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Μικροσυστοιχίες 

Γυάλινο πλακίδιο που αποτελείται από συγκεκριμένες

αλληλουχίες οι οποίες είναι ειδικές για συγκεκριμένα

γονίδια, τους ανιχνευτές (probes), οι οποίοι είναι

ακινητοποιημένοι σε μία κουκκίδα (spot) της γυάλινης

επιφάνειας του πλακιδίου.



Μικροσυστοιχίες 

• Ταυτόχρονη ανάλυση του τρόπου έκφρασης χιλιάδων γονιδίων
σε διαφορετικά δείγματα ή σε διαφορετικά στάδια ανάπτυξης

• Σύγκριση έκφρασης σε φυσιολογικές και παθολογικές
καταστάσεις

• Ανταπόκριση σε φαρμακευτικές ουσίες ή θεραπείες

• Παρέχουν χρήσιμες πληροφορίες για τη βιολογική λειτουργία
ενός οργανισμού, βρίσκοντας ποια γονίδια ενεργοποιούνται ή
καταστέλλονται σε διάφορα στάδια ανάπτυξης ή σε απόκριση σε
ερεθίσματα του περιβάλλοντος, όπως η απόκριση σε ορμόνες ή
σε υψηλή θερμοκρασία



Βασικά βήματα για ένα πείραμα 

μικροσυστοιχιών

• Διατύπωση του βιολογικού ερωτήματος

• Επιλογή του κατάλληλου τύπου μικροσυστοιχίας (τυπωμένες 

μικροσυστοιχίες cDNA, τυπωμένες μικροσυστοιχίες 

ολιγονουκλεοτιδίων, μικροσυστοιχίες που κατασκευάστηκαν 

με in situ σύνθεση ολιγονουκλεοτιδίων)

• Απομόνωση του RNA από τα δείγματα

• Σήμανση των δειγμάτων με φθορίζουσες ουσίες

• Υβριδισμός στην επιφάνεια της μικροσυστοιχίας

• Σάρωση μικροσυστοιχίας στα μήκη κύματος των φθορίζουσων 

ουσιών και μετρώντας τον αντίστοιχο φθορισμό της κάθε 

ουσίας

• Χρήση κατάλληλων προγραμμάτων για τη δημιουργία της 

τελικής εικόνας των μικροσυστοιχιών. 



Μικροσυστοιχίες

Η συνδυασμένη εικόνα της μικροσυστοιχίας παρέχει

ένα βολικό τρόπο ώστε να βρεθούν τα γονίδια τα

οποία βρίσκονται σε μεγαλύτερη έκφραση στο

δείγμα ελέγχου σε σύγκριση με το δείγμα αναφοράς



Μικροσυστοιχίες

• Μονοχρωματικές μικροσυστοιχίες (Affymetrix): Κάθε 

δείγμα RNA σημαίνεται με μια χρωστική και τοποθετείται 

για υβριδισμό σε ένα τσιπ μικροσυστοιχιών.

• Διχρωματικές μικροσυστοιχίες:  Δύο δείγματα RNA 

(ελέγχου – αναφοράς) σημαίνονται με 2 διαφορετικές 

φθορίζουσες ουσίες και το τοποθετούνται για υβριδισμό 

στο ίδιο τσιπ μικροσυστοιχιών.







Μικροσυστοιχίες

•Με κόκκινο χρώμα εμφανίζεται μια κουκκίδα, αν σε αυτήν η

ποσότητα του δείγματος ελέγχου είναι μεγαλύτερο

•Με πράσινο χρώμα εμφανίζεται μια κουκκίδα, αν σε αυτήν η

ποσότητα του δείγματος αναφοράς είναι μεγαλύτερο

•Με κίτρινο χρώμα εμφανίζεται μια κουκκίδα, αν σε αυτήν οι

ποσότητες του δείγματος ελέγχου και του δείγματος αναφοράς

είναι ίσες

•Με μαύρο χρώμα εμφανίζεται μία κουκκίδα αν κανένα δείγμα

δεν έχει υβριδοποιηθεί

•Οι υπόλοιπες αποχρώσεις εμφανίζονται για αντίστοιχες

ποσότητες των δύο δειγμάτων



Ποσοτικοποίηση δεδομένων 

•Η ένταση του φθορισμού μετατρέπεται σε αριθμητικά

δεδομένα και δίνει πληροφορίες σχετικά με την

έκφραση των γονιδίων της μικροσυστοιχίας.

•Το σχετικό επίπεδο έκφρασης για κάθε γονίδιο

αντιστοιχεί με την ποσότητα του κόκκινου ή του

πράσινου φωτός που εκπέμπεται μετά από διέγερση.

•Για να συσχετίσουμε αυτές τις ποσότητες και να

εξάγουμε το σχετικό επίπεδο έκφρασης κάθε γονιδίου

χρησιμοποιούμε το λόγο έκφρασης
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Σφάλματα στα πειράματα 
μικροσυστοιχιών

Τυχαία και συστηματικά σφάλματα  συμβαίνουν σε ένα πείραμα 

μικροσυστοιχιών:

– Χρήση διαφορετικών φθορίζουσων ουσιών

– Χρήση διαφορετικών πλατφορμών

– Διαφορετικές πειραματικές συνθήκες 

– Εισαγωγή θορύβου στα δεδομένα από το σαρωτή



image analysis

• Following hybridization, image analysis is performed 
(Yang, Buckley et al. 2001). Pre-filtering/masking 
method follows and Background Signal adjustment is 
recommended before scaling. Masking refers to 
applications of microarray signal correction that 
account for cross hybridization (Naef and Magnasco 
2003), array scratches, scanner improper 
configuration (Shi, Tong et al. 2005, Timlin 2006), 
spot light saturation and washing issues (Yauk, 
Berndt et al. 2005) that may have occurred. 



