, as discussed in
Section III-C) were evaluated against the total number of fea-
tures in order to assess both the complexity reduction of the
classification models and the accuracy achieved. The classifica-
tion methods that were used for this experiment were Bayes net-
works, SVM, and CART. Both image datasets were utilized for
learning, meaning that three classes coresponding to the image
types were used: melanoma, dysplastic (nevus), and nondys-
plastic. The selected evaluation metrics were the train model
and tenfold validation execution time, the model accuracy, and
the true positive rate (TPR) and the false positive rate (FPR) for
the classification of the melanoma class. The obtained results are
presented in Table V. As indicated by the latter, the proper fea-
ture selection results in an important reduction of the complex-
ity: the train model and tenfold XVAL times can be reduced by
60.5% and 69%, respectively, for the case of the CART method,
when reducing the number of features from 31 to 6. Concering
the performance of the classifiers, the results seem to be con-
troversial. Using feature selection algorithms, the performance
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TABLE VI
CLASSIFICATION RESULTS FOR THE CHARACTERIZATION OF MELANOMA AND
NEVUS SKIN LESIONS

TABLE VIII
CLASSIFICATION RESULTS FOR THE CHARACTERIZATION OF MELANOTIC,
DYSPLASTIC, AND NONDYSPLASTIC SKIN LESIONS

A (%) RMS TPR FPR AUC
Bayes Networks 97.43  0.143 0.928 0.023  0.996
NBL 96.34  0.1528 0449 0.0 0.998
MLR 100 0.0001 1.0 0.0 1.0
SVM 100 0.0 1.0 0.0 1.0
MultiLayer Perceptron 100 0.0084 1.0 0.0 1.0
RBF Network 98.55 0.1072 1.0 0.015  0.994
KStar 9538  0.2125 0.333 0.002 0.96
LWL 100 0.0 1.0 0.0 1.0
Classification via 99.71  0.0499 0957 0.0 0.999
Regression
NBTree 99.90  0.0239 1.0 0.001 1.0
CART 100 0 1.0 0.0 1.0

The TPR and FPR refer to the detection of melanoma class.

TABLE VII
CLASSIFICATION RESULTS FOR THE CHARACTERIZATION OF DYSPLASTIC AND
NONDYSPLASTIC SKIN LESIONS

A (%) RMS TPR FPR AUC
Bayes Networks 68.94 04929 0449 0.22 0.663
NBL 7259  0.4386 0.001 0.001 0.649
MLR 7484 04169 0252 0.065 0.725
SVM 76.08  0.4891 0.267 0.054 0.607
MultiLayer Perceptron 7329 04444 0302 0.105 0.688
RBF Network 72.14  0.436 0.121  0.053 0.644
KStar 6793 05415 0346 0.195 0.628
LWL 72.65 04384 0.0 0.01 0.627
Classification via 73.80 04204 0239 0.074 0.715
Regression
NBTree 7245 04439 0321 0.124  0.672
CART 72.68 04418 0.174 0.065 0.602

The TPR and FPR refer to the detection of dysplastic class.

of Bayes networks seems to increase in terms of accuracy as
well as TPR and FPR. On the contrary, SVM seems to achieve
the highest performance when the whole feature set is used,
whereas in the case of CART, PCA and GSFS produce lower
scores compared to the other two methods. Considering the fact
mentioned before, it is clear that feature selection algorithms
can reduce complexity but the performance gain is not always
positive and highly depends on the classification algorithm.

C. Performance Metrics and Results

Three different experiments have been conducted accord-
ing to the number of defined classes that represent the skin
lesion types; the first subexperiment concerned the detection
of melanoma against nevus, the second one the classifica-
tion between dysplastic (nevus) and nondysplastic skin lesions,
whereas the third one validates the characterization between all
three classes (i.e., melanoma, dysplastic, and nondysplastic).
The developed classification models were validated using ten-
fold XVAL. All 31 image features were utilized for the learning
and classification process.

In order to compare the performance and effectiveness of each
classifier, accuracy (A), rms, TPR, FPR, and AUC have been
selected as the indicative metrics. The corresponding results
from the three experiments are presented in Tables VI-VIII,
respectively.

