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TuTtrol B1IoAOYIKWYV OIKTUWV

1. AikTud MPpWTEIVIKWV AAANAETIOPACEWV

(Protein-protein interactions PPIs)

*OI TTPWTEIVEC €ival Ol KOUPBOI Tou OIKTUOU Kal OI AAANAETTIOPAOEIC TOUC Ol AKUES

Bdoeig dedopévwy:
Yeast Proteome Database (YPD), Munich Information Center for Protein Sequences (MIPS), Molecular Interaction
(MINT), Databae of Interacting Proteins (DIP), BioGRID, Human Protein Reference Database (HPRD)

Saccharomyces cerevisiae (yeast) PPI network
1,004 nodes and 8,323 edges (17)




2.MeTtaypa@ikd puluioTika dikTud (Transcriptional- Regulatory networks (GRNS)

* MovTeAoTrolEiTal O TPOTTOC TTOU OI TIPWTEIVEC Kal AAAa Bloudpla eUTTAEKOVTAl OTNV
dladIkagia TNG EKPPACNS TWV YoVIdiwv

Bdoeig dedopévwy:
JASPAR, TRANSFAC, B-cell interactome (BCI) , Phospho.ELM
NetPhorest, PHOSIDA

E. coli. Guzméan-Vargas and Santillan BMC Systems
Biology 2008 2:13



3. Aiktua MeTaywync ZAUATOC

(Signal trasduction networks)

* AvartrapioTtaral o TPOTTO¢ NETAdOONC TOU CHUATOC ATTO TOV £CWKUTTAPIO OTOV
EVOOKUTTAPIO XWPO, EITE OTO ECWTEPIKO TOU KUTTAPOU.

Bdaoeig dedopévwy:
MiST, TRANSPATH, Spike, Kegg
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4. MeTaBoAIka — Bioynuika dikTua

(Metabolic and Boichemical networks)

*  MeTaBoAIKS povoTtTdTl Bewpeital pia oeipd atrd XNUIKES avTIOPACEIC JECA OTO KUTTAPO
o€ OIAPOPETIKEG XPOVIKEG KATAOTAOEIG

Bdoeig dedopévwv:
Kyoto Encyclopedia of Genes and Genomes (KEGG), TRANSPATH, EcoCyc, metaTIGER
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A portion of a metabolic network. (From Biochemical Pathways,
Roche Applied Science, http://www.expasy.org/tools/pathways/)



5. Oi1koAoyikd SikTua-OikTua d10TPOoPIKWYV aAucidwyv (Food Webs)

* AvartrapioTwvTal ol BIOTIKEC AAANAETTIOPACEIC O€ £va OIKOOUOTNMA.

Ta €idn Twv opyaviIoPWY TTOU BpickovTal 0€ £va OIKOCUOTNUO CUVOEOVTAIl PE
AAANAETTIOPACEIC KATA (eUyN Kal UTTOPEI VA €ival EITE TPOPIKEC €ITE CUPPBIWTIKES

Bdoeig dedopévwy:
Iwdb interaction Web DataBase, Food Web Bank

Food Web, el Verde (www.foodwebs.org, Yoon et
al. 2004)



6. AikTua aofeveiwyv (Diseases networks)

« Aivouv TTAnpo@opieC yia TNV TTPOEAEUON aoBEVEIWY

Bdaoeig dedopévwyv: Online Mendelian Inheritance in Man (OMIM)
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Human disease network (Matthew Bloch,

Jonathan Corum) PMID:17502.601



AAAa BioAoyiKa OIKTUO

7. Aiktua Bepartreiac aoBevelwy (treatment networks)
* T[IANPOPOPIEC YIa TNV ETTIKOIVWVIO QAPUAKWY KAl BEPATTEIWV KATTOIOG A0OEVEIOC