Normalization
• Normalization is performed to correct for systematic differences between samples 

on the same slide, or between slides, which do not represent true biological 
variation between slides and enables experiments to be combined and/or 
compared. It focuses on adjusting the individual hybridization intensities in order 
to balance them appropriately so that meaningful biological comparisons can be 
made (Quackenbush 2002). 

• There are a number of reasons why data must be normalized which include: 
– unequal labeling efficiency, 
– noise of the system and differential expression. 

• The decision as to which normalization method is appropriate may depend on the 
biological nature of the dataset examined. For each microarray technology there is 
a preferred normalization method (Bolstad, Irizarry et al. 2003, Boes and 
Neuhauser 2005). 

• Typical normalization methods include the rank invariant normalization (Tseng, Oh 
et al. 2001), quantile (Bolstad, Irizarry et al. 2003),  LOWESS/LOESS methods 
(Tseng, Oh et al. 2001). For many types of commercial arrays, suites of R-
BioConductor (Reimers and Carey 2006), based packages are used to do 
consecutively background adjustment and normalization of data, such as RMA 
(Robust Multi-Array Average expression measure) (Irizarry, Hobbs et al. 2003) and 
MAS 5.0 Algorithm (Pepper, Saunders et al. 2007).





Κανονικοποίηση

Τρόπος ελαχιστοποίησης των σφαλμάτων στα επίπεδα έκφρασης

• Κανονικοποίηση ολικής έντασης (total intensity normalization)

• Lowess (locally weighted linear regression) κανονικοποίηση



Βάσεις δεδομένων μικροσυστοιχιών

• GeneExpression Omnibus (GEO): Βάση δεδομένων του NCBI που 
παρέχει δεδομένα γονιδιακής έκφρασης
http://www.ncbi.nlm.nih.gov/geo/ 

• Array Express: Δημόσια βάση δεδομένων μικροσυστοιχιών η οποία 
διατηρείται στο Ευρωπαϊκό Ινστιτούτο Βιοπληροφορικής ΕΒΙ 
http://www.ebi.ac.uk/arrayexpress/

• ONCOMINE: Βάση δεδομένων που περιέχει πειράματα 
μικροσυστοιχιών που αφορούν διαφόρους τύπους καρκίνου. 
Επίσης παρέχει στο χρήστη εργαλεία διαχείρισης των δεδομένων 
για την αποδοτικότερη εύρεση των επιθυμητών πειραμάτων και 
γονιδίων http://www.oncomine.org/



Δεδομένα μικροσυστοιχιών

https://repository.kallipos.gr/handle/11419/1585



Ανάλυση Μικροσυστοιχιών

1) Στατιστική ανάλυση για εύρεση γονιδίων που υπέρ ή 
υπoεκφράζονται

2) Ομαδοποίηση (Clustering)

3) Πρόγνωση (Prediction)



Ομαδοποίηση (Clustering)

• Oμαδoποιούνται μαζί γονίδια με βάση τα επίπεδα έκφρασης τους 

• Αναπαράσταση των ομάδων αυτών με σκοπό την εύρεση πιθανών 

σχέσεων μεταξύ των γονιδίων

• Αλγόριθμοι ομαδοποίησης μπορούν να διαχωριστούν σε 

επιβλεπόμενους (supervised) και μη-επιβλεπόμενους 

(unsupervised)

• Η απόσταση (distance) μεταξύ δύο γονιδίων χρησιμοποιηται ως 

είσοδος στους αλγορίθμους ομαδοποίησης:

– Ευκλείδεια απόσταση

– Απόσταση Manhattan

– Συντελεστής Συσχέτισης του Pearson
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• Clustering analysis tries to group genes or individuals according to their 
expression levels and leads to a representation that can be helpful for 
identifying patterns in time and space. Clustering operates in an 
unsupervised manner, since in such analyses all individuals (usually the 
patients are treated equally) and the clustering method result in some 
classification that can be of interest. Some of the methods require that the 
number of clusters should be defined beforehand, whereas in others, the 
number of clusters is automatically defined. Several clustering methods 
exist, the most commonly used for microarray analysis are the 
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and 
hierarchical clustering for tree based representations. Evolutionary tree 
based algorithms such as Neighbor Joining could also be applied. In the k-
Means algorithm the number of clusters should be pre-defined and is also 
widely used in microarray experiments. One of the preferred clustering 
algorithms is the self-organizing map (SOM) which is another technique 
that is particularly well suited for exploratory data analysis. The self-
organizing map (SOM) (Tamayo, Slonim et al. 1999) is a method for 
producing ordered low-dimensional representations of an input data 
space. Typically such input data is complex and high dimensional with data 
elements being related to each other in a nonlinear fashion. Most of the 
aforementioned implementations can be found in BioConductor (Reimers 
and Carey 2006), Expander (Shamir, Maron-Katz et al. 2005) and 
Hierarchical Clustering Explorer (HCE).
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Αλγόριθμοι Ομαδοποίησης

Ιεραρχική ταξινόμηση:

α)Single Linkage Clustering

β) Complete Linkage Clustering

γ) Average Linkage Clustering



Αλγόριθμοι Ομαδοποίησης

• Κ-means

• SOMs

• SVΜ

• PCA

• MCL





Πρόγνωση

• Ενδιαφερόμαστε κυρίως για τη σωστή 
πρόγνωση (ταξινόμηση) των ασθενών. 

