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Comparison of Texture Features
Based on Gabor Filters

Simona E. Grigorescu, Nicolai Petkov, and Peter Kruizinga

Abstract—Texture features that are based on the local power but differ in the value of a phase parameter are combined in a
spectrum obtained by a bank of Gabor filters are compared. The quantity called the Gabor energy. In references [9], [10], com-
features differ in the type of nonlinear post-processing whichis ap- 516y moments are derived from Gabor features. Finally, in ref-

lied to the local power spectrum. The following features are con- . . .
gidered: Gabor eﬁergy, c%mplex moments, an% grating cell oper- ET€NCES [11]-[14] grating cell operator features, inspired by the

ator features. The capability of the corresponding operators to pro-  function of a special type of visual neuron, are computed using
duce distinct feature vector clusters for different textures is com- Gabor features.

pared using two methods: the Fisher criterion and the classifica-  Since the type of “post-Gabor” processing in the above men-
tion result comparison. Both methods give consistent results. The a4 methods is different, it is interesting to evaluate the effect

grating cell operator gives the best discrimination and segmen- fth - t f i ¢ . th ful
tation results. The texture detection capabilities of the operators ot the various types ol noniinear post-processing on the usetul-

and their robustness to nontexture features are also compared. The N€ss of the resulting features regarding texture discrimination
grating cell operator is the only one that selectively responds only and segmentation.

to texture and does not give false response to nontexture features At this point, the question arises of how to measure the use-
such as object contours. fulness of different features. Several authors have made a com-
Index Terms—Classification, complex moments, discrimination, parison of the performance of various operators and features for
features, Fisher criterion, Gabor energy, Gabor filters, grating  texture segmentation. Most of these studies are based on a clas-
cells, local power spectrum, segmentation, texture. sification result comparison. In this method, a segmentation al-
gorithm is applied to a feature vector field and the number of
. INTRODUCTION misclassified pixels is used to evaluate the segmentation per-
(f)?rmance and suitability of the features. While this method is
c}/\zidely used for feature comparison [15]-[22], one should keep
/r{nmind that it characterizes the joint performance of a feature

ARIOUS features related to the local power spectrum
images have been proposed in the literature and use
one way or another for texture analysis, classification, and/or o
operator and a subsequent classifier.

segmentation. In most of these studies the relation to the Iocg n [12] and [13], we proposed a method that can be used to

spectrum is established through (intermediate) features that are
. o ) ? : . compare the features only, regardless of any subsequent clas-
obtained by filtering the input image with a set of two-dimen-... " . . : . )
. \ S sification or segmentation operations. This method is based on
sional (2-D) Gabor filters. Such a filter is linear and local. ItS L "
. . . : a statistical measure of the capability of a feature operator to
convolution kernel is a product of a Gaussian and a cosine fung- . . o o
. o . . . scriminate two textures by quantifying the separability of the
tion. The filter is characterized by a preferred orientation an ; S )
. . corresponding clusters of points in the feature space according
a preferred spatial frequency. Roughly speaking, a 2-D Gahar ; o ; . .
: ) . . : - 10 the Fisher criterion. While this method of feature evaluation
filter acts as a local band-pass filter with certain optimal join

A a . . : e>fcludes the influence of the classification phase and focuses on
localization properties in the spatial domain and in the spat .
efne feature extraction operators only, one should be aware of the

frequency QOmaln [1.]' Typically, an 'mage 1 f|!tered with SS4ct that the choice of a specific evaluation method inevitably
of Gabor filters of different preferred orientations and spatia) T ) )

. : : ntroduces certain limitations. In particular, the use of Fisher
frequencies that cover appropriately the spatial frequency dg

main, and the features obtained form a feature vector field th% ferion implies that the mean and the variance of a feature

: . e . istribution are important and adequate—not necessarily com-
is further used for analysis, classification, or segmentation.

: . lete—characteristics of the involved distributions, an assump-
Gabor feature vectors can be used directly as input to a clas- . . )
e . ; ion that has been customarily made in the literature [23]-[30].
sification or a segmentation operator or they can first be trans- ) .

. None of the aforementioned evaluation methods can be gen-
formed into new feature vectors that are then used as such an ; . -
. . erally considered as superior because each of them is informa-
input. In [2]-[8], for example, pairs of Gabor features that cot:

; . . tive in its own way and each has its limitations. Using them both
respond to the same preferred orientation and spatial frequen(iy : ,
givVes a more accurate picture of operators’ performance.