8. Neupwvika diktua (neural networks)
» [lIAnpo@opicc yia Tov TPOTTO HETADOONC ONUATWY OTO VEUPIKO oUCTNUA

9. Aiktua geyke@aAou (Brain networks)
* O 1pdTTOC TTOU TO dIAPOPA ONMEIA TOU EYKEPAAOU EVEPYOTTOIOUVTAI- ETTIKOIVWVOUV
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Brain network: directed links in large scale functional networks network of 10 treatments involved in the MTC analyses of the COPD
G.A. Cecchi, A.R. Rao, M.V. Centeno, M. Baliki, A.V. Apkarian data: chronic obstructive pulmonary disease;

& D.R. Chialvo, BMC Cell Biology 8(Suppl 1):S5 (2007)



[Tapadeiyuata

« Steven H. Strogatz Exploring complex networks Nature
410, 268-276(8 March 2001)

Table 1. Clustering for three affiliation networks.

« Figures & Tables index

Table 1 Clustering for three affiliation networks

Network Clustering C
Theory Actual
Company directors 0.590 0.588
Movieactos 0084 ©0.199 b
Biomedical authors 0.042 0.088

US corporate directors: 7,673 company directors linked by joint membership on 914 boards of
the Fortune 1,000 companies for 1999. Movie actors: 449,913 actors linked by mutual
appearances in 151,261 feature films, as specified by the Internet Movie Database
www.imdb.com) as of 1 May 2000. Biomedical collaborations: 1,388,989 scientists linked by
coauthorship of at least one of 2,156,769 biomedical journal articles published between 1295
and 1999 inclusive, as listed in the MEDLINE database. The clustering coefficient C is defined as
the probability that a connected triple of nodes is actually a triangle; here nodes correspond to
people, as in the unipartite representation shown in Fig. 7b. Intuitively, C measures the likelihood
that two people who have a mutual collaborator are also collaborators of each other. The results
show that the random model accurately predicts C for the corporate director network, given the
network’s bipartite structure and its degree distributions; no additional social forces need to be
invoked. For the networks of actors and scientists, the model accounts for about half of the
observed clustering. The remaining portion depends on social mechanisms at work in these
communities (see text). (Adapted from ref. 91.)


http://www.nature.com/nature/journal/v410/n6825/full/410268a0.html

the capitalist network that runs
the world

Vitali S, Glattfelder JB, Battiston S (2011)
The Network of Global Corporate
Control. PLoS ONE 6(10): e25995.
doi:10.1371/journal.pone.0025995
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Eixéva 9.3: a) ﬂapdéslyua Siuepou¢ SiktUou UETaBoAKAC puBLILaNG Onou LE KOKKIVO euqmv((ovraz ot petapolitec
(S, S2, P, Q) Kat us npdowo (E0,E1,EX) ta stuua mou KataAvouv (g petacu T0U¢ avu6pao£lc Mavw: o nAnpsc
Siktuo. Kdrw: o Siktuo nou n.spu\auﬁavsl Lovo Tou¢ ugraBoAltsc Kat EXEL MPOKUWEL and OuVEVWOT) TWV aKUWV TOU
navw oiktuou. B) Eva pstaforikd Siktuo nou avrtiotoixsl o pUEPOC Twv avtidpdoswv Tou HETaBoAMouoU evoc
avBpwmvou KUTTApou. & autov Tov noAunAoko “ustafoAko xdptn” Stakpivovrat ot KUKAOL Tou KITpKoU oé€o¢ Kat
¢ oupiac. (Eikova and J3D3, CC BY-SA 4.0, and Wikimedia Commons).
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Eixéva 9.5: Baowkd potifa petaypa@iknic pubuwone a) Auto-pubuion pe evepyonoinon B) Auto-puBuion pe
kataotoAr (Bpoxo¢ avadpaonc) y) Bpoxo¢ Suo cuviatwawv 6) Mpddpopn pubLian svepyonoinone (feed-forward
stimulation) g) Motifo povadikic s.oodou at) AAuoiba pubuuonc ps avadpaon (Lee et al., 2002).
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Figure 6 Network Motifs. Some common network motifs. A) Feed-forward loop. Type of networks: protein,
neuron, electronic. B) Three chain. Type of network: food webs. C) Four nade feedback. Type of network:
gene regulatory, electronic. D) Three node feedback. Type of network: gene regulatory, electronic, E) Bi
parallel. Type of network: gene regulatory, biochemical. F) Bi-Fan. Type of networks: protein, neuron,
electronic [74].




