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MIKpOOUCTOIXIEG

[[UGAIVO TTAOKIOIO TTOU QTTOTEAEITAI ATTO OUYKEKPIUEVEG
aAANAouXieC o1 OTToieC €ival EI0IKEC VIO OUYKEKPIYEVA
yovidla, TOuG aviIxveutec (probes), ol otroiol eival
QKIVNTOTTOINMEVOI Of Mia KOUKKIda (spot) TnG yudaAivng
ETMIPAVEIAG TOU TTAAKIQIOU.




MIKpOOUCTOIXIEG

Tautdxpovn avaAuon Tou TPOTTOU €K@PPAONG XIAIAOWYV YoVIdiwV
o€ OIAPOPETIKA deiyuaTa ] o€ dIAPOPETIKA OTADIA AVATITUENG

2UYKPION  €KPPaoNG O€  (QUOIOAOYIKEC KAl  TTOBOAOYIKEC
KATAOTAOEIC

AVTATTOKPION O€ POPHOKEUTIKEG OUTIEG ) BepATTEiEC

Mapexouv xpnoiyeg TTANpo@opieg yia Tn BIOAOYIKN AgiToupyia
evOG opyaviopou, PpiokovTag Trola yovidlia €vePYOTTOIOUVTAI N
KaTaoTeAAOVTaI O€ OIAPOPA OTADIA AVATITUENG M O€ ATTOKPION O€
epeioparta Tou TTEPIBAAAOVTOC, OTTWG N ATTOKPION O€ OPUOVEG N
o€ upnAn Bepuokpaacia



Baoika fApaTa yia Eva Treipaua
MIKPOOUOTOIXIWYV

AlaTUTTLWON TOU BIOAOYIKOU EPWTAMATOC

EiAoyr) Tou KaTAAANAOU TUTTOU JIKPOOUOTOIXIOC (TUTTWHEVES
UIKpoouaoTolXie¢ CDNA, TUTTWHEVEG MIKPOOUOTOIXIEC
OAIYOVOUKAEOTIOIWV, MIKPOOUOTOIXIEC TTOU KOTAOKEUAOTNKAV
UE IN Situ ouvBeon OAlyOVOUKAEOTIDIWY)

Atropovwon Tou RNA atro ta dsiyuata

2Auavon Twv OEIYNATWV PE pBopilouceC ouaieg

YBpIdIouog oTnV £TMIPAVEIQ TG MIKPOOUOTOIXIAC

2Apwon MIKPOOUOTOIXiOC OTa UNKN KUPATOS TwV pBopiloucwyv
OUCIWV KOl HETPWVTAC TOV AVTIOTOIXO pOOpPIoUO TNG KABE
ouadiag

Xpron KataAAnAwv TTpoypaupaTWY yia Tn dnuioupyia tTng
TEAIKNG EIKOVAC TWV HMIKPOCUOTOIXIWV.



MIKpOOUCTOIXIEG

H ouvduaopEvn €IKOva TNG MIKPOCOUCOTOIXIOC TTAPEXE!
Eva BOAIKO TPOTTO WOoTE va BpeBouv Ta yovidia Ta
oTroia Ppiokovtal o€ HEYOAUTEPN EKPPAON OTO
Oeiyua eEAEYXOU O€ OUYKPION ME TO OEiYHO avaPopac



MiKpOoOUOTOIXIEG

* MovoxpwuaTikég pikpoouaoTolxieg (Affymetrix): Kade
Ociyua RNA onuaivetal ye hia XpwaoTIKA Kal TOTTOBETEITAl
YIQ UBPIBICUO O€ Eva TOITT MIKPOOUGOTOIXIWV.

e AIXPWMATIKEC MIKpOOoUaToIXieC: Auo ociyuara RNA
(eEAEyXOU — ava@opac) onuaivovtal e 2 dIOPOPETIKES
pOopilouoec ouaiec Kal To ToTTOBETOUVTAI VIO UBPIDICHO
OTO i0I0 TOITT JIKPOOUGTOIXIWV.
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MIKpOOUCTOIXIEG

‘Mg KOKKIVO XpwMa eu@avifetal Pia KOUKKiIdA, av O€ auTtriv N
TTOOOTNTA TOU OEIYMATOC EAEYXOU €ival HEYOAUTEPO

‘Mg mTpdoIvo Xpwua eu@avifeTal Pia KOUKKIdQ, av O€ AUTAV N
TTOOOTNTA TOU OEIYHMATOC AvaPOPAG gival JEYAAUTEPO

‘Mg KiTpIvO Xpwpa eu@avifeTal pJia KOUKKiIdA, av O€ QuTAV Ol
TTOOOTNTEG TOU OEIYMATOC EAEYXOU KAl TOU OEIYHNATOC avaPopag
gival ioeg

‘Mg paupo xpwua ep@avideTal hia KOUKKida av kaveva dciyua
dev €xel uBpIdoTToINOEi

*O1I UTTOAOITTEC ATTOXPWOEIC eU@aviovTal VIO QVTIOTOIXEC
TTOOOTNTEG TWV OUO JEIYUNATWY



[MoooTikotroinon 0edouEVWYV

*H évraon Tou PBOPICPOU PETATPETTETAI OE APIOUNTIKA
Oedopéva  Kal  Oivel TTANPOPOPIEC OXETIKA ME TNV
EKPPOON TWV YOVIOiwV TNG MIKPOOUCTOIXIAG.

*To OXeTIKO €TmiTTEdO €KPPOAONG Yia KABe yovidio
QVTIOTOIXEI ME TNV TTOOOTNTA TOU KOKKIVOU 1] TOU
TTPACIVOU PWTOC TTOU EKTTEUTTIETAI META ATTO DIEYEPON.

[10 vO OUOXETIOOUME QUTEC TIC TTOOOTNTEC KAl VA
ECAYOUUE TO OXETIKO ETTITTEDDO £KPPOAONG KABe yovidiou
XPNOIUOTTOIOUHE TO AOYO €KPPAONG

R. .
T, = EI Ti — Iogz(Ti)
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Ewkova 7.3: a) lotoypaupua tpwv @Boptopou nou akoAouBouv Ao p&ptﬂuﬂmmmﬂi mmmwi (Enc‘ivmj Kat HeTd and
Arjwn twv ﬂopap:ﬁpwv TOUC (KGIL{.I) nou pgmrpgnﬂ NV Katavorj tou¢ o< kavoviki B) I pmpmr;- avanapamam} Tou
unoAoyiopou e e RPKM and Sdo HE-!pr:I;.t(Hﬂ aﬁﬂqﬁouxmqq RNA. Ot 600 XptoaTiOUEVEC MEPLOXEC HEﬂIE’XﬂUV
Stapopetikd apBuo pukpo-avayvwoswy (reads) opw¢ auto sival anotéAsoua tou Sta@opetikol Tou¢ pikouc (Skb
fvavtt 3kb). Atalpson ps o punko¢ (RPK) Siver napanAnioiee tuéc yua tic Suo neptoxéc oto (dto nelpapa. Mstaéu Soo
ncipaudtwv Us Sla@opeTikd TUVOAIKG aptBud avayvedoswy Xpeidfetal pia akopa StopBewon w¢ npoc o ouvoAKo
apBuo twv reads. Etot ot wée RPKM sivat noAd napopotee yra t¢ uo neploxéc kat petacu twv do nepapdtwy.



2QAAMOTO OTA TTEIPANATO
MIKPOOUOGTOIXIWV

Tuxaia Kal cuoTNUATIKA oeAAuaTa cuuaivouv o€ £va TTEipaua
MIKPOOUGTOIXIWV:

— Xpnon d1apopeTIKWV pOopiloucwV OUCIWV
— Xpnon OIa@opPETIKWY TTAATPOPUWV
— AIOQOPETIKEG TTEIPAUATIKEC OUVONKEG

— Elocaywyn 8opUBou ota dedouéva aTrd TO 0OpWTH



image analysis

* Following hybridization, image analysis is performed
(Yang, Buckley et al. 2001). Pre-filtering/masking
method follows and Background Signal adjustment is
recommended before scaling. Masking refers to
applications of microarray signal correction that
account for cross hybridization (Naef and Magnasco
2003), array scratches, scanner improper
configuration (Shi, Tong et al. 2005, Timlin 2006),
spot light saturation and washing issues (Yauk,
Berndt et al. 2005) that may have occurred.




Normalization

Normalization is performed to correct for systematic differences between samples
on the same slide, or between slides, which do not represent true biological
variation between slides and enables experiments to be combined and/or
compared. It focuses on adjusting the individual hybridization intensities in order
to balance them appropriately so that meaningful biological comparisons can be
made (Quackenbush 2002).