• Έχει σημασία σε περιπτώσεις πρόβλεψης της 
ασθένειας, σαν διαγνωστική δοκιμασία

• Χρησιμοποιούνται οι συνηθισμένες μέθοδοι 
ταξινόμησης (Νευρωνικά Δίκτυα, SVM, κλπ)

• Πολλές φορές απαιτείται κάποια μέθοδος 
επιλογής των πιο σημαντικών γονιδίων



• Classification refers to class prediction from gene expression 
patterns. In such a case, we have predefined classes (two or 
more), for instance healthy individuals vs. diseased ones, and 
we want to build a classifier that will be able to discriminate 
them in future applications (Golub, Slonim et al. 1999, 
Radmacher, McShane et al. 2002), most notably, for screening 
and diagnostic purposes (Simon, Radmacher et al. 2003). A 
wide variety of supervised methods taken from the arsenal of 
machine learning and artificial intelligence have been used for 
this purpose, including Neural Networks (Khan, Wei et al. 
2001), , Support Vector Machines (Furey, Cristianini et al. 
2000), Graphical Models (Bura and Pfeiffer 2003), genetic 
algorithms (Ooi and Tan 2003), nearest neighbour classifiers 
and many other statistical methods, including shrunken 
centroids (Tibshirani, Hastie et al. 2002) and Partial Least 
Squares and Discriminant analysis (Nguyen and Rocke 2002). 



feature selection

• Due to the large number of features (genes) given as 
input to the various classifiers, a subsequent problem is to 
select the best subset of features that can be used efficiently 
by the classifier. This problem is known as the feature 
selection problem in machine learning (Guyon and Elisseeff 
2003). In addition to the large number of techniques that 
have already been developed in the machine learning and 
data mining fields, the advent of microarrays have led to a 
wealth of newly proposed techniques. Comparison of such 
methods in gene expression classification can be found in 
several excellent reviews and evaluation studies (Li, Zhang et 
al. 2004, Saeys, Inza et al. 2007, Ma and Huang 2008)



Identification of differentially 
expressed genes

• Identification of differentially expressed genes, finally, is the most 
obvious approach in order to assign biological functions to genes, in cases 
where there are two or more classes in which individuals can be classified 
in advance, for example when normal and diseased tissues are compared 
or the gene expression is studied with respect to a particular treatment. 
The main aim is to identify which genes are pinpointed by their differential 
expression levels and see which of them is up-, or down-regulated. Ideally, 
the identification of DEGs is a simple procedure reduced to a statistical 
test for the equality of means (e.g. t-test, see below). However, 
statistically microarrays datasets are characterised by several distinctive 
features such small number of samples (individuals), large number of 
variables and large amount of noise, and thus several advanced statistical 
methods have been proposed in order to overcome these. Moreover, the 
accumulation of similar datasets from various laboratories has lead to the 
need of combining these datasets in order to increase the sample size. 
This approach, which is termed meta-analysis in the medical literature, 
has been increasingly popular during the last years and several methods 
exist. 



t-test



Προβλήματα

• Το βασικό πρόβλημα με το t-test είναι οτι απαιτεί σχετικά 
“μεγάλο” μέγεθος δείγματος

• Στα περισσότερα πειράματα μικροσυστοιχιών, έχουμε δείγμα 
μικρότερο των 20 ατόμων, και καμιά φορά μικρότερο των 10

• Έτσι, οι προϋποθέσεις για την κανονικότητα του πληθυσμού 
δεν ισχύουν

• Πολλές φορές, ειδικά όταν το δείγμα είναι <5, μπορεί να 
έχουμε και “περίεργα” μικρή διασπορά που θα μας 
δημιουργήσει πρόβλημα

• Τέλος, ο μεγάλος αριθμός γονιδίων, μας οδηγεί στο 
πρόβλημα των πολλαπλών συγκρίσεων 



Computationally Intensive 

methods

• Resampling methods

• Bayesian t-test

• Empirical Bayesian



bootstrap
• The Bootstrap (Efron 1982, Efron and Tibshirani 1993) is a statistical method for estimating

the sampling distribution of an estimator by sampling with replacement from the original
sample. The Bootstrap is an ideal method when no formula the sampling distribution is
available or when available formulas make inappropriate assumptions (e.g. small sample size,
non-normal distribution).

• The logic behind the bootstrap is that all measures of precision come from a statistic’s
sampling distribution. When the statistic is estimated on a sample of size n from some
population, the sampling distribution tells you the relative frequencies of the values of the
statistic. The sampling distribution, in turn, is determined by the distribution of the
population and the formula used to estimate the statistic. The accuracy of the bootstrap
depends on the number of observations in the original sample and the number of
replications.

• A crudely estimated sampling distribution is adequate if you are only going to calculate, for
instance, a standard error. A better estimate is needed if you want to construct a 95%
confidence interval (and we need to emphasize that there are various methods for
constructing a Bootstrap confidence interval from the resampled statistics – the normal
approximation method, the bias corrected method, the percentile method and the t-
percentile method - see (Efron 1987)).

• Generally, replications on the order of 1,000 produce very good estimates, more may be
needed for accurate estimation of p-values, but only 50–200 replications are needed for
estimating standard errors (this may have implications for meta-analysis, see below). Various
methods have been proposed for estimating the necessary number of replications (Andrews
and Buchinsky 2000, Davidson and MacKinnon 2000).

• The Bootstrap has been applied in microarray experiments and empirical evidence suggests
that it has good properties, at least for moderate sample sizes (Meuwissen and Goddard
2004). For really small sample sizes (i.e. <10), various modifications to the standard method
have been proposed (Neuhauser and Jockel 2006, Jiang and Simon 2007).

https://en.wikipedia.org/wiki/Sampling_distribution
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Sampling_%28statistics%29
https://en.wikipedia.org/wiki/Sampling_distribution


http://www.stata.com/manuals13/rbootstrap.pdf







permutation

• A conceptually different resampling method is the permutation test. This is a type of 
statistical significance test in which the distribution of the test statistic under the null 
hypothesis is obtained by calculating all possible values of the test statistic following 
rearrangements of the labels on the observations. If the labels are exchangeable under the 
null hypothesis, then the resulting tests yield exact significance levels. Confidence intervals 
can then be derived from the tests. 