This study comes as a natural continuation of the work
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material containing oriented textures. These results promptggde of sampling of the spatial frequency domain takes into ac-
other questions: is this outcome due only to the orientati@ount the bandwidth properties of the Gabor filters used [13].
selectivity properties of the Gabor filters or is also the typ€he application of such a filter bank to an inputimage results in
of “post-Gabor” processing that matters; how do nonlinear24-dimensional feature vector for each point of that image.
post-processing schemes devised with mathematical models of

the texture in mind perform in comparison with a scheme if8. Gabor Energy Features

spired by the mammal visual system? With this study we try to The outputs of a symmetric and an antisymmetric kernel filter
answer these questions. We restrict the comparison to operatgréach image point can be combined in a single quantity that
based only on Gabor filters because we evaluated in a simijgicalled the Gabor energy. This feature is related to the model
way other types of operators elsewhere [31]. In this paper, \§ea specific type of orientation selective neuron in the primary

do not address the issue of Gabor filters selection since thigsual cortex called the complex cell [35] and is defined in the
subject has already been sufficiently treated in [32]. Finalljgllowing way:

we examine only those types of nonlinear post-processing that
were proposed in the literature. Hence, i_t is bg_yond the scope of ey o(z, y) = \/& o.ol® )+ 7&,@,_(1/2)4% )]
this paper to propose new types of nonlinearities or to combine
already proposed ones in order to obtain better features. ~ wherery o o(z, ¥) andry e, _(1/2)<(z, ¥) are the responses
The paper is organized as follows: in Section Il, we review thef the linear symmetric and antisymmetric Gabor filters, respec-
linear Gabor filter and various operators based on it. The pragpeely. The result is a new, nonlinear filter bank of 24 channels.
erties of the concerned operators with respect to texture discrimThe Gabor energy is closely related to the local power spec-
ination are compared in Section Il using the Fisher criterion. lnum. The local power spectrum associated with a pixel in an
Section 1V, a number of texture segmentation experiments ameage is defined as the squared modulus of the Fourier trans-
carried out and the properties of the considered operators fimen of the product of the image function and a window func-
assessed using the classification result comparison methodtidn that restricts the Fourier analysis to a neighborhood of the
Section V, the robustness of the operators to nontexture ingisel of interest. Using a Gaussian windowing function as the
stimuli is studied. The paper is concluded with a discussion @me used in (2) and taking into account (1) and (3) the following
Section VI. relation between the local power spectrume and the Gabor
energy features can be proven:

Il. TEXTURE FEATURESBASED ON GABOR FILTERS
A. Gabor Filters
A number of authors used a bank of Gabor filters to extra&t
local image features [2], [4]-[6], [33]. Typically, an input image™

I(z, y), (v, y) € 2 (Q—the set of image points), is convolved In [9] and [36], the real and imaginary parts of the complex
with a 2-D Gabor functiory(z, v), (z, ¥y) € Q, to obtain a moments of the local power spectrum were proposed as features

p)\,@(xv y) = Ci,@(xv y) (4)

Complex Moments Features

Gabor feature image(z, y) as follows: that give information about the presence or absence of dominant
texture orientations.
r(z, y) = // I, n)g(z — &, y—n)dédy. 1) The complex moments of the local power spectrum are de-
5 fined as follows:

We use the following family of Gabor functiohgfor further Cran (7, ¥) ://(u i)™ (4 — ) (@, ) du do,
details we refer to [14] and [34])
72 2. 72 2 {L'/ m7 n e N (5)
gr0,(w, y) = ¢ ETHFTYIET cog <27r T ‘P> (2)
where
where 1 1
u = 5 cos 0, v= 3 Sin®,  Pu o, ) =pa ez, v).
The summ + n, called the order of the complex moment, is
related to the number of dominant orientations in the texture. In

In our experiments, we use two filter banks, one with symmetrig6l, itis proven that a complex moment of even ordet-n has
(¢ = 0) and the other with antisymmetrico[ = —(1/2)x] the ability to discriminate textures witlv.+n) /2 dominant ori-
Gabor kernels. Each bank comprises 24 Gabor filters that &iations. More precisely, the moduli of the complex moments
the result of using three different preferred spatial frequencies@ye information about the presence or absence of dominant ori-