There are a number of reasons why data must be normalized which include:
— unequal labeling efficiency,
— noise of the system and differential expression.

The decision as to which normalization method is appropriate may depend on the
biological nature of the dataset examined. For each microarray technology there is
a preferred normalization method (Bolstad, Irizarry et al. 2003, Boes and
Neuhauser 2005).

Typical normalization methods include the rank invariant normalization (Tseng, Oh
et al. 2001), quantile (Bolstad, Irizarry et al. 2003), LOWESS/LOESS methods
(Tseng, Oh et al. 2001). For many types of commercial arrays, suites of R-
BioConductor (Reimers and Carey 2006), based packages are used to do
consecutively background adjustment and normalization of data, such as RMA
(Robust Multi-Array Average expression measure) (Irizarry, Hobbs et al. 2003) and
MAS 5.0 Algorithm (Pepper, Saunders et al. 2007).
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Ewxova 7.4: Kavovikonoinon 6o guvodwv Tyuwv Ekppaonc ano duo dsiypata (a) pe B) z-kavovikonoinan mou
LETatpénst v kAipaka o€ véa kAluaka pe kévipo to 0 p) Kamwmnm’.-}crﬂ nocrﬂcm}popi’wv Mou HETATPENEL TAV
kAlpaka oc pa otaBopévn kAlpaka pe Bam} TNV Katavol) HﬂUﬂGT.-‘}j_tﬂpwa TDJD n ,B‘) dgo Kat i y) 6fampﬂw mn
Stagropd tou 6£ty,uamr; H kavovikonoinon LOESS (6) aAAddet tc nms'f; oo éva povo oeiyua (€bw ﬂstp,ua 2)
avdAoya pe to nmou spapuofstar to poviédo. H nAnpnc kavowvikonoinon neptAaufdver kat v avtiotpo@n
Stadikaaoia (kavovikonoinon tou Asiypatoc 1 ps faon to 2).



KavovikoTtroinon

TpPOTTOC EAAXIOTOTTIOINONG TWV CPAAUATWY OTA ETTITTEDA EKPPATNG

« Kavovikotroinon oAIKAG évraong (total intensity normalization)

» Lowess (locally weighted linear regression) KavovikoTroinon



Baoeig 0e0OPEVWYV HIKPOOUOTOIXIWV

GeneExpression Omnibus (GEO): Baon 6ebougvwyv tou NCBI rtou
napexel dedopeva yovidLakne Ekppaong

http://www.ncbi.nlm.nih.gov/geo/

Array Express: Anpoota faon dSedopEVWV ULKPOOUOTOLXLWY N OTtoLd
Statnpeital oto Evpwrnaiko lvotitouto BlomAnpodopiknc EBI
http://www.ebi.ac.uk/arrayexpress/

ONCOMINE: Baon 6ebopEvwy IOV TIEPLEXEL TIELPAMATAL
LLLKpoouoToLLwV Ttou adopouv dtadopouc TUTToUC KapKivou.
Entlong mapexeL oto xpnotn epyaieia dtaxeiplong twv dedopevwy
yLot TV armoSOoTIKOTEPN EVPECN TWV ETILOUNTWYV TIELPAATWY KoLl
yoviSiwv http://www.oncomine.org/



Aedopeva PLKPOOUOTOLY LWV

ID_REF GSM183695 GSM185526 GSM185527 GSM185528 G5M185529 GSM185530 GSM185531
1000 at 1569.51 1585.62 1099 23 152775 1013.3 1341.91 223519
1001 _at EE.AR2EG a7.9262 20.7475 356807 018585 35.4699 20,4733
1002 f at 10,7225 708931 §.55284 4.34082 7502 10,8898 583494
1003 & at A2 8653 18.7231 19.TEE 236005 24 BETE 27.5205 30.4685
1004_at 82.4252 72,2625 §3.43 T1.3506 110,458 129,447 B2.5745
1005 at 62T 38 1561.68 214334 136822 BhZ BER 1126.38 1891.47
1006 _at 22,3963 2.03122 205788 3.66TER 1.25304 GBE.1442 2.03623
1007 _s_at 876.181 1018.13 B42 372 483802 4551 1094.53 551.697
1008 f at 3324.22 2417.84 140477 157102 1B38.4 2340.35 2204.38
1009 _at 3412 .83 A4165.01 248612 337884 2875.03 3835.5 2408.27
100 _g_at 458.13 G59.593 414,027 335,647 425,243 G18.421 373.233
1010 at 51471 17.9678 993612 244365 26.0201 268313 718712
1011_s_at 1358.13 1050.57 848434 340406 11,129 265,555 11846,79
1012 at G26114 55,5347 57.6028 455188 31.0457 54,3793 808679

Eikdva 7.1: Ot NPpWTEC PPAULES TOU ANOTEASTUATOC EVOC MEPAUATOC EKPPAon¢ os pkpoouatowxia DNA. H npatn
oTAAn nepiéxel tov kewdiko aptBud tou avixveutn (probe) nou pnopsl va avtiotoixnBel oc Eva OUYKEKPILEVO
vovidto. Ot tipéc nou akoAouBouv otig otnAsc 2-8 avtiotoxouv ot LETpnon @Boplouod yia to Se50UEVo aviXveuTs)
via kaBsva ano sntd Stagopetikd delyuara.

https://repository.kallipos.gr/handle/11419/1585



AvaAuon MikpoouoTOIXIWYV

1) 21aTIOTIKA avAAuan yia eUpeon YyovIdiwv TTOU UTTEP N
utToEK@PpadlovTal

2) OpadoTtroinon (Clustering)

3) Mpoéyvwon (Prediction)



Ouadotroinon (Clustering)

OpadoTtrolouvral padi yovidla pe BAon Ta €TTITTEdA EKPPATNC TOUC
AvaTTapaocTaon TwWV OJAdWY AUTWY PE OKOTTO TNV €UPEON TTIBAVWYV
OXECEWV METACU TWV YOVIDIWV

AAyO6pIO0I ouadoTToinong UTToPoUV va dIaXwpPICTOUV O€
eMIPAETTOPEVOUC (Supervised) Kal uN-€TTIBAETTONEVOUC
(unsupervised)

H amréoTtaon (distance) petacu dUOo yovidiwv XpNOIUOTToINTAl WG
£i00d0¢ oTOoUC aAyopiBuouc opadoTroinong:

— EukAeidela anootaon d = ,/Zn:(xi -y,)?
i=1

n

— Andotaon Manhattan dys = Z|Xi - yi|

i=1

> % - X)(y -¥)
Ji(xi —X)ZJi(yi Yy

r =

— Zuvteleotng ZuoxETong Tou Pearson



Clustering analysis tries to group genes or individuals according to their
expression levels and leads to a representation that can be helpful for
identifying patterns in time and space. Clustering operates in an
unsupervised manner, since in such analyses all individuals (usually the
patients are treated equally) and the clustering method result in some
classification that can be of interest. Some of the methods require that the
number of clusters should be defined beforehand, whereas in others, the
number of clusters is automatically defined. Several clustering methods
exist, the most commonly used for microarray analysis are the
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and
hierarchical clustering for tree based representations. Evolutionary tree
based algorithms such as Neighbor Joining could also be applied. In the k-
Means algorithm the number of clusters should be pre-defined and is also
widely used in microarray experiments. One of the preferred clustering
algorithms is the self-organizing map (SOM) which is another technique
that is particularly well suited for exploratory data analysis. The self-
organizing map (SOM) (Tamayo, Slonim et al. 1999) is a method for
producing ordered low-dimensional representations of an input data
space. Typically such input data is complex and high dimensional with data
elements being related to each other in a nonlinear fashion. Most of the
aforementioned implementations can be found in BioConductor (Reimers
and Carey 2006), Expander (Shamir, Maron-Katz et al. 2005) and

Hierarchical Clustering Explorer (HCE).
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Eikéva 7.6: Ospuko¢ Xaptne nou avanaptotd TG OXETKEC TIEC EKPPacnc 650 yoviSiwv 6nw¢ autéc ustpribnkav
o€ TPEIC StapopeTikéc ouvlrikee (A, B kat IN). To yaAddio avtiotoixel o XaunAGTepn Kat 10 KOKKIVO O UWNAGTEPN
Ekppaon oc oxéon pE tv Katdotaon eAfyxou, kKaBw¢ oto Bspuikd xdptn su@avifovtal HOVO OXETIKEC TWEC
Ekppaonc. O xaptn¢ ouvodsustat anod spapxiki opadonoinon (BA. Mapakdtw) twv yovidiwv pe Bdon ta npdtuna
EKQpPaoic Tou¢ otTi¢ Tpel¢ ouvlinkee lNvidta mou Ppiokovtat atov iGlo kAddo tou Sévipou su@aviCouv LEyaAuTepn
OUOLOTNTA OF€ O,TL aQpopd TNV auEousiwon Twv EMnEdwV EKPPaon Hetact Twv ouvenkawv.
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Ewova 7.10: Ispapxiki) opabonoinon yia 60 and ta 150 yovibta nou avaAuBnkav ps PCA atnv nponyouusvn
svotnta us 20 yovibta va aviikouv oto kaBéva and ta 3 unoouvoAa. Enavw: YIoAoyiopuog twv anootaoswV e
nAnpn ouvdson anodidet Tpel¢ opddsC pe MoAU KaAr oup@wvia pE TNV (EK TwV APOTEPWV YVWOTr) apXIKn
opadonoinon. Katw: YRoAoytouog twv anootdoswv Ue anin ouvéeon odnyel oto axnuattouo SUo opddwv xwpic
va punopei va Stakpivet petau twv Ouadwv 2 kat 3.



