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Abstract—Wireless capsule endoscopy (WCE) enables 
screening of the gastrointestinal (GI) tract with a 
miniature, optical endoscope packed within a small 
swallowable capsule, wirelessly transmitting color images. 
In this paper we propose a novel method for automatic 
blood detection in contemporary WCE images. Blood is 
an alarming indication for the presence of pathologies 
requiring further treatment. The proposed method is 
based on a new definition of superpixel saliency. The 
saliency of superpixels is assessed upon their color, 
enabling the identification of image regions that are likely 
to contain blood. The blood patterns are recognized by 
their color features using a supervised learning machine. 
Experiments performed on a public dataset using 
automatically selected first-order statistical features from 
various color components indicate that the proposed 
method outperforms state-of-the-art methods.              

I. INTRODUCTION 

Wireless capsule endoscopy (WCE) has evolved from 
disruptive technological achievement at the dawn of the 
millennium to a well-established and trusted method for 
diagnostic digestive endoscopy [1]. National and 
international societies propose that WCE is incorporated in 
the algorithm of investigation of obscure gastrointestinal 
bleeding (OGIB) [2, 3]. It is noteworthy that the aetiology of 
the bleeding remains unknown after upper and lower 
digestive endoscopy in approximately 10% to 20% of cases 
[3]. Therefore, OGIB is the most frequent accepted indication 
for WCE examination once upper and lower endoscopy have 
failed to identify the bleeding source [2]. Recently, there is a 
renewed interest in the use of WCE at the emergency clinical 
setting as a game-changing strategy that could lead to a better 
use of endoscopic resources and rationalization of critical 
care bed occupancy [4].  

Nevertheless, instant blood detection and alarm of the 
treating team is required in order to achieve a timely and 
appropriate intervention [5]. The former, even with the use of 
the real-time viewer capacity, requires staff input which 
greatly diminishes the chance for optimising WCE potential 
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in the acute clinical setting. Furthermore, over the last few 
years, the need for automatic abnormality detection and 
diagnosis has become one of the ‘holy grail’ requirements for 
WCE reading software development [6]. 

Angiectasias, abnormal dilatation of small blood vessels 
at the mucosa layer of the gut, are –by far– the commoner 
small-bowel finding in patients investigated for OGIB [1, 3]. 
Therefore, automatic detection of such type of lesions and 
intraluminal blood is necessary for further progress.  

In this paper, we propose a novel method for blood 
detection in contemporary WCE images, based on a new 
definition of salient superpixels. Superpixels are perceptually 
meaningful atomic, spatially coherent regions within an 
image that can be obtained by image segmentation, and 
replace the rigid structure of the pixel grid. Salient 
superpixels are those that are more interesting than others.  
Considering the importance of color in the endoscopic 
diagnosis of digestive tract diseases [7], particularly in blood 
detection [6], superpixel saliency is assessed with respect to 
the color content of the WCE images.  

The rest of this paper is organized in five sections. 
Section II reviews the previous work related to blood 
detection in WCE images. The concept of salient superpixels 
is introduced in section III, and its application for blood 
detection is described in section IV. The results of the 
experiments performed in comparison with a state-of-the-art 
blood detection method are presented and discussed in 
section V. The last section summarizes the contributions and 
the conclusions of this study.   

II. PREVIOUS WORK 

Blood detection is one of the first challenges that have 
been investigated in the context of WCE image analysis [8]. 
Blood has a distinct red hue, which makes evident why the 
majority of the blood detection methods have been based on 
color features [6]. In this context Sainju et al [9] proposed a 
supervised blood detection method based on statistical 
features derived from the first order RGB color histogram 
probability of segmented image regions. A multilayer neural 
network classifier is trained with regions segmented by a 
semi-automatic region growing algorithm that is initialized 
with manually selected seed pixels.  