Zuykevipwon (A)

Xpovog (1)

Zuykevipwaon (A)

Xpovog (1)

ElKOVd 9.6: Mortifo avatpo@obotnon¢ a) Oerua) avatpo<po6oma/) B) Apvnru«) avatpo@odoTNon Kat ot
avTIOTOIXEC SLAPOPETIKEC SUVALILKEC auunept(popec ToU uouﬁou 2TV NpwTi nsplnrwcm N GguKn avatpo@odotnon
o0dnyel o< wa owypostdn avuénon TN oUYKEVTPWONG vw otn SSUTEPN Ta apxikd nocootd auédvovtat pe 6Ao Kat
LUKPOTEPO pUBLIO AGYw TNC KATaoTtoANC anoé TV apvntiki avatpo@osdotnor).
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Eixkéva 9.7: Avo pan’ﬁa npﬂ’ﬁpﬂ#m; puBLuonc pe noAu dtagopstika ﬂstmupw.fcfi‘ XapaktnpIoTKa. a) Hpéﬁpﬂpﬂ
OUVEKTIKS) Enaywyr} o€ tia nApwc crwﬁsnﬁzpqu ptada ;‘%'rjﬁ}l To X EVEPYONOLEL Gnﬂménnors and ta X, Y ta E}Hﬂiﬂ
Aﬂpm ¢ pueTaét Toug arAnAo-snaywyikiG oxson napausvow Evsppa (IKEJ,UG Kat (etd v andoupon tou X and 1o
ovotnua (PuBLuotikiy Mvipn). ,B,J Ze pua - OUVEKTIKI) Em:f}fww} ay z Exouv aAAnio- mmmaﬂnm stc:r.-} mnou
odnyei otav Evaﬁﬂaw} e Evspvommr; TOUC. TOE ou apxikd :}mv EVEDYO mma‘reﬂﬁsrm mm:l and 1o X ogo Kat ano
10 Y nou to X £xet svepyonoost. AnAf otypala svepyonoinon tou X avTioTpépsl autduara v wwopponia Y, Z
(PuBuiotikoc Atakontng). H Eikova Bagifctal oTic avtioToxse ansikoviosic ano to (Alon, 2007).



OEQPIA TPAOQN

* [pa@og: yia dopn TTou aTtroTeAEiTal atmd €va OIATETAYMUEVO (EUYOC
G=(V, E)

G: o 'pdoog

V: guvoAo kKOuBwv (vertices)

E: ouvolo akpwyv (edges), o1 OTToIEC EVWWVOUV TOUG KOUPBOUG METACU TOUG

« KarteuBuvouevol (directed), un kateuBuvopuevol (undirected)

V V,
ry
V4 -
V4
V={V1,V2,v3,V4}, |V|=4, V={V1,v2,V3, 4}, |V|=4, E={(V1,V2),

(V2,V3), (V2,V4), (V4,V1), (V4,V2)},
E={(V1,V2), (V2,V3), (V2,V4), (V4,V1)}, |E|=4. IE|=5



Set 1 Set 2

Figure 1 Undirected, Directed, Weighted, Bipartite graphs. A. Undirected Graph: V = {V, V5, V3 Vi, |V|
=4, F={(V,, V3, V5 Vo), (Vo Vi), (Ve Vi), |F] = 4. B. Directed Graph: V = {V), V3, V3 Vil V] = 4 £ = {{V,, V3,
Va Vi (Vs Vi), (Ve Vi), (Vi Vo)l |E] = 5. C. Weighted Graph: V = {V;, Vo, Vs Vil V] = 4, E = {(V), Vo Vi), (Vs
Vo V), Vs Vi Vi, (Vi Vy, V), (Vi Vs, V) |E] = 5. D. Bipartite graph: V= {U;, Uy Uy Uy Vi, Vo Vil M =7 F
= {{U;, Vi), (U Vo), (U Vol (U, Vil (Us Vol (U VoI |,|'_'| = 6.
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Bipartite graphs
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[TapadeiypaTa OINEPWV YPAPWYV