AAyopi10uol OpadoTtroinong

o) wy i teeet )

lepapxikn Tagivounon:

a)Single Linkage Clustering
B) Complete Linkage Clustering
Y) Average Linkage Clustering




AAyo6p10po1 OpadoTroinong

K-means

SOMs

SVM

PCA

MCL



ATIOd00N O€ KEVTPO Oplopog Opdadwv Y toAoyIGHOC NEWV KEVTPWV
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Eixéva 7.11: Sxnuatkn avanapdaotaon tou aAyopiBuou tn¢ opadonoinonc k-puéowv.



[Mpoyvwon

EvoladepOpaoTE KUPLWCE YLa TN OWOTH
npoyvwon (taévounon) twv acBevwv.

Exel onpaoila o€ mepUTTWOELC TTPOBAePNC TNC
aocBgvelac, cav SLayvwoTikn dokipaoia

Xpnotpormotlouvtat ot cuvnBOilopevec pebodot
taélvopnonc (Nevpwvika Aiktua, SVM, kKAn)

[MoAAEC popEC amoarteital kamola pebodoc
ETUAOYNC TWV TILO CNUOVTILKWV YOVLOLWV



* Classification refers to class prediction from gene expression
patterns. In such a case, we have predefined classes (two or
more), for instance healthy individuals vs. diseased ones, and
we want to build a classifier that will be able to discriminate
them in future applications (Golub, Slonim et al. 1999,
Radmacher, McShane et al. 2002), most notably, for screening
and diagnostic purposes (Simon, Radmacher et al. 2003). A
wide variety of supervised methods taken from the arsenal of
machine learning and artificial intelligence have been used for
this purpose, including Neural Networks (Khan, Wei et al.
2001), , Support Vector Machines (Furey, Cristianini et al.
2000), Graphical Models (Bura and Pfeiffer 2003), genetic
algorithms (Ooi and Tan 2003), nearest neighbour classifiers
and many other statistical methods, including shrunken
centroids (Tibshirani, Hastie et al. 2002) and Partial Least
Squares and Discriminant analysis (Nguyen and Rocke 2002).




feature selection

Due to the large number of features (genes) given as
input to the various classifiers, a subsequent problem is to
select the best subset of features that can be used efficiently
by the classifier. This problem is known as the feature
selection problem in machine learning (Guyon and Elisseeff
2003). In addition to the large number of techniques that
have already been developed in the machine learning and
data mining fields, the advent of microarrays have led to a
wealth of newly proposed techniques. Comparison of such
methods in gene expression classification can be found in
several excellent reviews and evaluation studies (Li, Zhang et
al. 2004, Saeys, Inza et al. 2007, Ma and Huang 2008)




Identification of differentially
expressed genes

Identification of differentially expressed genes, finally, is the most
obvious approach in order to assign biological functions to genes, in cases
where there are two or more classes in which individuals can be classified
in advance, for example when normal and diseased tissues are compared
or the gene expression is studied with respect to a particular treatment.
The main aim is to identify which genes are pinpointed by their differential
expression levels and see which of them is up-, or down-regulated. Ideally,
the identification of DEGs is a simple procedure reduced to a statistical
test for the equality of means (e.g. t-test, see below). However,
statistically microarrays datasets are characterised by several distinctive
features such small number of samples (individuals), large number of
variables and large amount of noise, and thus several advanced statistical
methods have been proposed in order to overcome these. Moreover, the
accumulation of similar datasets from various laboratories has lead to the
need of combining these datasets in order to increase the sample size.
This approach, which is termed meta-analysis in the medical literature,
has been increasingly popular during the last years and several methods
exist.



t-test

One sample t-test
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MpoBAnuata

To Baoko mpoOBAnua e To t-test elval OTL AMALTEL OYETIKA
“heyao” peyeBog delypatog

2 TOL TIEPLOCOTEPA TIELPALLOTO LLKPOOUOTOLXLWY, EXOUUE Selyua
LULKPOTEPO TWV 20 aTOUWYV, Kol KAl popad Hkpotepo twy 10
‘Etol, ol TpoUMOBETELC yLa TNV KavoviKOTNTA Tou TAnBuopou
dev Loxuouv

MoAAEC PpopEe, eldLka Otav To delypa eival <5, pumopel va
EXOUUE Kol “teplepya” pikpn dlaomopad mou Ba o
dnuloupynoet mpofAnUa

T€Aog, o peyaloc aplBuoc yovidiwy, poc odnyet oto
NMPOPBANHA TwV TTOAAATIAWY CUYKPLloEWV



Computationally Intensive
methods

* Resampling methods
* Bayesian t-test
 Empirical Bayesian



bootstrap

The Bootstrap (Efron 1982, Efron and Tibshirani 1993) is a statistical method for estimating
the sampling distribution of an estimator by sampling with replacement from the original
sample. The Bootstrap is an ideal method when no formula the sampling distribution is
available or when available formulas make inappropriate assumptions (e.g. small sample size,
non-normal distribution).

The logic behind the bootstrap is that all measures of precision come from a statistic’s
sampling distribution. When the statistic is estimated on a sample of size n from some
population, the sampling distribution tells you the relative frequencies of the values of the
statistic. The sampling distribution, in turn, is determined by the distribution of the
population and the formula used to estimate the statistic. The accuracy of the bootstrap
depends on the number of observations in the original sample and the number of
replications.

A crudely estimated sampling distribution is adequate if you are only going to calculate, for
instance, a standard error. A better estimate is needed if you want to construct a 95%
confidence interval (and we need to emphasize that there are various methods for
constructing a Bootstrap confidence interval from the resampled statistics — the normal
approximation method, the bias corrected method, the percentile method and the t-
percentile method - see (Efron 1987)).

Generally, replications on the order of 1,000 produce very good estimates, more may be
needed for accurate estimation of p-values, but only 50-200 replications are needed for
estimating standard errors (this may have implications for meta-analysis, see below). Various
methods have been proposed for estimating the necessary number of replications (Andrews
and Buchinsky 2000, Davidson and MacKinnon 2000).

The Bootstrap has been applied in microarray experiments and empirical evidence suggests
that it has good properties, at least for moderate sample sizes (Meuwissen and Goddard
2004). For really small sample sizes (i.e. <10), various modifications to the standard method
have been proposed (Neuhauser and Jockel 2006, Jiang and Simon 2007).



https://en.wikipedia.org/wiki/Sampling_distribution
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Sampling_%28statistics%29
https://en.wikipedia.org/wiki/Sampling_distribution

To illustrate bootstrapping, suppose that you have a dataset containing /N observations and an
estimator that, when applied to the data, produces certain statistics. You draw, with replacement, /N
observations from the /NV-observation dataset. In this random drawing, some of the original observations
will appear once, some more than once, and some not at all. Using the resampled dataset, you apply
the estimator and collect the statistics. This process is repeated many times; each time, a new random
sample is drawn and the statistics are recalculated.

This process builds a dataset of replicated statistics. From these data, you can calculate the standard
error by using the standard formula for the sample standard deviation

o = {A—il > (6 —9)2}1/2

where §? is the statistic calculated using the ith bootstrap sample and % is the number of replications.
This formula gives an estimate of the standard error of the statistic, according to Hall and Wilson (1991).
Although the average, 0, of the bootstrapped estimates is used in calculating the standard deviation,
it is not used as the estimated value of the statistic itself. Instead, the original observed value of the

0

statistic, #, is used, meaning the value of the statistic computed using the original N observations.

http://www.stata.com/manuals13/rbootstrap.pdf



When the mse option is specified. the standard error is estimated as
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The variance—covariance matrix is similarly computed. The bias is estimated as

hias =0 — 6

bias = 6 —



The percentile method yields the confidence intervals
[ ';/2? I—Q/Q}

where H; is the pth quantile (the 100pth percentile) of the bootstrap distribution (é}, oo Bg).