23, 31, and 47 cycles per image and eight different equidist&ittations while their arguments specify which orientations are
preferred orientationsd = k(rx/8), k = 0, 1, ..., 7). This dominant. In [36], the authors discuss the advantages of using
the real and imaginary parts of the complex moments as features

ITwo-dimensional Gabor functions and their power spectra can interactivgfystead of their moduli and arguments.

be generated and visualized at http://www.cs.rug.nl/~imaging/ where a descrlp-I . ¢ feat th | d
tion of the Gabor filter and its relation to a specific type of neuron in the primary ' OUI €Xperiments, we use as features the nonzero real an

visual cortex are available as well. imaginary parts of the complex moments of the local power

2 =xcos® +ysin O, Yy = —zsin® + ycos O
o =056\ and v =0.5.
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spectrum. For each point in the image we compute the com-n our experiments we use a set of grating cell operators with
plex moments of up to order 8 resulting in a set of 45 compldéke same eight preferred orientations and three preferred spa-
values. From this set we select only the nonzero real and imaigd frequencies as in the experiments with the other operators,
inary parts. It can be proven that the complex moments of ogliélding a vector of 24 features in each point of the image.
order are zero and that all complex momefits,, for which

m = n are real. MoreoverCy, and Cyg are real due to the I1l. SEPARABILITY OF CLUSTERS OFFEATURE VECTORS
discretization of the frequency domain used in the computation
of the local power spectrum. This amounts to 43 nonzero r

| t of which only 24 I v ind dent b ove are compared from the point of view of their ability to
values out of which only 24 are linearly independent beCaugfe - iminate petween different textures by means of the Fisher
Crn = CZ... We use this set of 24 linearly independent value

nm* o ‘ ériterion.
computed for each point in the image as a feature vector asso-

ciated with that point. In fact, we apply ronsingular linear A, Comparison Method

transform to the local power spectrum. - .
. The feature vectors computed in different points of a texture
We compute the complex moments of up to order 8 in order

1o obtain the same dimensionality—24—of the feature s ace|mage are not identical; they rather form a cluster in the multi-
. . . Y—ea— sp Ifhensional feature space. The larger the distance between two
in the experiments with the other types of feature. Taking on

moments of up to order 4 or 6 can be regarded as an imoli IEtjsters that correspond to two different types of texture, the
b 9 PUERiter the discrimination properties of the texture operator that

feature space dimensionality reduction step. Such a step can IMS quced the feature vectors.

prove the separability of the feature clusters, but then this sl%

In this section the feature extraction operators presented

H_n order to determine the distance between two clusters of

fhture vectors, it is sufficient to look at their projections onto a

tific community there is no general agreement whether a SPaCH space, i.e., a line, under the assumption that this projection

dimensionality reduction step is a part of the feature eXtraCti?Haximizes the separability of the clusters in the 1-D space. A

phase or not, we chose to keep the dimensionality of the feat {Rear transform that, under certain conditions, realizes such a
space the same for all considered operators (see further

tion V) per%]ection was first introduced by Fisher [39] and is called the

. . isher linear discriminant functiorit has the following form:
The local power spectrum features are obtained using tﬁe g

same filter bank as in the computations of the Gabor energy y= (i1 — ,j2)T Siz (6)

features and consequently have the same coverage of the spa-
tial frequency domain. whereyi; andyi» are the means of the two clustess; ! is the

inverse of the pooled covariance matrix of the two clustéis,
a feature vector, anglis its 1-D projection.
This projection of the feature vectors into the 1-D space maxi-

A different type of nonlinearity is applied in an operator thahizes theFisher criterion[40], which measures the separability
is based on a computational model of a specific type of neur8hthe two concerned clusters in the reduced space
found in areas V1 and V2 of the visual cortex of macaque mon- It — 2|
keys and called the grating cell [37], [38]. Grating cells are se- /= = (1)
lective for orientation but differ from the majority of orientation Vo1 T oz
selective cells found in the mentioned cortical areas in that th@yeres; ando- are the standard deviations of the distributions
do not react to single lines or edges, as for instance simple celfghe projected feature vectors of the two clusters andnd
(modeled by Gabor filters) or complex cells (modeled by Gabg@s are the projections of the meajis and,i;, respectively. The
energy operators) do. A grating cell only responds when a s&ther criterion expresses in one single quantity the distance
of at least three bars of appropriate orientation and spacingistween two clusters relative to their size. The larger the value
present in its receptive field. The response increases with difethe Fisher criterion computed for two clusters, the better the
number of bars that cross the receptive field of the cell and sagg¢parability of the two clusters.
rates at about ten bars. The grating cell operator was conceive@trictly speaking, the transform given by (6) need not nec-
to reproduce the properties of grating cells as known from elasssarily maximize the value g¢f according to (7) for arbitrary
trophysiological researches [11]-[14]. Essentially, this operatgdistributions. It, however, does so for a Gaussian distribution of
signals the presence of one-dimensional (1-D) periodicity t#xture features, an assumption that has frequently been made
certain preferred spatial frequency and orientation in 2-D inand claimed to hold in literature (see e.g., [23]-[30]). In the case
ages. of non-Gaussian distributions, one can think of the transform