Fu et al [10] proposed a method based on Simple Linear 
Iterative Clustering (SLIC) algorithm for superpixel 
segmentation of WCE images. Each superpixel is represented 
by vectors composed of the following color features: 

      
)(

)(
1 iG

iR
F  , 

)(

)(
2 iB

iR
F  , 

)()()(

)(
3 iBiGiR

iR
F


  (1) 

Blood Detection in Wireless Capsule Endoscope Images based on 
Salient Superpixels 

Dimitris K. Iakovidis, Senior Member, IEEE, Dimitris Chatzis, Panos Chrysanthopoulos, and 
Anastasios Koulaouzidis 

731978-1-4244-9270-1/15/$31.00 ©2015 EU



  

where R(i), G(i), B(i) are the mean values of the quantities of 
red, green and blue components of the pixels belonging at the 
ith superpixel. Blood detection is performed via classification 
of the feature vectors into two classes corresponding to blood 
and normal patterns, by a Support Vector Machine (SVM).  

A color-based abnormality detection method has been 
proposed by Iakovidis and Koulaouzidis [11, 12]. This 
method is capable of detecting several abnormalities 
including intraluminal bleeding and angioectasias. Initially, it 
automatically detects salient pixels based on their color. This 
is achieved by application of the interest point detection 
algorithm of Speeded-Up Robust Feature (SURF) [13] 
extraction method on color component a of the WCE images, 
which are represented in CIE-Lab color space [14]. For each 
salient pixel a feature vector (descriptor) is composed. The 
vector is composed of the L, a, b values of the salient pixel 
and the minimum and maximum L, a, b values of the pixels 
lying within a square neighborhood centered at the salient 
pixel. A significant finding of that study was that salient 
pixels were detected in all abnormalities of the dataset.  

In this paper we enhance the superpixel-based blood 
detection approach of Fu et al [10] by a) co-evaluating the 
color saliency of the superpixels identified in the WCE 
images, and b) extracting more discriminative feature vectors 
for blood detection. Furthermore we provide a new definition 
of superpixel saliency, which unlike the one proposed in [15], 
takes into account the saliency of the pixels contained within 
the superpixels. This is important in cases where blood spots 
are smaller than the area of a superpixel.   

III. SALIENT SUPERPIXELS 

A. Superpixel segmentation 

SLIC [16] is an adaptation of the well-known k-means 
algorithm for clustering pixels [17]. The resulting clusters of 
pixels are the so-called superpixels. Each pixel of an image I 
is represented by a five-dimensional feature vector composed 
of the values of the L, a, b color components and the pixel 
coordinates (x, y). The only parameter in SLIC algorithm is k, 
i.e., the number of superpixels in which the image will be 
segmented. The clustering procedure begins by initializing k-
means with k feature vectors as cluster centers. These vectors 
are estimated from seed locations corresponding to the lowest 
gradient position in a 33 neighborhood of pixels sampled on 
a regular grid, spaced S pixels apart, where kNS / , and 
N is the number of pixels in I.  

The algorithm proceeds by evaluating the distances 
between the feature vector extracted from each pixel and the 
cluster centers. SLIC differs from conventional k-means in 
that the number of distance calculations in the optimization is 
reduced. This is achieved by limiting the search area to a 
region proportional to the superpixel size. As a result the 
complexity is linear to the number of pixels and independent 
to the number of superpixels. The distance metric used is  
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where dc is the distance between (L, a, b) vectors, ds is the 
distance between (x, y) vectors, and m is a variable that 
controls the compactness of the superpixels.   

B. Salient superpixel detection 

The concept of salient pixels can be extended to the level 
of superpixels by exploiting a superpixel segmentation and a 
salient pixel detector. 

Definition 1: Let I be an image segmented into a set P of k 
superpixels Pi such that 
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and kjkiijPP ji ,...,1,,...,1,,  .  

Given a set  

  nlIpl ,...,1,   (4) 

of n salient pixels pl detected in I, a salient superpixel is 
defined as a member of  

  nlkiPpPP ili ,...,1,,...,1,:   (5) 

where PP  .  