Let R
20 = 0D < D)/)
where #((/9; < g) is the number of elements of the bootstrap distribution that are less than or equal
to the observed statistic and & is the standard cumulative normal. zg is known as the median bias of
§. When the ties option is specified, zo is estimated as #(f; < 6) + #(6; = ) /2. which is the
number of elements of the bootstrap distribution that are less than the observed statistic plus half the
number of elements that are equal to the observed statistic.

Let B o
_ il =)’
6{30 1 (B — B2}

where ;) are the leave-one-out (jackknife) estimates of ¢ and 5(.) is their mean. This expression is

a

known as the jackknife estimate of acceleration for #. Let

b= {20 N 20 — Z1-a/2 }
1— (L(ZO - zl—a/?)

zZo + Zl—a/2
P2 = ‘1’{20+ }
T P

where z;_, /5 is the (1 —a//2)th quantile of the normal distribution. The bias-corrected and accelerated
(BC,) method yields confidence intervals

(65,5 05, ]

where 9; is the pth quantile of the bootstrap distribution as defined previously. The bias-corrected
(but not accelerated) method is a special case of BC, with a = 0.



permutation

A conceptually different resampling method is the permutation test. This is a type of
statistical significance test in which the distribution of the test statistic under the null
hypothesis is obtained by calculating all possible values of the test statistic following
rearrangements of the labels on the observations. If the labels are exchangeable under the
null hypothesis, then the resulting tests yield exact significance levels. Confidence intervals
can then be derived from the tests.

The theory has evolved from the works of Ronald Fisher and E. J. G. Pitman in the 1930s
(Kaiser 2007). For small samples, all possible permutations can be evaluated, but for sample
sizes >15 this is prohibitive. Thus, a random sample of the permutation is used instead, hence
the name Monte Carlo permutation.

An important assumption behind a permutation test is that, under the null hypothesis, the
observations are exchangeable. Thus, a consequence of this is that tests of difference in
location (like the t-test) require equal variance. In this respect, the permutation t-test shares
the same weakness as the classical Student's t-test (the Behrens—Fisher problem).

Generally, since the permutation computes a p-value by counting the times that the statistic
is larger than the observed one, a large number of replications are required (typically of the
order of 1,000 or more). Permutation tests have been used for analysis of microarray data
(Tsai, Chen et al. 2003). However, when sample sizes are very small, the number of distinct
permutations can be severely limited, and pooling the permutation-derived test statistics
across all genes has been proposed. However, since the null distribution of the test statistics
under permutation is not the same for all genes, this can have a negative impact on both p-
value estimation (Yang and Churchill 2007).



https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Test_statistic
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/E._J._G._Pitman
https://en.wikipedia.org/wiki/Behrens%E2%80%93Fisher_problem

Software

 Bootstrap and permutation methods are
readily available in major statistical packages
like Stata and R. Bootstrap is available with
various options using the bootstrap command
in Stata and the boot command in R.
Permutation can be performed with the
permute and permtest (for paired
observations) commands in Stata, as well as
with the perm command in R. In the Appendix
we give examples of performing bootstrap and
permutation t-test is Stata.




permute estimates p-values for permutation tests on the basis of Monte Carlo simulations. Typing

. permute permvar exp_list, reps(#): command

randomly permutes the values in permvar # times, each time executing command and collecting the
associated values from the expression in exp_list.

These p-value estimates can be one-sided: Pr(7™ < T') or Pr(T™ > T'). The default is two-sided:
Pr(|T*| > |T|). Here T™ denotes the value of the statistic from a randomly permuted dataset, and
1" denotes the statistic as computed on the original data.

http://www.stata.com/manuals13/rpermute.pdf



Let # be the observed value of the statistic, that is, the value of the statistic calculated using the

original dataset. Let 6,y be the value of the statistic computed by leaving out the jth observation
(or cluster); thus 7 = 1.2, ..., N identifies an individual observation (or cluster), and N is the total
number of observations (or clusters). The jth pseudovalue is given by

07 =0y + N{0 =03}

When the mse option is specified, the standard error is estimated as

and the jackknife estimate is

Otherwise, the standard error is estimated as

1 N N 1/2 1 N
o = 0% — 6%)> i =—3 ¢

7=1

where 6* is the jackknife estimate. The variance—covariance matrix is similarly computed.

http://www.stata.com/manuals13/rjackknife.pdf
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TABLE 7.2: Data for Metallothionein IB from Data Set 7B

Patient ALL Log Patient AML Log
1 8.60 28 8.42
2 7.85 29 8.35
3 8.85 30 9.58
4 8.20 31 9.18
5 7.60 32 9.41
6 8.21 33 8.96
7 8.47 34 8.81
8 8.51 35 9.55
9 8.75 36 8.18

10 6.75 37 8.71

11 7.93 38 9.46

12 7.71

13 7.88

14 7.55

15 6.61

16 8.75

17 9.32

18 8.40

19 7.16

20 8.41

21 4.75

22 792

23 7.82.

24 8.42

25 7.08

26 7.38

27 9.29

Average 7.93 8.97

Sample s.d. 0.94 0.51

Fold Ratio —1.84 +1.84

Note: This data came from Affymetrix arrays; the values have been logged (to base 2) to ensurz =
the data are normally distributed.
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ttest x,by(type)

Two-sample t test with equal wvariances

obs

Mean

std.

Err.

std.

Dev.

[95% Conf.

Interval]

-
i

g

13.
15.

5E808
79413

. 9569085
. 37284590

2.531742
1.054567

11. 24661
14.91249

15.92955
16.67577

15

14, 76464

. 53538265

2.144961

13.5768

15.95248

-2. 206054

.9761203

-4.314833

mean( Q)
0

diff = 0
t) =

Ha:
PriT <

ttest x,by(type)

- mean{l)

0.0208

uneq

wo-sample t test with unequal

diff
4p

variances

T

degrees of freedom

= 0 Ha:

0.0416 PriT

diff :
= T

-2.2600
13

0

_ 0.9792

Group obs

Mean

std.

Err.

std. Dev. [95% Conf.

Interval]

0 7
1 B

13.
15.

5BEOS8
79413

. 0569085
. 3728459

2.531742
1.054567

11. 24661
14.91249

15.92955
16.67577

ombined 15

14. 76464

. 3538265

2.144961

13. 5768

15.95248

diff

-2.206054

1.02698

-4. 5845865

L1724574

mean{Q)

diff =
=0

o diff

diff < 0
t) =

Ha:
PriT =

0.0324

- mean{1)

T

Satterthwaite's degrees of freedom

diff
tl)

Ha:

= 0
0.0648

Ha:
Pri(T =

-2.1481
7. BOSEY

diff > 0
)

= 0.9676




permute type t=r{t), reps(1000): ttest x,by(type) uneq
(running ttest on estimation sample)
Fermutation replications (1000)
| J_ | 3
|

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
B50
900
950

vonte Carlo permutation results Number of obs

command: ttest x, by(type) uneqg

t: r{t)
permute var: tType

T

(obs) C y p=c/n SE(p) [95% conf. Interwval]

T -2.148098 59 1000 0.0590 0.0075 .0452134 0754491

confidence interval is with respect to p=c/n.

= #{|T| >= |T(obs)




jackkni : , by (type) uneq
(running t i on nple)

1=FLLH1TH r~p11car1nn_

t P>t [ conf. Interwval]

-2.148098 1.067258 -2.01 0. 064 -4.437138 .1409419




idprogram define ttestboot, rclass

plversion 10.1

k] syntax , X(varlist numeric max=l) type(varlist mumeric max=l) [ reps(real 100) wvar(string unedq) 1

El=set more off

di "Calculation of Achiewved Significance Level (ASL) using the bootstrap”

di "The idea i= to recenter the two =samples to the combined sample mean™

i "=o that the data now conform to the null hypothesis but that the wariances within the samples remain unchanged™
o reserve

Elttest "x',by( type') uneq

bl tenmpname tobs omean

il =calar “tobs' = r(t)

Fdcui summarize “x', meanonly

ik =calar ‘omean' = ri{mean)

iRYcui summarize "x' if “type'=0, meanonly

i) ui replace "X' = "X' - rimean) + scalar( omean') if Ttype'==0

ifA i summarize "x' if “type'=l, meanonly

il cui replace "X' = X' - rimean) + scalar(‘omean') if “type'=1l

ikl tenpfile boot

i lhootstrap t=r(t) ,nolegend nowarn notable reps | reps') strata( ' type') saving| boot'): ttest "x',by( tvpe') “war'