• The theory has evolved from the works of Ronald Fisher and E. J. G. Pitman in the 1930s 
(Kaiser 2007). For small samples, all possible permutations can be evaluated, but for sample 
sizes >15 this is prohibitive. Thus, a random sample of the permutation is used instead, hence 
the name Monte Carlo permutation. 

• An important assumption behind a permutation test is that, under the null hypothesis, the 
observations are exchangeable. Thus, a consequence of this is that tests of difference in 
location (like the t-test) require equal variance. In this respect, the permutation t-test shares 
the same weakness as the classical Student's t-test (the Behrens–Fisher problem). 

• Generally, since the permutation computes a p-value by counting the times that the statistic 
is larger than the observed one, a large number of replications are required (typically of the 
order of 1,000 or more). Permutation tests have been used for analysis of microarray data 
(Tsai, Chen et al. 2003). However, when sample sizes are very small, the number of distinct 
permutations can be severely limited, and pooling the permutation-derived test statistics 
across all genes has been proposed. However, since the null distribution of the test statistics 
under permutation is not the same for all genes, this can have a negative impact on both p-
value estimation (Yang and Churchill 2007). 

https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Test_statistic
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/E._J._G._Pitman
https://en.wikipedia.org/wiki/Behrens%E2%80%93Fisher_problem


Software

• Bootstrap and permutation methods are
readily available in major statistical packages
like Stata and R. Bootstrap is available with
various options using the bootstrap command
in Stata and the boot command in R.
Permutation can be performed with the
permute and permtest (for paired
observations) commands in Stata, as well as
with the perm command in R. In the Appendix
we give examples of performing bootstrap and
permutation t-test is Stata.



http://www.stata.com/manuals13/rpermute.pdf



http://www.stata.com/manuals13/rjackknife.pdf





Εφαρμογή t-test σε παρατηρήσεις δυο 
δειγμάτων















Εφαρμογή t-test σε ζευγαρωτές παρατηρήσεις





Bayesian methods
• The bayesian framework provides an intuitively appealing framework for dealing 

with most of the problems encountered in analysis of gene expression data. The t-
test being one of the simplest and widely used methods has been into the centre 
of research for years and several bayesian counterparts of the t-test have been 
proposed, whereas some of them were developed specifically to address problems 
in microarray research. 

• The various methods that have been proposed share some common features but 
also show marked differences according to various criteria, especially when it 
comes to definition of the prior distribution for the hyperparameters. 

• Moreover, some of the methods are oriented toward hypothesis testing by relying 
on the Bayes Factor to compare the null against the alternative hypothesis 
(Gottardo, Pannucci et al. 2003, Gönen, Johnson et al. 2005, Rouder, Speckman et 
al. 2009, Wang and Liu 2015), whereas others are oriented towards parameter 
estimation and compute credible intervals for the parameters of interest, usually 
the difference of the means (Wetzels, Raaijmakers et al. 2009, Kruschke 2013).  

• A convenient property of the t-test is the fact that its simplicity allows in many 
cases a closed form expression to be derived, especially for the Bayes Factor 
(Gottardo, Pannucci et al. 2003, Gönen, Johnson et al. 2005, Rouder, Speckman et 
al. 2009, Wang and Liu 2015), whereas other methods rely on MCMC to sample 
from the posterior distribution (Wetzels, Raaijmakers et al. 2009, Kruschke 2013).  

• Another important feature of the bayesian methods is the fact that within the 
bayesian framework, one cannot only incorporate the problem of uncertainty and 
small sample size, but also the problem of multiple testing, a feature very helpful 
in microarray analysis (Gottardo, Pannucci et al. 2003, Fox and Dimmic 2006, 
Gonen 2010)



Software

• Concerning the above-mentioned methods, there are several software 
implementations available. For instance, the Bayes Factor method of Rouder and 
coworkers (Rouder, Speckman et al. 2009), which is known as the Jeffreys–Zellner–
Siow (JZS) t-test, is available as a web-calculator 
(http://pcl.missouri.edu/bayesfactor) as well as an R package (https://cran.r-
project.org/web/packages/BayesFactor/index.html). 

• The Savage–Dickey (SD) t-test, proposed by Wetzels and coworkers (Wetzels, 
Raaijmakers et al. 2009), is inspired by the JZS t-test and retains its key concepts 
but is applicable to a wider range of statistical problems (i.e. allows researchers to 
test order restrictions and applies to two-sample situations in which the different 
groups do not share the same variance), is also available as an R package that uses 
WinBUGS (http://www.ruudwetzels.com/sdtest). Finally, there is the BEST 
(Bayesian Estimation Supersedes the t-test) package, which provides a Bayesian 
alternative to a t-test, providing much richer information about than a simple p 
value (i.e. complete distributions of credible values for the effect size, group 
means and their difference, standard deviations and their difference, and the 
normality of the data) (Kruschke 2013). The BEST package is available for R in 
http://www.indiana.edu/~kruschke/BEST/. There is also available an online 
calculator (http://sumsar.net/best_online/), whereas the method is also 
incorporated in the Bayesian First Aid package 
(https://github.com/rasmusab/bayesian_first_aid) that aims to provide easy to use 
Bayesian alternatives to the most widely used estimation commands. 

http://pcl.missouri.edu/bayesfactor
https://cran.r-project.org/web/packages/BayesFactor/index.html
http://www.ruudwetzels.com/sdtest
http://www.indiana.edu/~kruschke/BEST/
http://sumsar.net/best_online/
https://github.com/rasmusab/bayesian_first_aid


Penalised t-test

• As we already noted, the ordinary t-test is not ideal for many microarray experiments 
because a large t-statistic can be driven by an unrealistically small value for S2. Genes with 
small sample variances, possibly as a result of very small sample size, have a good a chance of 
giving a large t-statistic even if they are not DE. A broad class of methods have been 
presented in order to alleviate such problems. These methods are usually called penalized, 
moderated or regularized t-tests. Most of these methods have been presented with an 
empirical Bayesian justification (hence, they share a lot of common features with the 
Bayesian methods), whereas other consist more of ad-hoc rules. 