Based on this definition, the proposed salient superpixel 
detection involves in three steps: a) superpixel segmentation; 
b) salient pixel detection; and c) selection of a subset of 
superpixels containing at least one salient pixel. 

IV. BLOOD DETECTION 

The proposed blood detection method begins with the 
detection of salient superpixels in a WCE image, as described 
in section III. Salient pixel detection is performed using the 
salient pixel detector proposed in our previous works [11, 
12], due to its effectiveness in WCE images. Figure 1 
illustrates the salient superpixel detection process on 
representative images of intraluminal bleeding and of an 
angioectasia. It can be noticed that at least one superpixel per 
image corresponds to a (red) blood area.   

Each salient superpixel is represented by a set of first 
order statistical color features extracted from RGB and other 
color spaces, where chromatic components are approximately 
decorrelated. These include the perceptually uniform CIE-
Lab (or L*a*b*) and the perceptual HSV color spaces, which 
can be derived from RGB with a non-linear transformation 
[14].  The components of CIE-Lab, represent lightness (L), 
the quantity of red (a>0) or the quantity of green (-a>0), the 
quantity of yellow (b>0) or the quantity of blue (-b>0). The 
components of HSV, represent hue (H), color saturation (S) 
and the value (V) of its lightness. In this paper the optimal 
feature subset selection process is determined experimentally, 
by application of feature selection algorithms, as described in 
section IV.  

The blood pattern recognition task can be implemented 
by a supervised learning machine. In this work, we applied 
the non-linear, Radial Basis Function (RBF) SVM classifier 
[17], because it is well-known for its learning capacity and 
has exhibited a better performance than others in the related 
previous studies [10, 11, 12].  

V. EXPERIMENTAL EVALUATION 

The experiments performed in this study aim to the 
selection of the best performing feature sets for blood 
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Figure 1.  Salient superpixel detection in WCE images of intraluminal 
bleeding (left) and of an angioectasia (right). (a) Original images, (b) 
Segmented images using superpixel segmentation, (c) Detected salient 
pixels, (d) Detected salient superpixels. 

detection in WCE images. The dataset used has been 
acquired with a MiroCam® (IntroMedic® Co., Seoul, South 
Korea) capsule endoscope, with a resolution of 320×320 
pixels. It comprises a representative set of WCE images 
obtained from a total of 252 WCE procedures. A detailed 
description of this dataset is provided in [11, 12] and it is 
publicly available through our online WCE database KID1 
[6]. All images in this dataset are accompanied by ground 
truth graphic annotations performed manually by experts 
using the Ratsnake annotation tool [18]. Blood detection 

 
1 http://is-innovation.eu/kid/  

performance was assessed on the images of intraluminal 
bleeding and angioectasias, as well as on the normal images 
(without visible abnormalities) of the dataset. In order to 
account for more realistic conditions the normal images 
included bubbles and/or luminal debris or opaque luminal 
fluid.   

The color features extracted from each superpixel include 
statistical (central) moments of up to 3rd order, estimated 
from color components X={R, G, B, L, a, b, H, S, V, F1, F2, 
F3}, where F1, F2 and F3 are defined by Eq.(1). Optimal 
feature subsets for superpixel representation have been 
obtained with the application of feature selection and ranking 
algorithms that are based on different optimality conditions. 
These include [19]: a) Correlation-based Feature Selection 
(CFS), which selects a subset of attributes by considering the 
individual predictive ability of each feature along with the 
degree of redundancy between them; b) feature ranking based 
on the Information Gain (IG), the Gain Ratio (GR), and the 
chi-squared statistic (χ2) with respect to the class; and c) 
Recursive Feature Elimination (RFE), which is a feature 
selection algorithm embedded in the SVM classification 
scheme. In all cases subsets of the ranked features of 
increasing cardinality, i.e., subsets composed of the first one, 
two, three features etc, formed feature vectors, which were 
subsequently classified by the SVM. The feature extraction 
methods were implemented in MATLAB, using the 
superpixel segmentation algorithm provided by Achanta et al 
[16], and the feature selection algorithms of WEKA data 
mining software [20]. The parameter ranges investigated by 
grid search include k[200, 400], SURF threshold t[100, 
1000], SVM cost parameter c[0.001, 1000] and RBF 
σ[0.01, 1].   