20

pElu=e “boot',clear

el i generate indicator = abs(t)>=abs(scalar( " tobs"))

pEY i summarize indicator, meanonly

pEddisplay in ye "ASLboot
P restore

P return scalar p=r (mean)
il =nd

" r(mean)



ttestboot, x(x) type(type) reps(1000) wvar (uneq)
Calculation of Achieved significance Level (ASL) using the bootstrap
The idea is to recenter the two samples to the combined sample mean
so that the data now conform to the null hypothesis but that the variances within the samples
> remain unchanged

Two-sample t test with unequal wvariances

Group 0obs Mean std. Err. std. Dev. [95% conf. Interwval]

0 7 13. 58808 . 9569085 2.531742 11. 24661 15.92955
1 8 15.79413 . 3728459 1.054567 14.91249 16. 67577

combined 15 14. 76464 . 53538265 2.144961 13.5768 15.95248

diff -2.206054 1.02698 -4. 584565 1724574

diff = mean(0) - mean{l) t -2.1481
Ho: diff = 0 Satterthwaite’'s degrees of freedom = 7.80587

Ha: diff <= 0 Ha: diff !'= 0 Ha: diff = 0
Pr(T < t) = 0.0324 pr(|T] = |t]) = 0.0648 Pr(T = t) = 0.9676
(running ttest on estimation sample)

Bootstrap replications (1000)
} 1 } 2

Bootstrap results

Number of strata = Number of obs
rReplications

(bootstrap: ttest)

ASLboot = .065
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TABLE 7.1: Data for ACAT2 from Data Set 7A

Patient Before Treatment After Treatment Log Ratio Fold Difference
7 —0.86 —-2.17 —-1.30 —2.47
10 -1.97 -1.93 0.04 +1.03
12 -2.07 -1.28 0.79 +1.73
14 —-1.91 -2.32 —-0.41 —-1.33
15 —0.94 -2.00 ~1.06 —-2.09
18 —1.29 —-1.74 —0.45 —1.37
26 -1.09 —1.54 —0.44 -1.36
27 —-0.65 —0.60 0.06 +1.04
39 -1.69 —2.06 -0.37 -1.30
3 -0.79 -1.22 -0.43 -1.35
47 -1.19 —-2.11 —-0.91 —1.88
48 —1.36 —1.40 —-0.04 —-1.03
53 -1.11 —-1.59 —0.48 —1.40
61 —-1.82 —-1.72 0.10 +1.07
100 -2.22 -2.13 0.10 +1.07
101 -1.76 -1.94 -0.18 -1.14
102 ~1.51 -2.37 —0.86 -1.81
104 —1.65 —1.98 —-0.33 -1.25
109 -0.78 —1.49 -0.71 -1.63
112 —1.80 —-1.82 -0.03 —-1.02
Average —1.42 -1.77 -0.35 -1.21
Sample SD 0.48 0.43 0.48

Note: In this experiment, the samples from before and after treatment have been hybridised to two
separate arrays, with a common reference sample in the second channel. The measurements before
and after treatment are the log ratios of the experimental sample to the reference sample. The log
ratio is the difference between these two values; the logs are taken to base 2, so a value of 1 represents
a 2-fold up-regulation, and —1 represents a 2-fold down-regulation. The sample standard deviations
have been calculated with a denominator of — 1 = 19 to ensure that they are unbiased estimators
of the population standard deviation.
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Bayesian methods

The bayesian framework provides an intuitively appealing framework for dealing
with most of the problems encountered in analysis of gene expression data. The t-
test being one of the simplest and widely used methods has been into the centre
of research for years and several bayesian counterparts of the t-test have been
proposed, whereas some of them were developed specifically to address problems
in microarray research.

The various methods that have been proposed share some common features but
also show marked differences according to various criteria, especially when it
comes to definition of the prior distribution for the hyperparameters.

Moreover, some of the methods are oriented toward hypothesis testing by relying
on the Bayes Factor to compare the null against the alternative hypothesis
(Gottardo, Pannucci et al. 2003, Gonen, Johnson et al. 2005, Rouder, Speckman et
al. 2009, Wang and Liu 2015), whereas others are oriented towards parameter
estimation and compute credible intervals for the parameters of interest, usually
the difference of the means (Wetzels, Raaijmakers et al. 2009, Kruschke 2013).

A convenient property of the t-test is the fact that its simplicity allows in many
cases a closed form expression to be derived, especially for the Bayes Factor
(Gottardo, Pannucci et al. 2003, Gonen, Johnson et al. 2005, Rouder, Speckman et
al. 2009, Wang and Liu 2015), whereas other methods rely on MCMC to sample
from the posterior distribution (Wetzels, Raaijmakers et al. 2009, Kruschke 2013).

Another important feature of the bayesian methods is the fact that within the
bayesian framework, one cannot only incorporate the problem of uncertainty and
small sample size, but also the problem of multiple testing, a feature very helpful
in microarray analysis (Gottardo, Pannucci et al. 2003, Fox and Dimmic 2006,
Gonen 2010)




Software

Concerning the above-mentioned methods, there are several software
implementations available. For instance, the Bayes Factor method of Rouder and
coworkers (Rouder, Speckman et al. 2009), which is known as the Jeffreys—Zellner—
Siow (JZS) t-test, is available as a web-calculator
(http://pcl.missouri.edu/bayesfactor) as well as an R package (https://cran.r-
project.org/web/packages/BayesFactor/index.html).

The Savage—Dickey (SD) t-test, proposed by Wetzels and coworkers (Wetzels
Raaijmakers et al. 2009), is inspired by the JZS t-test and retains its key concepts
but is applicable to a wider range of statistical problems (i.e. allows researchers to
test order restrictions and applies to two-sample situations in which the different
groups do not share the same variance), is also available as an R package that uses
WinBUGS (http://www.ruudwetzels.com/sdtest). Finally, there is the BEST
(Bayesian Estimation Supersedes the t-test) package, which provides a Bayesian
alternative to a t-test, providing much richer information about than a simple p
value (i.e. complete distributions of credible values for the effect size, group
means and their difference, standard deviations and their difference, and the
normality of the data) (Kruschke 2013). The BEST package is available for R in
http://www.indiana.edu/~kruschke/BEST/. There is also available an online
calculator (http://sumsar.net/best online/), whereas the method is also
incorporated in the Bayesian First Aid package
(https://github.com/rasmusab/bayesian_first aid) that aims to provide easy to use
Bayesian alternatives to the most widely used estimation commands.



http://pcl.missouri.edu/bayesfactor
https://cran.r-project.org/web/packages/BayesFactor/index.html
http://www.ruudwetzels.com/sdtest
http://www.indiana.edu/~kruschke/BEST/
http://sumsar.net/best_online/
https://github.com/rasmusab/bayesian_first_aid

Penalised t-test

As we already noted, the ordinary t-test is not ideal for many microarray experiments
because a large t-statistic can be driven by an unrealistically small value for 52. Genes with
small sample variances, possibly as a result of very small sample size, have a good a chance of
giving a large t-statistic even if they are not DE. A broad class of methods have been
presented in order to alleviate such problems. These methods are usually called penalized,
moderated or regularized t-tests. Most of these methods have been presented with an
empirical Bayesian justification (hence, they share a lot of common features with the
Bayesian methods), whereas other consist more of ad-hoc rules.

In any case all of them apply some kind of modification to the denominator of the t-test by
increasing the variance (Kooperberg, Aragaki et al. 2005).

Thus, they all have the same interpretation as an ordinary t-statistic except that the standard
errors have been moderated across genes, effectively borrowing information from the
ensemble of genes to aid with inference about each individual gene.

Baldi and Long were among the first to discuss Bayesian methods for the t-test in the context
of microarray experiments (Baldi and Long 2001, Kayala and Baldi 2012). However, even
though they developed a full Bayesian probabilistic framework for microarray data analysis,
they finally chose to use in their web-server, Cyber-T (http://cybert.ics.uci.edu/) an empirical
Bayes regularized t-test with variance equal to:

, _t@6§+(n—1)82
Cyber-T

V,+n—2


http://cybert.ics.uci.edu/

cont.