• In any case all of them apply some kind of modification to the denominator of the t-test by 
increasing the variance (Kooperberg, Aragaki et al. 2005). 

• Thus, they all have the same interpretation as an ordinary t-statistic except that the standard 
errors have been moderated across genes, effectively borrowing information from the 
ensemble of genes to aid with inference about each individual gene. 

• Baldi and Long were among the first to discuss Bayesian methods for the t-test in the context 
of microarray experiments (Baldi and Long 2001, Kayala and Baldi 2012). However, even 
though they developed a full Bayesian probabilistic framework for microarray data analysis, 
they finally chose to use in their web-server, Cyber-T (http://cybert.ics.uci.edu/) an empirical 
Bayes regularized t-test with variance equal to:
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cont.

• The parameter ν0 represents the degree of confidence in the background 
variance σ02 versus the empirical variance. In Cyber-T, the value of ν0 can 
be set by the user by clicking on the corresponding button. The smaller n, 
the larger ν0 ought to be. A simple rule of thumb is to assume that K > 2 
points are needed to properly estimate the standard deviation and keep n 
+ ν0 = K . This allows for a flexible treatment of situations in which the 
number n of available data points varies from gene to gene. The default 
value is K = 10. In essence, using this approach the empirical variance is 
modulated by ν0 «pseudo-observations» associated with a background 
variance σ02. For σ0, one could use the standard deviation of the entire 
dataset or, depending on the situation, of particular categories of genes. 
Cyber-T uses however a flexible approach under which the background 
standard deviation is estimated by pooling together all the neighboring 
genes contained in a window of size w (the default is w = 101, 
corresponding to 50 genes immediately above and below the gene under 
consideration). As we already mentioned, Cyber-T is available as a web-
server as well as an R function (http://cybert.ics.uci.edu/).

http://cybert.ics.uci.edu/


Other similar methods

• Another empirical Bayes methods is the method of Lönnstedt and Speed (Lönnstedt and 
Speed 2002) which uses the moderated variance:

• where the penalty a is estimated from the mean and standard deviation of the sample 
variances S. Smyth later (Smyth 2005) generalized the approach from Lönnstedt and Speed in 
the well-known limma (linear models for microarray data) method which uses:

• Here, d0 and s0 are estimated from the data with the method of moments using an empirical 
bayes approach. The limma method is one of the most widely used methods for analysing DE 
genes, and there is available as Bioconductor package in R (http://bioinf.wehi.edu.au/limma).  
Tusher et al (Tusher, Tibshirani et al. 2001) and Efron et al (Efron, Tibshirani et al. 2001) also 
used a penalized t-statistics of the form

• This differs slightly from the previous statistics in that the penalty a is applied to the sample 
standard deviation S rather than to the sample variance S2. Tusher et al (Tusher, Tibshirani et 
al. 2001) in the so-called «Significance Analysis of Microarrays» (SAM) method, choose a to 
minimize the coefficient of variation of the absolute t-values while Efron et al (Efron, 
Tibshirani et al. 2001), choose a to be the 90th percentile of the S values. These choices are 
driven by empirical rather than theoretical considerations. SAM is one of the oldest and 
widely-used methods and it is available as Excel plugin at 
http://statweb.stanford.edu/~tibs/SAM/, as well as part of several R packages (samr, ema). 
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Other Alternatives

• As we already mentioned, the earliest microarray publications 
judged differential expression purely in terms of fold-change 
with 2-fold typically considered a worthwhile cutoff. However, 
fold-change cutoffs do not take variability into account or 
guarantee reproducibility. Moreover, the FC-based ranking is 
deficient because a gene with larger variances has a higher 
probability of having a larger statistic. The moderated t-tests 
on the other hand, allow for borrowing information across 
genes and show better performance, providing statistical 
estimates of statistical significance and the same time giving 
results more in line with fold-change rankings. However, even 
these modern statistical tests permit genes with arbitrarily 
small fold-changes to be considered statistically significant 
due to the t-statistic possibly having a very small denominator.



• Hence, it has become increasingly common in the literature to 
require that differentially expressed genes satisfy both p-value 
and fold-change criteria simultaneously. Some authors 
required genes to satisfy a modest level of statistical 
significance and then rank significant genes by fold-change 
with an arbitrary cutoff. Others, first apply a fold-change 
cutoff and then rank genes by their p-value, whereas others 
declare genes to be differentially expressed if they 
simultaneously show a fold-change larger than a cutoff and 
also satisfy criterion for p –value. Such combination criteria 
typically find more biologically meaningful sets of genes than 
p-values alone and in some cases give much better agreement 
between platforms than p-value alone.





TREAT

• A method that tried to impose statistical formalism to these 
approaches is TREAT (t-tests relative to a threshold). This 
method is an extension of the empirical Bayes moderated t-
statistic presented by Smyth (limma), and can be used to test 
whether the true differential expression is greater than a 
given threshold value. By including the fold-change threshold 
of interest in a formal hypothesis test, the methods achieve 
reliable p-values for finding genes with differential expression 
that is biologically meaningful (McCarthy and Smyth 2009). 
The method has shown very good properties in both real as 
well simulated data.