In order to minimize the bias in the selection of the 
training and test sets, repetitive classification experiments 
were carried out using the 10-fold cross validation strategy. 
The classification accuracy was assessed by the mean area 
under the receiver operating characteristic (ROC) curve 
(AUC), as it represents an intuitive performance measure 
even if the datasets have imbalanced class distributions [21]. 
The average sensitivity and specificity are also provided for 
reference with respect to the related works. For comparison 
purposes we have assessed the classification performance 
obtained using: a) the means of each RGB, CIE-Lab and HSV 
color space components, as a baseline approach; b) 
normalized histograms hX, with 2i bins, i=1,…,128 per color 
component X; c) the method of Fu et al [10]; and d) our state-
of-the-art abnormality detection method [11], which is now 
applied only for blood detection.   

The best average results obtained with the different 
methods are summarized in Table I. The feature selection 
process showed that only three features are sufficient for 
blood discrimination. No increase in AUC was observed by 
increasing the dimension of the feature vectors with lower 
ranked features. The selected features include only first and 
second order moments (mean μΧ, and standard deviation σX). 
IG and χ2 –based ranking gave the same feature subsets in the 
top-three positions. Best classification performance was 
achieved with the feature subset selected by the CFS method.  

The baseline approach resulted in approximately the same 
classification performance for all color spaces considered 
(indicatively Table I includes the performance of CIE-Lab 
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means). The best performing histograms were those of the a 
CIE-Lab component (ha) using 32 bins. Although the AUC 
obtained by the histogram features is quite high, its large 
dimensionality leads to a more complex classification stage 
than the (3-dimensional) feature vector obtained from the 
CFS algorithm.  

Table I shows also that the CFS-based feature subset 
outperforms both the state-of-the-art methods of Fu et al [10] 
and Iakovidis and Koulaouzidis [11]. In order to assess the 
effect of color saliency in the feature extraction process, the 
method of Fu et al was tested both in its original version [10], 
using features extracted from all superpixels (29,440) and 
using features extracted only from salient superpixels 
(3,501). In the latter case the mean AUC obtained was 
0.860.05, i.e., approximately the same to the former (Table 
I). Therefore, the use of salient superpixels can be used for a 
less complex feature extraction process requiring 740% less 
feature vector computations.  

VI. CONCLUSION 

A novel blood detection method for WCE, based on 
superpixel segmentation and color saliency, is presented. The 
experimentation performed indicates that proposed method is 
more effective than its state-of-the-art predecessors [10, 11], 
and in the case of [10] also more efficient. 

In [10] the average results reported are higher (accuracy 
0.95, sensitivity 0.99, and specificity 0.94) than the ones 
obtained in our study for the same method (accuracy 0.86, 
sensitivity 0.88, specificity 0.84). This is confirms that the 
results reported in different studies for WCE are highly 
dependent on the datasets [6]. The dataset used in [10] 
originates from the public database of Given Imaging [22]; 
however, the experiments are not fully reproducible because 
the video clips used are not specified, the randomly selected 
subset of the video frames used is not provided, and the 
image annotations used are also not provided. The dataset 
used in our study is also publicly available, but the specific 
images and annotations are provided; thus enabling 
comparisons with both current and future methodologies.    

Future work includes large scale experimentation using 
full WCE videos, further investigation of color saliency for 
WCE images, and enhancement of the proposed approach so 
that it can be more reliably used for recognition of other 
abnormalities, such as ulcers and polyps.  
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