The parameter vO represents the degree of confidence in the background
variance 002 versus the empirical variance. In Cyber-T, the value of vO can
be set by the user by clicking on the corresponding button. The smaller n,
the larger vO ought to be. A simple rule of thumb is to assume that K > 2
points are needed to properly estimate the standard deviation and keep n
+ v0 = K. This allows for a flexible treatment of situations in which the
number n of available data points varies from gene to gene. The default
value is K= 10. In essence, using this approach the empirical variance is
modulated by vO «pseudo-observations» associated with a background
variance 002. For 00, one could use the standard deviation of the entire
dataset or, depending on the situation, of particular categories of genes.
Cyber-T uses however a flexible approach under which the background
standard deviation is estimated by pooling together all the neighboring
genes contained in a window of size w (the default is w = 101,
corresponding to 50 genes immediately above and below the gene under
consideration). As we already mentioned, Cyber-T is available as a web-
server as well as an R function (http://cybert.ics.uci.edu/).



http://cybert.ics.uci.edu/

Other similar methods

Another empirical Bayes methods is the method of Lonnstedt and Speed (Lonnstedt and
Speed 2002) which uses the moderated variance:

S/, =a+S§?
where the penalty a is estimated from the mean and standard deviation of the sample
variances S. Smyth later (Smyth 2005) generalized the approach from Lonnstedt and Speed in
the well-known limma (linear models for microarray data) method which uses:

52 V40, +NS?

limma

V,+N
Here, d0 and sO are estimated from the data with qche method of moments using an empirical
bayes approach. The limma method is one of the most widely used methods for analysing DE
genes, and there is available as Bioconductor package in R (http://biocinf.wehi.edu.au/limma).
Tusher et al (Tusher, Tibshirani et al. 2001) and Efron et al (Efron, Tibshirani et al. 2001) also
used a penalized t-statistics of the form

Sepp =a+S

This differs slightly from the previous statistics in that the penalty a is applied to the sample
standard deviation S rather than to the sample variance S2. Tusher et al (Tusher, Tibshirani et
al. 2001) in the so-called «Significance Analysis of Microarrays» (SAM) method, choose a to
minimize the coefficient of variation of the absolute t-values while Efron et al (Efron,
Tibshirani et al. 2001), choose a to be the 90th percentile of the S values. These choices are
driven by empirical rather than theoretical considerations. SAM is one of the oldest and
widely-used methods and it is available as Excel plugin at
http://statweb.stanford.edu/~tibs/SAM/, as well as part of several R packages (samr, ema).



http://bioinf.wehi.edu.au/limma
http://statweb.stanford.edu/~tibs/SAM/

Other Alternatives

* As we already mentioned, the earliest microarray publications
judged differential expression purely in terms of fold-change
with 2-fold typically considered a worthwhile cutoff. However,
fold-change cutoffs do not take variability into account or
guarantee reproducibility. Moreover, the FC-based ranking is
deficient because a gene with larger variances has a higher
probability of having a larger statistic. The moderated t-tests
on the other hand, allow for borrowing information across
genes and show better performance, providing statistical
estimates of statistical significance and the same time giving
results more in line with fold-change rankings. However, even
these modern statistical tests permit genes with arbitrarily
small fold-changes to be considered statistically significant
due to the t-statistic possibly having a very small denominator.



Hence, it has become increasingly common in the literature to
require that differentially expressed genes satisfy both p-value
and fold-change criteria simultaneously. Some authors
required genes to satisfy a modest level of statistical
significance and then rank significant genes by fold-change
with an arbitrary cutoff. Others, first apply a fold-change
cutoff and then rank genes by their p-value, whereas others
declare genes to be differentially expressed if they
simultaneously show a fold-change larger than a cutoff and
also satisfy criterion for p —value. Such combination criteria
typically find more biologically meaningful sets of genes than
p-values alone and in some cases give much better agreement
between platforms than p-value alone.
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Ewoéva 7.5: Adypauua “kpatripa neatotsiov”, (volcano plot) and éva nsipapa pétpnone Stapopikic yoviStakng
ékppaonc. Kabe onusio avuotowxel oc éva yovidio pe tn 6on otov opilovtio aova va avtotoxel oto Suadiko
AoydpiBuo tou Adyou Stapopikic Ekppaonc kat Tt Oan otov kabBsto déova va avtioTtoixel aTov apvnTiko Skadiko
AoydpiBuo ¢ tyic p-value. Ms npdowo Kat KOKKIVO @aivovtar ta oTatoTtikd ONUavtkd umo- Kai unep-
skppalousva yovidia (yia tpéc katw@Aiwv [log2FCl>=1.5 kat p-value<=0.05).



TREAT

A method that tried to impose statistical formalism to these
approaches is TREAT (t-tests relative to a threshold). This
method is an extension of the empirical Bayes moderated t-
statistic presented by Smyth (limma), and can be used to test
whether the true differential expression is greater than a
given threshold value. By including the fold-change threshold
of interest in a formal hypothesis test, the methods achieve
reliable p-values for finding genes with differential expression
that is biologically meaningful (McCarthy and Smyth 2009).
The method has shown very good properties in both real as
well simulated data.




WAD

e Similar considerations have lead to the development
of the weighted average difference method (WAD)
for ranking DEGs (Kadota, Nakai et al. 2008). The
authors observed that some top-ranked genes which
are falsely detected as "differentially expressed" tend
to exhibit lower expression levels. This interferes
with the chance of detecting the "true" DEGs
because the relative error is higher at lower signal
intensities. WAD uses the average difference and
relative average sighal intensity so that highly
expressed genes are highly ranked on the average for
the different conditions:

X —min(X)

X)-min(X)

WAD:()?l—)Zz)maX(
p






MeTta-AvaAuon

- [lapouacia BopuBou oTa anoTeAecuaTa
e Mn enavaAnyipa anoTeAecpaTa JETAEU TwWV MEIPAPNATWV

|

e 2TATIOTIKO epyaAe€io nou eneepyaletal Ta dedopeva Kail Ta
anoTEAEONATA HEAETWYV NOU EPEUVOUV TO 010 EpWTNHA

« [lapexel eva TEAIKO CUUMEPACKA TO OMOIO NPOEPXETAl ANO
hia ouvBeon aveEapTnTwWV CUVOAWY OEQOHEVWYV

Normand, S. L. (1999). "Meta-analysis: formulating, evaluating, combining, and reporting."” Stat Med 18(3): 321-59




Meta-analysis is the statistical procedure for combining data
from multiple studies. When the treatment effect (or effect
size) is consistent from one study to the next, meta-analysis
can be used to identify this common effect. When the effect
varies from one study to the next/ meta-analysis may be used
to identify the reason for the variation. Decisions about the
utility of an intervention or the validity of a hypothesis cannot
be based on the results of single study, due to the fact that
the results typically vary from one study to the next. Rather, a
mechanism is needed to synthesize data across studies. Meta-
analysis applies objective formulas and can be used with any
number of studies.



Issue 1: Selection of Appropriate Microarray Datasets

The first, and most critical, step in an experimental study is to clearly state
objectives. Meta-analysis enables the identification of differentially
expressed genes among multiple samples in order to improve
classification within and across platforms, to detect redundancy across
diverse datasets, to identify differentially co-expressed genes, and infer
networks of genetic interactions. The second step of meta-analysis is to
set eligibility criteria, either biological (e.g., tissue type, disease) or
technical (e.g., one-channel versus two-channel detection, density of
microarrays, technological paltform). Based on these criteria, literature
searches are preformed, using appropriate key terms, to retrieve relevant
studies. These studies can be complemented by microarray data available
in public databases that conform to the MIAME (Minimum Information
About a Microarray Experiment) guidelines (Brazma, Hingamp et al. 2001)



* Issue 2: Data Acquisition from Studies

 The genes found to be differentially expressed in a given study
constitute the published gene lists (PGLs) which are either
included in the main text or provided as supplementary
material. The gene expression data matrices (GEDM) contain
preprocessed expression values of every probeset and sample
for one gene. The published GEDM cannot be used directly as
input for meta-analysis because of the different algorithms
used for processing raw data in the original studies, which
may generate heterogeneous, non-comparable results.



» Issue 3: Preprocessing of Datasets from Diverse Platforms

* To enable consistent analysis of all datasets, bias introduced
by the preprocessing algorithms should be eliminated. To this
end, feature-level extraction output (FLEO) files, such as CEL
files, should be obtained and converted to GEDM suitable for
meta-analysis. Multiple studies from the same platform
should be preprocessed using a single algorithm. In case the
studies are conducted on different platforms, it is
recommended to be preprocessed with comparable
algorithms in order to be combinable.



* Issue 4: Promiscuous Hybridization between Probes and Genes

* The datasets are annotated using UniGene or RefSeq gene identifiers,
collectively referred to as GenelDs. Multiple probes can hybridize with the
same GenelD, as UniGene represents a cluster of sequences that
correspond to a unique gene. Conversely, one non-specific probe can
cross-hybridize with multiple GenelDs due to imperfect specificity. There
are also probes with inadequate sequence information that cannot
hybridize with any GenelD. One approach to resolve the "many to many"
relationships between probes and genes is to include in the meta-analysis
only probes that are associated with a single gene, and exclude the
promiscuous probes that are associated with more than one gene. In this
way, however, important information can be lost. Averaging the expression
profiles prior to meta-analysis is not recommended either, given that
probe binding affinity differences affect the gene expression
measurements. Therefore, it is recommended to apply descriptive
statistics, thereby reducing the "many-to-many" into "one-to-one"
relationship between probe and GenelD for each study.