The grating cell operator, as proposed in [14], consists of tvgiven by (6) as a first order approximation of the transform that
stages. The first stage is constructed to respond at any positioaximizes the quantity in (7).
to a set of three parallel bars of a given orientation and spacingWidely used in statistics, Fisher criterion has also been
at that position. The second stage integrates the output of theed for various purposes in the field of image processing and
first stage in a certain surrounding to ensure that the outputafmputer vision: filter design [41], texture classification [21],
this second stage increases if more than three parallel bars[d8-[45], and feature space dimensionality reduction [46].
present in the concerned surrounding. For further details on tRialy recently, this criterion has been applied to the evaluation
operator we refer to [13] and [14]. of texture feature extraction operators [13].

D. Grating Cell Operator Features
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Fig. 2. Boxplot representation of the distribution of the Fisher criterion values
obtained with different texture operators.

Fig. 1. Nine test images of oriented textures.

B. Results ported in [31], using the square root in the post-processing phase

fallowing the filtering improves the separability of the feature

We evaluated the performance of the operators presente%lwsters in terms of Fisher criterion. As a possible explanation of

Se.ct|0.n . accordmg to the Fisher criterion by looking aF thﬁﬂs result, let us consider a particular case of two 1-D stochastic
pair-wise separability of the feature clusters correspondmg&griablesX andY . For simplicity, we assume thaf — 0 and

nine test textures (Fig. 1). h .
) : S atY can take only two valuesandb (0 b) with equal
Whllethenumberoftestlmagesused|sI|m|ted,onehastopo;ﬂ y two vau (0 < a <b)with equ

) . Bbability. The value of Fisher criterion in this casgis y =
out that the only aspect that was taken into account in selectg.égJr b)/(b — a). Now, if we consider the squaree? andy’2 of
the.m IS that the textures show a certain degree qf orientedne two stochastic variables, the value of the Fisher criterion will
which is to guarantee that (some of) the Gabor filters employ% Fy2 ye = (a2 +12)/(1? — a?) and it can easily be shown that
will respond. Further, no special attention was paid to selecti x5 Y
thesetestimagesandthere are noreasonstothinkthatthe choi
infavor of any of the feature extraction methods presented abogﬁh

Th o bility of the feat lust e Fisher criterion computed for their squares. A similar situ-
€ pair-wise separability ot Ihe fealure clusters correg;., obviously occurs with the features derived from the Gabor
sponding to the nine test textures was measured as follo

‘dBergy and its square, the local power spectrum. In this way, fea-
The pooled covariance matrix was calculated for each pair 9y q ' P b Y.

. ina 1000 le feat tors f hi {0 esderiveddirectlyfromthelocal power spectrumformclusters
images using sample 1eature vectors from each IMalgy o ¢ |ess separable than the clusters obtained with Gabor en-
Then the feature vectors were projected on a line using t

%y feature vectors.

corresponding Fisher linear discriminant function and the Computing the complex moments of the local power spec-
Flsh_er criterion was eva!ugted in the prqchop Space. I:t%m can itself notimprove the separability of the feature vector
brevity, only essential statistics of the 36 Fisher criterion valu

%fusters obtained from the local power spectrum. As alread
computed for each operator are given here (see Fig. 2). P P y

. mentioned in Section II-C above, the computation of the com-
The values obtained for the Gabor energy features are go Fg P

Th | £6.33 that there | dicall | X moments of the local power spectrum isi@nsingular
€ mean vajue o ©.53 says thal there 1S practically N0 OVETgR, - ansform of the local power spectrum. Taking in con-
between two clusters. The worst case scenario, described

- sigeration (6) and (7) it can be proven that the value of Fisher
the minimum value of 2.35 corresponds to a cluster overlapg iterion is not affected by such a transform