* [oVidIo/ACBEVEIEC
« AoBévelec/2uuTITLWuATO
» AoBEveiec/Pappaka

* AANAG Kal aAAQ:
— EmoTtnuovikEC epyaaiec/2uyypaeic
— Taivie¢/HBoTTOI0I
— INoAueBvikEC/uEAN A2



Aoun 0edoPEVWYV

AvatrapdoTaon :

« [livakag yeitviaong (adjacency matrix)
MNa évav ypago G = (V, E), o mivakag yeirviaong atroteAgital atrod évav |V|[x|V| = nxn
mrivaka, A=(aij) €éTo1 woTte aij=1 av (i,j)eV 1 aij=0

» AioTta yeirviaong (adjacency list)

‘Evacg ypdeoc G=(V,E), avatrapiotdral w¢ évag JovodiaoTaTog TTivakag, GTrou
KABe KOPPOC I, gival OEIKTNG 0€ dia ouvdedeuévn AioTa, oTNV OTToId ATTOBNKEUOVTAI Ol
KOMBOI TTou YEITVIAZOUV E ToV | KOUPBO
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Figure 2 Data structures. A. A Directed Graph: A random graph consisting of five nodes and six directed
edges. B. Adjacency List: The data structure which represents the directed graph using lists. C. Adjacency
Matrix: The data structure which represents the directed graph using a 2D matrix. The zeros represent the

absence of the connection whereas the ones represent the existence of the connection between two
nodes. The matrix is not syrnmetric since the graph is directed.
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Figure 3 Graph Isomorphism. V = {V;, V5, V3 Vil V] = 4 F = {(V;, V), Vi, Va), (Vi Vi, Vs Vi), (Va Vil (Vs
Vil |F] = 6. Graphs A and B have different topology but they are isomorphs. The graph is fully connected
and every node is connected to any other so that it forms a fully connected cligue.
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Figure 4 Walks, simple paths trails and cycles in graphs. A walk is a sequence of nodes eg. (Vs V3 Vi
Vs V). A simple path is a walk with no repeated nodes, eq. (V;, Ve Vs Vi V3. A trail is a walk where no
edges are repeated eq. (V;, Vs V3 Ve A cycle is a walk (V}, V.., Vi) where V; =V, with no other nodes
repeated and [>3, eq. (V;, V5 Vs Vi V).




ATTAEC UETPNOEIC

Network density ——  o6o0 apaidg 1} TTUKVOC gival £vag ypdagog
2| E|
i(vi-1) |E| = |V] |El = [V|2

Shortest paths ——= ovoudletai amréotaon 6( i ,j) amrd ToV i KOPPBO OTOV |

Network diameter ——= 1 peyio i nur g andotacnc D=max ., (i, /)

Network radius == n eAdxioTn TIuA TNS amdéoTacnc D=min ., (i, /)

Characteristic path length ——= n péon mipn ¢ améoTaong D=avg 6., (/)