A (%) RMS TPR FPR AUC
Bayes Networks 68.70  0.4044 0942 0.011 0.997
NBL 70.58  0.4077 1.0 0.013  0.999
MLR 75.04  0.338 0986 0.0 1.0
SVM 77.06 03911 1.0 0.0 1.0
MultiLayer Perceptron 75.15 0.3536  0.957 0.0 1.0
RBF Network 72.56  0.3561 1.0 0.004 1.0
KStar 67.24  0.4463 0.246 0.0 0.969
LWL 7320 03592 1.0 0.0 1.0
Classification via 7444 03406 0942 0.0 1.0
Regression
NBTree 7198 0373 0.681 0.02 0.986
CART 7350 0.3548 1.0 0.0 1.0

The TPR and FPR refer to the detection of melanotic class.
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Fig. 6. ROC curves provided by the classification of melanoma against dys-
plastic skin lesions using SVM, RBF networks, and Bayes networks. Each
curve corresponds to a different classifier. X -axis represents the FPR, whereas
the Y -axis presents the TPRs. All the examined classifiers provide high AUC
values.

Regarding the first experiment (i.e., distinguishing between
melanoma and nevus skin lesions), the majority of the assessed
classifiers seem to achieve high accuracy and TPRs in con-
junction to low rms and FPRs as well (see Fig. 6). It is also
indicated that accuracy itself cannot be considered as an ad-
equate evaluation metric for performance comparison; Bayes
networks achieve only 1.09% better accuracy than naive Bayes
mutlinomial (NBL) but in terms of TPR for the detection of
melanoma, the difference goes to 51.61%. The latter can be ex-
plained due to the inhomogeneity of the learning set (i.e., images
acquired with different devices in Vienna and Athens and many
fewer images featuring melanoma than the nevus ones). The
best performance in terms of accuracy, rms, and TPR and FPR
is provided by multinomial logistic regression (MLR), SVM,
locally weighted learning (LWL), and CART algorithms.

During the second experiment (i.e., classification between
dysplastic (nevi) and nondysplastic skin regions), the majority
of the examined classifiers have provided lower detection rates
than the previous one: accuracy rates from 68.94 (Kstar) to 76.08
(SVM), whereas TPRs from O (LWL) to 0.449 (Bayes networks),
respectively. The latter assumption can also be justified by the
corresponding ROC curves (Fig. 7) of three of the examined
classifiers (i.e., multilayer perceptron, SVM, and Bayes net-
works) that have achieved the highest performance among all.
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Fig.7. ROC curves provided by the classification of dysplastic against nondys-
plastic skin lesions. Each curve corresponds to a different classifier. X -axis
represents the FPR, whereas the Y -axis presents the TPRs.
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Fig. 8. ROC curves provided by the classification of melanoma against dys-
plastic and nondysplastic skin lesions, using Bayes networks, SVM, and classi-
fication via regression. X -axis represents the FPR, whereas the Y -axis presents
the TPRs.

This difficulty in distinguishing lesions between dysplastic and
nondysplastic types is due to the fact that both types have sim-
ilar features and cannot be easily demarcated even from expert
dermatologists by manual assessment [90].

Regarding the detection of melanoma against dysplastic and
nondysplastic skin lesions, the majority of the examined clas-
sifiers perform satisfactorily. Accuracy ranges from 68.70%
(Bayes networks) to 77.06 (SVM), whereas TP from 0.246
(Kstar) to 1.0 (SVM). Fig. 8 compares the performance of three
classifiers in terms of AUC. It may be depicted that SMV per-
forms best in this experiment, followed by classification via
regression and Bayes networks.

VII. DISCUSSION AND CONCLUSION

According to the literature [91], [92], it is often difficult to
differentiate early melanoma from other benign skin lesions.
This task is not trivial even for experienced dermatologists, but
it is even more difficult for primary care physicians and general
practitioners [3]. On the other hand, the early diagnosis of skin
cancer is of severe importance for the outcome of the therapeutic
procedure and the basis for reducing mortality rates. Thus, as
indicated also by the performed survey, the development of
automated characterization systems for skin lesions in clinical
settings, aiming mostly at the diagnosis of malignant melanoma,
preoccupies several R&D laboratories and medical teams. The

most remarkable features of such systems have been surveyed
in this paper. These systems employ a variety of methods for
the image acquisition and preprocessing, and feature definition
and extraction, as well as lesion classification from the extracted
features. Regarding the latter, it is clear that the emphasis has
been on the assessment of lesion size, shape, color, and texture.
However, literature has also indicated that performance can be
achieved by combining the most utilized features discussed with
alternative features like wavelet coefficients.