WAD

• Similar considerations have lead to the development 
of the weighted average difference method (WAD) 
for ranking DEGs (Kadota, Nakai et al. 2008). The 
authors observed that some top-ranked genes which 
are falsely detected as "differentially expressed" tend 
to exhibit lower expression levels. This interferes 
with the chance of detecting the "true" DEGs 
because the relative error is higher at lower signal 
intensities. WAD uses the average difference and 
relative average signal intensity so that highly 
expressed genes are highly ranked on the average for 
the different conditions:
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Μετα-Ανάλυση

• Παρουσία θορύβου στα αποτελέσματα

• Μη επαναλήψιμα αποτελέσματα μεταξύ των πειραμάτων

• Στατιστικό εργαλείο που επεξεργάζεται τα δεδομένα και τα 
αποτελέσματα μελετών που ερευνούν το ίδιο ερώτημα

• Παρέχει ένα τελικό συμπέρασμα το οποίο προέρχεται από 
μια σύνθεση ανεξάρτητων συνόλων δεδομένων 

Normand, S. L. (1999). "Meta-analysis: formulating, evaluating, combining, and reporting." Stat Med 18(3): 321-59 



• Meta-analysis is the statistical procedure for combining data 
from multiple studies. When the treatment effect (or effect 
size) is consistent from one study to the next, meta-analysis 
can be used to identify this common effect. When the effect 
varies from one study to the next/ meta-analysis may be used 
to identify the reason for the variation. Decisions about the 
utility of an intervention or the validity of a hypothesis cannot 
be based on the results of single study, due to the fact that 
the results typically vary from one study to the next. Rather, a 
mechanism is needed to synthesize data across studies. Meta-
analysis applies objective formulas and can be used with any 
number of studies.



• Issue 1: Selection of Appropriate Microarray Datasets 
• The first, and most critical, step in an experimental study is to clearly state 

objectives. Meta-analysis enables the identification of differentially 
expressed genes among multiple samples in order to improve 
classification within and across platforms, to detect redundancy across 
diverse datasets, to identify differentially co-expressed genes, and infer 
networks of genetic interactions. The second step of meta-analysis is to 
set eligibility criteria, either biological (e.g., tissue type, disease) or 
technical (e.g., one-channel versus two-channel detection, density of 
microarrays, technological paltform). Based on these criteria, literature 
searches are preformed, using appropriate key terms, to retrieve relevant 
studies. These studies can be complemented by microarray data available 
in public databases that conform to the MIAME (Minimum Information 
About a Microarray Experiment) guidelines (Brazma, Hingamp et al. 2001) 
.



• Issue 2: Data Acquisition from Studies

• The genes found to be differentially expressed in a given study 
constitute the published gene lists (PGLs) which are either 
included in the main text or provided as supplementary 
material. The gene expression data matrices (GEDM) contain 
preprocessed expression values of every probeset and sample 
for one gene. The published GEDM cannot be used directly as 
input for meta-analysis because of the different algorithms 
used for processing raw data in the original studies, which 
may generate heterogeneous, non-comparable results. 



• Issue 3: Preprocessing of Datasets from Diverse Platforms

• To enable consistent analysis of all datasets, bias introduced 
by the preprocessing algorithms should be eliminated. To this 
end, feature-level extraction output (FLEO) files, such as CEL 
files, should be obtained and converted to GEDM suitable for 
meta-analysis. Multiple studies from the same platform 
should be preprocessed using a single algorithm. In case the 
studies are conducted on different platforms, it is 
recommended to be preprocessed with comparable 
algorithms in order to be combinable. 



• Issue 4: Promiscuous Hybridization between Probes and Genes
• The datasets are annotated using UniGene or RefSeq gene identifiers, 

collectively referred to as GeneIDs. Multiple probes can hybridize with the 
same GeneID, as UniGene represents a cluster of sequences that 
correspond to a unique gene. Conversely, one non-specific probe can 
cross-hybridize with multiple GeneIDs due to imperfect specificity. There 
are also probes with inadequate sequence information that cannot 
hybridize with any GeneID. One approach to resolve the "many to many" 
relationships between probes and genes is to include in the meta-analysis 
only probes that are associated with a single gene, and exclude the 
promiscuous probes that are associated with more than one gene. In this 
way, however, important information can be lost. Averaging the expression 
profiles prior to meta-analysis is not recommended either, given that 
probe binding affinity differences affect the gene expression 
measurements. Therefore, it is recommended to apply descriptive 
statistics, thereby reducing the "many-to-many" into "one-to-one" 
relationship between probe and GeneID for each study.



• Issue 5: Choosing a Meta-Analysis Technique

• The choice of meta-analysis technique depends on 
the type of response (e.g., binary, continuous, 
survival). In this article, we focus on the two-class 
comparison of microarrays where the objective is to 
identify genes expressed differentially between two 
wellknown conditions. There are three generic ways 
of combining information in such a situation: using 
effect sizes, using p-values and using ranks.



Statistical methods

• The statistical methods for meta-analysis of 
differentially expressed genes can be divided 
in three categories: the methods that rely on 
some effect size, the methods that combine 
p-values and the methods that combine 
ranks. 