* Issue 5: Choosing a Meta-Analysis Technique

* The choice of meta-analysis technique depends on
the type of response (e.g., binary, continuous,
survival). In this article, we focus on the two-class
comparison of microarrays where the objective is to
identify genes expressed differentially between two
wellknown conditions. There are three generic ways
of combining information in such a situation: using
effect sizes, using p-values and using ranks.



Statistical methods

* The statistical methods for meta-analysis of
differentially expressed genes can be divided
in three categories: the methods that rely on
some effect size, the methods that combine

p-values and the methods that combine
ranks.



MeTa-avaAuon MikpoouoToIXiwyV

MEBodoI peTa-avaiuong:
— t-test

d = X1i — X2i sd. — (n; —Dsdy; +(n, —Lsd,,
B | n; +Ny — 2

| sd.

— Rank Product (Mvopevo Twv BaBpwv KATATAENC)
1
RPg = (Hin rgik)E

— ZUVvOUOOHOG TwV p-values

K
S| = _22 log(p, )
-1

Hong, F. and R. Breitling (2008). "A comparison of meta-analysis methods for detecting differentially expressed genes in microarray
experiments." Bioinformatics 24(3): 374-82.




Effect size

The first approach is a standard approach for meta-analysis using fixed or
random effects. In principle any suitable effect size can be used, but in
practice most authors, for a number of reasons, advocate the standardized
mean difference: X, — X,

d. =
i S
pi
Where X1i and X2i are the means of the two groups under comparison in
the ith study, and Spi is the pooled standard deviation given by:

(nli _1) S12i +(n1i _1) 812i

n,+n,—2
The sample estimate of the standardized mean difference is often called
Cohen’s d in research synthesis. It turns out that d has a slight bias,
tending to overestimate the absolute value in small samples. This bias can
be removed by a simple correction that yields an unbiased estimate, with
the unbiased estimate sometimes called Hedges’ g. To convert from d to
Hedges’ g we use a correction factor, which is called J. There is an exact

formula for J, but in common practice researchers use an approximation
given by gi =Jdi= di -3di/(4ni - 9). The estimated variance of d is given by

2
var(d,) = s’ :(i+ L ]+ d
nli r-]2i 2(r]li + r-]2i )

pi




When g is used, var(g)=J2var(d). In any case, it is straightforward to obtain

a pooled estimate of d (or g): d— Zi:lwi d,

Z:;lwi
This estimate is the well-known inverse-variance estimate used in meta-
analysis with (Petiti 1994, Normand 1999). The above method assumes
homogeneity of the effect across studies, an assumption that may be
untenable. In case of between-studies heterogeneity, we hypothesize that
the true effect varies from study to study and an additive component of
the between studies variance (12) needs to be estimated (random-effects
model). The most commonly used method for estimating 72 is the non-
iterative method of moments proposed by DerSimonian and Laird
(DerSimonian and Laird 1986), even though there are several alternatives
including iterative procedures (Thompson and Sharp 1999). In case 12=0,
the random-effects and the fixed-effects estimates coincide. In the
random-effects case, the weights are calculated by

W, = (rz +si2)
and subsequently Eq. (19) is applied in order to obtain the overall estimate




MpoBAnuata

 Ta tbLa pe tnv amnAn avaiuvon
e Xpelalopoote TAAL Koo BeAtiwpevn pebodo
(bootstrap, permutation, empirical Bayes)

— metaMA (https://cran.r-
project.org/web/packages/metaMA/index.html)

— GeneMeta
— metaArray
— MetaDE

e Full Bayesian methods

— http://people.math.umass.edu/~conlon/research/BayesPo
olMicro/



https://cran.r-project.org/web/packages/metaMA/index.html
http://people.math.umass.edu/~conlon/research/BayesPoolMicro/

Ranks

* Another class of methods for meta-analysis consists of
methods that combine ranks. There are several different
approaches, but they all share the biological common sense
that if the same gene is repeatedly at the top of the list
ordered by up- or down-regulated genes in replicate
experiments, the gene will be more likely to be regarded as
differentially expressed. The Rank Product (RankProd)
method, which we already described in the context of single
study, uses the fold-change to rank genes and calculates the
products of ranks across individuals and studies (Hong,
Breitling et al. 2006). A similar method uses the Rank Sum
instead, but all the other calculations are identical. The
RankProd software is available at:

https://www.bioconductor.org/packages/release/bioc/html/R
ankProd.html.



https://www.bioconductor.org/packages/release/bioc/html/RankProd.html

cont

* Arelated method termed METRADISC (Meta-analysis of Rank
Discovery Dataset), is based on the same idea, but it is more
general (Zintzaras and loannidis 2008, Zintzaras and loannidis
2012). The ranking within each study can be performed with
any available method (FC, t-test, p-value etc) and then the
average rank of a particular gene, for each study, can be
calculated. The overall mean can be with or without weights,
and in the former case the situation resembles the traditional
methods for meta-analysis. The between-study heterogeneity
of the study-specific ranks can also be computed. The
METRADISC software is available in R (http://www.inside-
r.org/node/155959) and as a standalone application
(http://biomath.med.uth.gr/). The methods that use ranks are
qguite robust and can incorporate studies using different
methods. However, the overall effect cannot be calculated
and statistical inferences are based on Monte Carlo
permutation tests, which may be time-consuming



http://www.inside-r.org/node/155959
http://biomath.med.uth.gr/

* The rank-based methods offer several advantages traditional
approaches, including the biologically intuitive of fold-change
(FC) criterion, fewer assumptions under the model, and
robustness with noisy data and/or low numbers of replicates.
The approach overcomes the heterogeneity among multiple
datasets and naturally combines them to achieve increased
sensitivity and reliability. It is worth pointing out that these
methods do not require the simultaneous normalization of
multiple datasets using the same technique, which solves a
frequently encountered dilemma in microarray meta-analysis
pre-processing step. Moreover, the rank-based methods
transform the actual expression values into ranks, and thus
they can integrate datasets produced by a wide variety of
platforms (Affymetrix oligonucleotide arrays, two-color cDNA
arrays and so on). As matter of fact, the rank-based methods
are quite general and thus can also be used for different types
of data, such as proteomics or genetic association data.



Combination of p-values

* Another class of methods that is popular in meta-
analysis of microarray studies (Hess and lyer 2007) is
related to the combination of p-values. It is widely
accepted that Fisher’s original work on combining of
p-values (Fisher 1946) was the origin of meta-
analysis (Jones 1995). Fisher noted that since p-
values from k independent samples are uniform
random variables, the sum of their logarithm will
follow a x2 distribution with 2k degrees of freedom:

U =—2iZ::Iog(pi)=—2log(li[ pij




Other approaches

e Edgington suggested using the sum of the p-
values in order to obtain a pooled estimate

(Edgington 1972) 50

p:

k!

e Later, the same author suggested using a
contrast (Edgington 1972) Y,

E: =1

k
(05-p)viz follows a N(0,1)

in which case U



TPM

A more sophisticated method was presented by Zaykin and
coworkers, the so called truncated product method (TPM).
Their procedure was to take the product of only those p-
values less than some specified cut-off value (t) and to
evaluate the probability of such a product, or a smaller value,
under the overall hypothesis that all k hypotheses are true

k
W =]_j1[(pi)'(p“r)

P(W gw)zzk:[kj(l—r)kr wai(rlogr—logw)s I (WS rr)+rrl (W>rr)J

s=0 s!



Stouffer

Nevertheless, combination of p-values although appealing and easily
implemented presents serious problems relative to combining effect sizes.
For example, there are problems when the p-values are testing different
null hypotheses. Moreover, the method does not consider the direction of
the association and thus all the p-values has to be one-sided, otherwise
up-regulated and down-regulated genes need to be combined separately.
Finally, the methods cannot quantify the magnitude of the association
(the effect size), and most importantly does not allow for between studies
heterogeneity.

- iZ- 7 - Z:(zl\/wizi




Multiple Comparisons

e Any time you reject a null hypothesis because a P value is less than your
critical value, it's possible that you're wrong; the null hypothesis might
really be true, and your significant result might be due to chance. A P
value of 0.05 means that there's a 5% chance of getting your observed
result, if the null hypothesis were true. It does not mean that there's a 5%
chance that the null hypothesis is true.