Ie_ss than_2.5% (assuming Gaussian distribution). The resu_lts Obg o any pair of texture images, the inter-cluster distance com-
tained W'ﬂ:hthe G_?r??r: elpergy(;‘e'gturfs tare rema_rtI;]atl:kJ]Ie:[r:f OfSted using the grating cell operator features is considerably
compares them wi € linear {>abor features orwi € thredYeater than the inter-cluster distance computed with any of the

olded Gabor features [47], [48]. Our experiments showed thai operators. The minimum value of the Fisher criterion ob-

Gabor energy features, involving only a simple type of post-prg-. . : L o
cessing, perform better than the linear and thresholded Ga%{z'_}ned for this type of feature is 5.44. If (in a first approximation)

features by an order of magnitude rass_ume a Gaussian distribution for_ the featu_re clustc_ars,_ the
o . ) theoretical cluster overlap corresponding to a Fisher criterion
. The separability achleve_d for th? complex moments featur\?aue of 5.44 will be less than 0.01%, corresponding to a mis-
is s_maIIer t_han the one achieved with the Gabor energy featuragssification chance of one on ten thousand pixels.
Thisresultis due to the fact that the complex moments were com-
puted from the local power spectrum and not from the Gabor en-
ergy features. The nonlinear dependence between the Gabor en-
ergy and the local power spectrum (4) leads evidently to differentin this section, the feature extraction operators presented in

degrees of separability of feature vector clusters. As already Bection Il are compared in the classical way, i.e., on the basis

.y > fxe v2.Inotherwords, the value of the Fisher criterion
puted for the two stochastic variables is larger than the value

IV. AUTOMATIC TEXTURE SEGMENTATION
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Fig. 4. Percentages of correctly classified pixels using the fuzzy c-means
classification algorithm.
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.ﬂ' #
o ?,
ey mnpln: momenis feafures Gabor energy leads to a reasonable segmentation, the best seg-
1 mentation results are achieved with the grating cell operator.
!. A minimal requirement on any texture operator is that it is ca-
Eo pable of detecting texture at all. In a multichannel filter scheme
d} Grating cell operator features this means that at least one of the channels must respond or,
equivalently, that the...-norm of a feature vectol|{]|.. =
max{|z;|i=1 ... }) must be different from zero. On one hand, a
texture detection operator is thus requiredgspond to texture.
On the other hand, a natural complementary requirement is that
such an operator does not respond to every input, more specifi-
cally, it does not respond to nontexture inplitthis section, we
address the robustness of the concerned operators to textured
and nontextured inputs.
Fig. 3. Segmentation results obtained with the fuzzy c-means classificationF19- 5(&) Shows an image of a single object. Disregarding the
algorithm for texture images containing two, five, and nine oriented texturesminor luminance variations of the background and the surface
of the object, one can think of this image as containing purely
of the segmentation results achieved using a general purposetexture features. We considbe contours of single objects
classifier. to be nontexture features. Fig. 5(b)—(d) show ithg-norm re-

Each operator is applied on three test images containing tveponses of the concerned operators. All operators but the grating
five, and nine textures and its output is fed into a classifier. Tloell operator respond to nontexture information and thus falsely
test images are presented in Fig. 3(a). These images are a®iect texture where it is not present.
structed out of single texture images so that the perfect segmenFig. 6(a) shows an input image that contains both texture fea-
tation is known [Fig. 3(e)]. The classification is done using thires (in the area occupied by the table cloth) and nontexture fea-
fuzzy c-means clustering algorithm [49]. When working withiures (the contours of the bottle). As illustrated by Fig. 6(b)—(d),
this algorithm, one has to specify the number of clusters. Thadl operators respond to the texture features but only the grating
number was chosen according to the number of textures in de operator does not respond to nontexture features.
input image, i.e., it was set to two, five, and nine, respectively. The above remark about a certain class of nontexture features,

The segmentation results obtained with the different featuttee contours of single objectseems to bring a differentiation
vectors are shown in Fig. 3(b)—(d). In the segmented images, beween different classes of edges and lines: single contour lines
pixels that correspond to feature vectors of the same cluster anel edges, on one hand, being considered as nontexture features
assigned the same gray level. The percentages of correctly classus groups of lines and edges, on the other hand, viewed as
sified pixels are given in Fig. 4. Similar results were obtainetéxture features. For instance, while the contours of a single leaf
with the k-means algorithm [50]. of a tree on a plain background are to be seen as nontexture fea-