Μετα-ανάλυση Μικροσυστοιχιών

Μέθοδοι μετα-ανάλυσης:

– t-test 

– Rank Product (Γινόμενο των βαθμών κατάταξης)

– Συνδυασμός των p-values

Hong, F. and R. Breitling (2008). "A comparison of meta-analysis methods for detecting differentially expressed genes in microarray 

experiments." Bioinformatics 24(3): 374-82.
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Effect size

• The first approach is a standard approach for meta-analysis using fixed or 
random effects. In principle any suitable effect size can be used, but in 
practice most authors, for a number of reasons, advocate the standardized 
mean difference:

• Where X1i and X2i are the means of the two groups under comparison in 
the ith study, and Spi is the pooled standard deviation given by:

• The sample estimate of the standardized mean difference is often called 
Cohen’s d  in research synthesis. It turns out that d has a slight bias, 
tending to overestimate the absolute value in small samples. This bias can 
be removed by a simple correction that yields an unbiased estimate, with 
the unbiased estimate sometimes called Hedges’ g. To convert from d to 
Hedges’ g we use a correction factor, which is called J. There is an exact 
formula for J, but in common practice researchers use an approximation 
given by gi =Jdi= di −3di/(4ni − 9). The estimated variance of d is given by
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• When g is used, var(g)=J2var(d). In any case, it is straightforward to obtain 
a pooled estimate of d (or g):

• This estimate is the well-known inverse-variance estimate used in meta-
analysis with (Petiti 1994, Normand 1999). The above method assumes 
homogeneity of the effect across studies, an assumption that may be 
untenable. In case of between-studies heterogeneity, we hypothesize that 
the true effect varies from study to study  and an additive component of 
the between studies variance (τ2) needs to be estimated (random-effects 
model). The most commonly used method for estimating τ2 is the non-
iterative method of moments proposed by DerSimonian and Laird 
(DerSimonian and Laird 1986), even though there are several alternatives 
including iterative procedures (Thompson and Sharp 1999). In case τ2=0, 
the random-effects and the fixed-effects estimates coincide. In the 
random-effects case, the weights are calculated by 

and subsequently Eq. (19) is applied in order to obtain the overall estimate
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Προβλήματα

• Τα ίδια με την απλή ανάλυση

• Χρειαζόμαστε πάλι κάποια βελτιωμένη μέθοδο 
(bootstrap, permutation, empirical Bayes)
– metaMA (https://cran.r-

project.org/web/packages/metaMA/index.html)

– GeneMeta 

– metaArray

– MetaDE 

• Full Bayesian methods 
– http://people.math.umass.edu/~conlon/research/BayesPo

olMicro/

https://cran.r-project.org/web/packages/metaMA/index.html
http://people.math.umass.edu/~conlon/research/BayesPoolMicro/


Ranks

• Another class of methods for meta-analysis consists of 
methods that combine ranks. There are several different 
approaches, but they all share the biological common sense 
that if the same gene is repeatedly at the top of the list 
ordered by up- or down-regulated genes in replicate 
experiments, the gene will be more likely to be regarded as 
differentially expressed. The Rank Product (RankProd) 
method, which we already described in the context of single 
study, uses the fold-change to rank genes and calculates the 
products of ranks across individuals and studies (Hong, 
Breitling et al. 2006). A similar method uses the Rank Sum 
instead, but all the other calculations are identical. The 
RankProd software is available at: 
https://www.bioconductor.org/packages/release/bioc/html/R
ankProd.html. 

https://www.bioconductor.org/packages/release/bioc/html/RankProd.html


cont

• A related method termed METRADISC (Meta-analysis of Rank 
Discovery Dataset), is based on the same idea, but it is more 
general (Zintzaras and Ioannidis 2008, Zintzaras and Ioannidis 
2012). The ranking within each study can be performed with 
any available method (FC, t-test, p-value etc) and then the 
average rank of a particular gene, for each study, can be 
calculated. The overall mean can be with or without weights, 
and in the former case the situation resembles the traditional 
methods for meta-analysis. The between-study heterogeneity 
of the study-specific ranks can also be computed. The 
METRADISC software is available in R (http://www.inside-
r.org/node/155959) and as a standalone application 
(http://biomath.med.uth.gr/). The methods that use ranks are 
quite robust and can incorporate studies using different 
methods. However, the overall effect cannot be calculated 
and statistical inferences are based on Monte Carlo 
permutation tests, which may be time-consuming 

http://www.inside-r.org/node/155959
http://biomath.med.uth.gr/


• The rank-based methods offer several advantages traditional 
approaches, including the biologically intuitive of fold-change 
(FC) criterion, fewer assumptions under the model, and 
robustness with noisy data and/or low numbers of replicates. 
The approach overcomes the heterogeneity among multiple 
datasets and naturally combines them to achieve increased 
sensitivity and reliability. It is worth pointing out that these 
methods do not require the simultaneous normalization of 
multiple datasets using the same technique, which solves a 
frequently encountered dilemma in microarray meta-analysis 
pre-processing step. Moreover, the rank-based methods 
transform the actual expression values into ranks, and thus 
they can integrate datasets produced by a wide variety of 
platforms (Affymetrix oligonucleotide arrays, two-color cDNA 
arrays and so on). As matter of fact, the rank-based methods 
are quite general and thus can also be used for different types 
of data, such as proteomics or genetic association data.