Concerning the image acquisition systems, the majority of
existing systems use ELM and video microscopy and only a
few works use newer techniques like skin impedance and Ra-
man spectra. The quality of ELM images is superior in terms
of noise reduction and color fidelity and solves better the shad-
owing and reflections problems. However, the future trend is
to acquire and combine images from alternative spectra and
modalities as well (i.e., UV, infrared, and Raman spectra, skin
impedance, etc.) in order to improve the overall performance.
As far as the classification method is concerned, the SVM al-
gorithm seems to perform better. However, it is actually the
selected features that are critical for the performance of the
classifier and the learning procedure as well, which has to in-
clude the biggest possible variety of cases. It is not clear yet
which features are more informative since the surveyed works
do not agree in this issue. As the conducted experiment indi-
cated, feature selection methods can improve the classification
complexity through minimizing the utilized number of features.
However, the performance gain in terms of accuracy depends
highly on the selection of a classification method.

All of the surveyed publications include corresponding tri-
als presenting the accuracy and outcomes from the application
of such clinical decision support systems (CDSSs) in the as-
sessment of skin pathology. As clinical machine intelligence
techniques mature, it seems they can offer increasingly excit-
ing prospects for improving the effectiveness and efficiency of
patient care and the development of more reliable CDSS in der-
matology. According to a recent review [93], published studies
of clinical machine intelligence systems are increasing rapidly,
and their quality is improving. The field of automated character-
ization of skin lesions follows this rule. It seems that the intro-
duction of such diagnostic tools may enhance preventive care in
dermatology, facilitating the early diagnosis of skin cancer and
monitoring the clinical performance of drugs and therapeutic
procedures. Such tools are mostly intended for inexperienced
medical personnel that could help them in the diagnosis of skin
cancer at early stages. In addition, these decision support sys-
tems may be used for their training. When compared to medical
experts in the field, even the systems with the best results depict
slightly lower performance in terms of accuracy and confidence
in diagnosis. However, it is admitted by the physicians that
they are very useful in producing quantified results, recording
patient follow-ups, and monitoring the therapeutic and healing
progress. In any case, the presented systems are not to be used
for replacing the physicians, but only to serve as diagnostic
adjuncts.

The financial cost of the introduction of a simple CDSS
for skin assessment is rather low, roughly estimated less than
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3.000 $, calculating the expenses for the appropriate hardware
and software for acquisition, store, and classification purposes
(software may also be found as open source). However,
computer-based vision systems are not yet established in rou-
tine clinical practice for skin diagnosis and prognosis, probably
because they are not performing convincingly in all cases of
the skin pathology. A potential reason for this is that rigorous
evaluations of CDSSs are usually more difficult to conduct than
evaluations of drug studies, for instance, because clinical set-
tings often preclude complete separation of the intervention and
control groups. The studies of patient outcomes also require
large numbers of participants and significant budgets, which
are not always easy to find, especially from a single institution.
Without the existence of such rigorous and well-organized pa-
tient outcome studies, the physicians may not be convinced to
introduce the use of skin diagnosis tools in the routine practice
of healthcare.

It should be, however, noted that the surveyed papers in addi-
tion to the evaluation presented in Section VI are quite encour-
aging for the future. It is our belief that the systems surveyed
in this paper have significant evidence to warrant trials with
important clinical outcomes. More systematic trials are needed
with increased numbers of participants, particularly during the
classification phase. This will clarify the issue of selecting the
most powerful variables for classification and may also enable
even better classification if examination of the differences in re-
sults between the alternative methodologies casts light on why
misclassifications arise.

Finally, according to our view, the standardization of all steps
in the CDSS procedure beginning from the image acquisition
(i.e., which devices to be used, which calibration and image cor-
rections should be applied) until the feature extraction (which
features to be exploited) and the classification stages (which
classifiers to be utilized) is considered essential. This is a
difficult task, in which all involving parties, such as medical
professionals, computer scientists, academic researchers, and
representatives from the medical industry, should participate,
regardless of the entity that will coordinate this effort.
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