The results of the segmentation experiments are in agreememes, the same contours can occur as texture features when they
with the results of the Fisher criterion measurements: while thppear in an image together with the contours of many other

V. ROBUSTNESS TONONTEXTURE INPUT

e) Perfect segmentation



GRIGORESCUet al: COMPARISON OF TEXTURE FEATURES BASED ON GABOR FILTERS 1165

i [

fal ihi i {d

Fig. 5. (a) Input image containing only nontexture features andlthenorm responses of the various operators to this image: (b) Gabor energy operator,
(c) complex moments operator, and (d) grating cell operator. All operators but the grating cell operator respond to the nontexture features.

]

Fig. 6. (@) Input image containing both texture and nontexture features ardd.theorm responses of the various operators to this image: (b) Gabor energy
operator, (c) complex moments operator, and (d) grating cell operator. Only the grating cell operator shows texture-specific response; ¢natotheespond
and a collection of trees—fmrest. This differentiation should

to nontexture features as well.
not be seen as artificial with respect to visual perception be- (a) (D)

cause, as Vari(_)us psychophysic_al experiments have shown,gge;  Examples of suppression of contour perception by a grating: (a) the
perception of lines can substantially depend on the presenceidé of the triangle that is parallel to the bars of the grating does not pop out as

other lines in their immediate neighborhood, Fig. 7, see alths other two sides do and (b) part of the contour of the rectangle is “lost” in the
. ’ o ting [56].
[51]-53]. These perceptual differences seem to be med|atedgrr>6§/mg 1561

two different types of visual neuron: grating cells, detecting Syﬁ:uis paper, we do not treat the problem of feature selection and

tems of lines [37], [38] versus another type of cell, detecti ) . ) : .

. ) ature space dimensionality reduction. One reason is that the

single lines and edges [38], [54], [55] and called the bar ce o : L
cluster separability as measured by the Fisher criterion is ro-

[14] bust to “the curse of dimensionality”: it does not degrade if
the number of features is increased. Another reason is that by
using a feature space dimensionality reduction step, the values
In this paper, we compare a number of texture operators tma¢asured in our experiments would represent the joint perfor-
comprise a Gabor filtering stage followed by different types ahance of the post-processing phase and that of the feature space
nonlinear “post-Gabor” processing. Well aware of the importadtmensionality reduction step. It is customary in the literature
role of the linear filtering phase for the overall performance @éee for example [46], [58], [59]) to use the classification result
a texture operator [2], [33], [57], in this study, we focus on theomparison method for a performance evaluation of the feature
performance differences that arise as a consequence of diffeigrdace dimensionality reduction methods. Similarly, Fisher cri-
types of nonlinear post-processing that were used previousdyion has been used for performance evaluation of a feature se-
by various researchers, particularly in combination with Gabtection algorithm [60].
filters. For this reason, we kept the linear Gabor filtering step In our experiments, we used textures that show a certain de-
the same for all operators. For an analysis of the influence gifee of “orientedness” which is to guarantee that (some of) the
the sub-band decomposition and the choice of a particular tyabor filters employed will respond. We did not include tex-
of linear filter we refer to [32] and [31], respectively. tures at different scales and orientations because the operators
A possible reduction of the feature space dimensionality ét@mpared here are not scaling and rotation invariant, a prop-
an interesting aspect of any method involving multiple featurearty that is mainly due to the frequency and orientation selec-
For instance, taking a large number of features need not néeity of the Gabor filters. The post-processing phase does not
essarily improve results. On the contrary, it may have a disagmpensate for this sensitivity. In the case of complex moments
trous effect on the performance of the classifier. However, and grating cell operators, it even strengthens this sensitivity.

—

fal ihi {dl

leaves. The use of a separate linguistic entity—the wexd
ture—for a group of edges indicates a semantic difference asso-
ciated with the context in which an edge appears, stand-alone as
a contour of an object or in a group of similar edges forming tex-
ture. In a similar way, separate entities have evolved in language
to indicate a semantic, context difference between a singde

VI. DISCUSSION
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As emphasized in [36], the complex moments were designéle grating cell operator is the only one not to give false re-
to react differently to different orientations and different scalesponse to nontexture features such as object edges and to re-
Similarly, in [14], the authors stress that the grating cell opespond specifically to texture features only. The addition of a
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