Combination of p-values

• Another class of methods that is popular in meta-
analysis of microarray studies (Hess and Iyer 2007) is 
related to the combination of p-values. It is widely 
accepted that Fisher’s original work on combining of 
p-values (Fisher 1946) was the origin of meta-
analysis (Jones 1995). Fisher noted that since p-
values from k independent samples are uniform 
random variables, the sum of their logarithm will 
follow a χ2 distribution with 2k degrees of freedom:
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Other approaches

• Edgington suggested using the sum of the p-
values in order to obtain a pooled estimate 
(Edgington 1972)

• Later, the same author suggested using a 
contrast (Edgington 1972)

in which case                        follows a N(0,1) 
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TPM

• A more sophisticated method was presented by Zaykin and 
coworkers, the so called truncated product method (TPM). 
Their procedure was to take the product of only those p-
values less than some specified cut-off value (τ) and to 
evaluate the probability of such a product, or a smaller value, 
under the overall hypothesis that all k hypotheses are true 
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Stouffer

• Nevertheless, combination of p-values although appealing and easily 
implemented presents serious problems relative to combining effect sizes. 
For example, there are problems when the p-values are testing different 
null hypotheses. Moreover, the method does not consider the direction of 
the association and thus all the p-values has to be one-sided, otherwise 
up-regulated and down-regulated genes need to be combined separately. 
Finally, the methods cannot quantify the magnitude of the association 
(the effect size), and most importantly does not allow for between studies 
heterogeneity. 
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Multiple Comparisons

• Any time you reject a null hypothesis because a P value is less than your 
critical value, it's possible that you're wrong; the null hypothesis might 
really be true, and your significant result might be due to chance. A P
value of 0.05 means that there's a 5% chance of getting your observed 
result, if the null hypothesis were true. It does not mean that there's a 5% 
chance that the null hypothesis is true.

• For example, if you do 100 statistical tests, and for all of them the null 
hypothesis is actually true, you'd expect about 5 of the tests to be 
significant at the P<0.05 level, just due to chance. In that case, you'd have 
about 5 statistically significant results, all of which were false positives. 
The cost, in time, effort and perhaps money, could be quite high if you 
based important conclusions on these false positives, and it would at least 
be embarrassing for you once other people did further research and found 
that you'd been mistaken 

http://www.biostathandbook.com/hypothesistesting.html#null


• This problem, that when you do multiple statistical tests, 
some fraction will be false positives, has received increasing 
attention in the last few years. This is important for such 
techniques as the use of microarrays, which make it possible 
to measure RNA quantities for tens of thousands of genes at 
once; brain scanning, in which blood flow can be estimated in 
100,000 or more three-dimensional bits of brain; and 
evolutionary genomics, where the sequences of every gene in 
the genome of two or more species can be compared. There 
is no universally accepted approach for dealing with the 
problem of multiple comparisons; it is an area of active 
research, both in the mathematical details and broader 
epistomological questions. 



• The classic approach to the multiple comparison problem is to 
control the familywise error rate (FWER). Instead of setting 
the critical P level for significance, or alpha, to 0.05, you use a 
lower critical value. If the null hypothesis is true for all of the 
tests, the probability of getting one result that is significant at 
this new, lower critical value is 0.05. In other words, if all the 
null hypotheses are true, the probability that the family of 
tests includes one or more false positives due to chance is 
0.05.

• The most common way to control the familywise error rate is 
with the Bonferroni correction. You find the critical value 
(alpha) for an individual test by dividing the familywise error 
rate (usually 0.05) by the number of tests. Thus if you are 
doing 100 statistical tests, the critical value for an individual 
test would be 0.05/100=0.0005, and you would only consider 
individual tests with P<0.0005 to be significan



• The Bonferroni correction is appropriate when a single false positive in a 
set of tests would be a problem. It is mainly useful when there are a fairly 
small number of multiple comparisons and you're looking for one or two 
that might be significant. However, if you have a large number of multiple 
comparisons and you're looking for many that might be significant, the 
Bonferroni correction may lead to a very high rate of false negatives. For 
example, let's say you're comparing the expression level of 20,000 genes 
between liver cancer tissue and normal liver tissue. Based on previous 
studies, you are hoping to find dozens or hundreds of genes with different 
expression levels. If you use the Bonferroni correction, a P value would 
have to be less than 0.05/20000=0.0000025 to be significant. Only genes 
with huge differences in expression will have a P value that low, and could 
miss out on a lot of important differences just because you wanted to be 
sure that your results did not include a single false negative.



• An alternative approach is to control the false discovery rate 
(FDR). This is the proportion of "discoveries" (significant 
results) that are actually false positives. For example, let's say 
you're using microarrays to compare expression levels for 
20,000 genes between liver tumors and normal liver cells. 
You're going to do additional experiments on any genes that 
show a significant difference between the normal and tumor 
cells, and you're willing to accept up to 10% of the genes with 
significant results being false positives; you'll find out they're 
false positives when you do the followup experiments. In this 
case, you would set your false discovery rate to 10%.



• One good technique for controlling the false discovery rate 
was briefly mentioned by Simes (1986) and developed in 
detail by Benjamini and Hochberg (1995). Put the individual P
values in order, from smallest to largest. The smallest P value 
has a rank of i=1, then next smallest has i=2, etc. Compare 
each individual P value to its Benjamini-Hochberg critical 
value, (i/m)Q, where i is the rank, m is the total number of 
tests, and Q is the false discovery rate you choose. The largest 
P value that has P<(i/m)Q is significant, and all of the P values 
smaller than it are also significant, even the ones that aren't 
less than their Benjamini-Hochberg critical value. 



Στατιστική Ανάλυση Μικροσυστοιχιών

• Παράδειγμα: Ας υποθέσουμε ότι εξετάζονται 10000 γονίδια τότε με 

p-value<0.05, 500 γονίδια αναμένεται να βρεθούν στατιστικά 

σημαντικά κατά τύχη (by chance)

• Ανάγκη χρησιμοποίησης των μεθόδων διόρθωσης για πολλαπλές 

συγκρίσεις

– Bonferroni: 

– Sidak:

– Holm:

– Holland:

– FDR:
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NetworkAnalyst

http://www.networkanalyst.ca



Μετά το clustering και τη μετα-ανάλυση?

• Χρήση λογισμικών για εύρεσης κοινών χαρακτηριστικών μεταξύ 

ομάδων γονιδίων

• Δημιουργία γονιδιακών υπογραφών με σκοπό την πρόβλεψη 

ασθενειών
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