* For example, if you do 100 statistical tests, and for all of them the null
hypothesis is actually true, you'd expect about 5 of the tests to be
significant at the P<0.05 level, just due to chance. In that case, you'd have
about 5 statistically significant results, all of which were false positives.
The cost, in time, effort and perhaps money, could be quite high if you
based important conclusions on these false positives, and it would at least
be embarrassing for you once other people did further research and found
that you'd been mistaken



http://www.biostathandbook.com/hypothesistesting.html#null

* This problem, that when you do multiple statistical tests,
some fraction will be false positives, has received increasing
attention in the last few years. This is important for such
techniques as the use of microarrays, which make it possible
to measure RNA quantities for tens of thousands of genes at
once; brain scanning, in which blood flow can be estimated in
100,000 or more three-dimensional bits of brain; and
evolutionary genomics, where the sequences of every gene in
the genome of two or more species can be compared. There
is no universally accepted approach for dealing with the
problem of multiple comparisons; it is an area of active
research, both in the mathematical details and broader
epistomological questions.



* The classic approach to the multiple comparison problem is to
control the familywise error rate (FWER). Instead of setting
the critical P level for significance, or alpha, to 0.05, you use a
lower critical value. If the null hypothesis is true for all of the
tests, the probability of getting one result that is significant at
this new, lower critical value is 0.05. In other words, if all the
null hypotheses are true, the probability that the family of

tests includes one or more false positives due to chance is
0.05.

* The most common way to control the familywise error rate is
with the Bonferroni correction. You find the critical value
(alpha) for an individual test by dividing the familywise error
rate (usually 0.05) by the number of tests. Thus if you are
doing 100 statistical tests, the critical value for an individual
test would be 0.05/100=0.0005, and you would only consider
individual tests with P<0.0005 to be significan



The Bonferroni correction is appropriate when a single false positive in a
set of tests would be a problem. It is mainly useful when there are a fairly
small number of multiple comparisons and you're looking for one or two
that might be significant. However, if you have a large number of multiple
comparisons and you're looking for many that might be significant, the
Bonferroni correction may lead to a very high rate of false negatives. For
example, let's say you're comparing the expression level of 20,000 genes
between liver cancer tissue and normal liver tissue. Based on previous
studies, you are hoping to find dozens or hundreds of genes with different
expression levels. If you use the Bonferroni correction, a P value would
have to be less than 0.05/20000=0.0000025 to be significant. Only genes
with huge differences in expression will have a P value that low, and could
miss out on a lot of important differences just because you wanted to be
sure that your results did not include a single false negative.



* An alternative approach is to control the false discovery rate
(FDR). This is the proportion of "discoveries" (significant
results) that are actually false positives. For example, let's say
you're using microarrays to compare expression levels for
20,000 genes between liver tumors and normal liver cells.
You're going to do additional experiments on any genes that
show a significant difference between the normal and tumor
cells, and you're willing to accept up to 10% of the genes with
significant results being false positives; you'll find out they're
false positives when you do the followup experiments. In this
case, you would set your false discovery rate to 10%.



One good technique for controlling the false discovery rate
was briefly mentioned by Simes (1986) and developed in
detail by Benjamini and Hochberg (1995). Put the individual P
values in order, from smallest to largest. The smallest P value
has a rank of i=1, then next smallest has i=2, etc. Compare
each individual P value to its Benjamini-Hochberg critical
value, (i/m)Q, where i is the rank, m is the total number of
tests, and Q is the false discovery rate you choose. The largest
P value that has P<(i/m)Q is significant, and all of the P values
smaller than it are also significant, even the ones that aren't
less than their Benjamini-Hochberg critical value.



2TATIOTIK) AvaAuon MikpoouoToIXiwv

« [lapadeiyua: Ac uttoBéooupue ot e¢etalovTal 10000 yovidia TOTE UE
p-value<0.05, 500 yovidia avauéveral va BpeBouv oTaTIOTIKA
onMavTika katd Tuxn (by chance)

* Avaykn XpnolipgoTtroinong Twv ueBodwyv 016p0waoncg yia TTOAATTAEC
OUYKPIOEIC
— Bonferroni: Py = Py *N
1

— Sidak: pcor(i) :1_(1_ p(i))H
— Holm: pcor(i) — (n_i)* p(l)

— Holland: Peory = (n—1+1)* Py

n

— . _ x*
FDR: Peoriy = i P



News & Updates

e Fixed name mapping issue with A.
thaliana (02/27/2017); Mew

« Fixed node name display issue for fruitfly
and C. elegans (02/06/2017); NEW

» Fixed ID mapping issue with STRING
database (01/23/2017); New

« Fixed the issue with SIF file generation
(01/16/2017); NEW

» Fixed issue with PPl mapping for fruitfly
(01/10/2017); NeW

« Added support for Venn diagram visual
analytics (12/9/2016);

« Added support for TF-gene and protein-
chemical interactions (12/8/2016),

o Added support for protein-drug
interactions (12/5/2016);

 Both Network and Heatmap now support
Retina display (11/20/2018);

« Added support for miRNA-gene

interactions (11/15/20186),

NetworkAnalyst

NetworkAnalyst -- network-based visual analytics for gene expression profiling, meta-analysis and interpretation

# Home ? FAQs # Data Format O Tutorials © About @ Contact

Click on an input area below to start Overview

NetworkAnalyst is designed to support integrative analysis of gene expression
data through statistical, visual and network-based approaches:

A list of genes or
proteins

Data inputs: one or more gene/protein lists with optional fold changes; one or
more gene expression tables from microarray or RNAseq experiments.
Network currently supports 13 species (eight model organisms & five common
species).

Expression analysis & meta-analysis: support limma, edgeR and DESeq2.
The interface allows paired comparisons, time series, common reference, as

m

well as two-factor nested comparisons; for meta-analysis - p values, fold
changes, effect sizes, vote counts, and direct merge.

Network creation & customization: support protein-protein interactions,
TF-gene interactions, miRNA-gene interactions, protein-drug interactions and
protein-chemical interactions; multiple functions for network refinement;

Network visual analytics: interactive visual exploration - zooming, searching,

A single gene . ; Multiple gene highlighting, point-and-click, drag-and-drop; network customization - six layout

expression data expression data algorithms, background color, edge size/shape, node size/colorivisibility; in
situ functional enrichment analysis (GO, pathways. etc.). network editing -
node deletion, module extraction, and image exporting: topology analysis -

hubs, shortest paths analysis, as well as three module detection algorithms.

Other visual analytics: interactive heatmaps, clustering (PCA & t-SNE),

http://www.networkanalyst.ca



MeTa 1O clustering Kal Tn META-AVAAUCN?

XpAon AoYIOUIKWYV YIa EUPECNC KOIVWV XOPAKTNPIOTIKWY PETAEU
OMNAdWYV YoVIdiwvV

Anuioupyia yovidIaKwV UTTOYPAPWY JE OKOTTO TNV TTPOLBAEYWN
aoBevelwyv

bioCompendium
The high-throughput experimental data analysis platform

home EETTTIEER @ETR search..

Gene list(s) analysis What is it & what it does ....

bioCompendium iz a publicly accessible, high-throughput experimental data

Select primary organism : human - analysis platform. The system is designed to work with large lists of genes or
proteins for which it collects @ wide spectrum of biological information. It facilitates

the analysis, comparison and enrichment of experimental results; either

Select background : @ whole genome ) ather gene list(s) proprietary or publicly available data sets. Typical use cases are the prioritization
of potential targets from gene expression analysis studies or from RNAI studies.

) The current version is designed to work best for human, mouse and yeast but

Upload gene list(s) and/or documents : other model organisms will be included in the next releases.

Org Name File ID/Document Type Main features of the system are:
human = gene_list_1 | AvagiTnan... | Ensembl Gene ID -

Input and conversion of a wide range of input 1D's like UniProt, GO,
Affymetrix and RefSeq

- Extraction of bio-entities from different file formats (MS-Office, PDF
| Reset | | G0l | and flat text)

T — Comprehensive knowledge collection from different biological
database for a given list(s) of genes

Search interface to the knowledge collection to find information like
gene annotations, disease associations, sequences domain
architectures, interfering chemicals and involved pathways
Enrichment analysis for GeneOntology terms, diseases, pathways
and other biological concepts

Extraction of the protein-protein, protein-chemistry interactions
networks

Compilation of clusters based on sequence homology & sequence
domain architectures in a given list(s) of genes

Analysis and clustering of transcription factor binding site (TFBS)
profiles

Access to orthology information, clinical trial and patent information
* Comparison of results derived from different experimental
conditions, time series or treatments

See help pages for more detais.

Send comments to Wenkata B, Satagopan
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