ATTAEC UETPNOEIC

Connected components === 6é\oi o1 k6ol TTou evwvovTal avd Jelyn

|solated nodes = KOMBOI ATTOJOVWHEVOI XWPIi¢ oUvdEDN

Number of self loops ——— apIOuSS BPOYXWV

Multi-edge node pairs ——= TTAPATTAvW aT1Td Pia oUuvdean oe dU0 KOUBOUC

Avg. number of neighbors == pécog 6pog oclvdeong Tou kGuBouU oTO
OiKTUO

‘8

Multi-graph 3 components (1,2,3,4), (5,6,7,8),(9) 1 isolate (9).
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Ba6uoi Képpou o

o 6

3(A,B)=5
: o(A,B)=3
¥ \ n®
MéyeBoc (N) = 22
. . Mukvomta d = 48/231 = 0.21

. ‘ AIGUETPOC = 6

Aldpetpoc <

Etxova 9.8: Xapaktnpiotika pey£0n kat idtotnteg Siktuwv. To SiKTuo TG sikovac anoteAsitar and 22 kopuPoug twv
onoiwv ot BaBuol kupaivovtar pstaéu 1 kat 5. To ouvoAo twv akuwv sivat 48 pe 1o péyioto duvato va sivat
(22x21)/2=231 ki £tot n nukvotnta sivar ion pe 0.21. v £vBetn sikova @aivetal n eAaxiotn andotaon 600
kouPwv A, B. Ano ti¢ duo duvatéc dtadpouéc (kokkwvn, npaowvn) ustalu A kat B n gAaxiotn sivat n npdown
(0(A,B)=3). H usyaAutepn Adxiotn Stabpouri oto diktuo, n onoia avuotoxsl otn SIGUETPO Tou, Qaivetal ot
LEYAAUTEPN sikova oktaouévn us Babu KOkkvo Kat sivat ion L€ 6.



Babuoc-Node degree

* O OUVvOAIKOG apIBUOG TWV AKUWY TTOU
TIPOCTTITITOUV O€ £vav KOUROo

» Kéupor ye 1oxupn ouvdeoiuotnta (high degree)
ovouadlovtal “hubs”
Undirected: C, (i) = deg(i)
Cdin (l) — degin (l)

*Directed:

C, (i)=deg,(>)

Mumber of nodes

Degree



Betweenness centrality

(Vo )—vo)—(vo —(w) @ » Agixvel TOUg onuavTiKoUg KOUBOUG TTou
BpiokovTal o€ uPnAd TTOG0OTO OTA

HMOVOTTATIO AAAWV KOUPBWYV O€ €Eva BIKTUO

@ o, (W)

Np(1)= 12, Np(2)=8 , Np(3) = 5 , Np(4)=Np(5)=Np(6)=Np(7)=0 Cw) = ZV: —
Np= Np(L)+Np(2)*+Np(3)+Np(4)+Np(5)+Np(6)+Np(7) =25 s
Cb (1) = 12/25 ,Cb (2) = 8/25 ,Cb (3) = 5/25 ,Cb (4) = Cb (5) = Cb (6) = Cb (7) = 0

] 2 4 ] g 10 12 14 18 12 20
Mumber of neighbors

22



Closeness centrality

S MOS0 O OSO
*H yétpnon autr] uTTodEIKVUEI TOUC ONPAVTIKOUC \/
KOMBOUC Ol OTT0iO0I JTTOPOUV VA ETTIKOIVWVHROOUV

ypnyopa pe GAAoug KOUPBoug Tou dIKTUOU e
C.,00)= m; «dl1=4x1+1x2+1x3=9  Cclo(1) = 6/9
Zdisz(i, 7) «d2 = 2x1 + 4x2 = 10 > d1 ka1 Cclo(2) = 6/10
tev o V1 gival TrepIc0OTEPO GNUAVTIKOG KAl KEVTPIKOG ATTO

Tov V2 01611 d1>d2
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Figure 7 Closeness and Betweeness centralities. Closeness centrality. V;:d, =4 x 1+ 1x2+1x3
=9, CgolT) = 6/9. V; accesses 4 nodes (V;, Vs Vi V) with step 1, 1 node {Vy) with step 2 and 1 node (V)
with step 3. 6 nodes can be accessed intotal by V. Va d; =2 X 1 +4 x 2 =10 > d,, () = 6M10. V;
accesses 2 nodes (Vy, Vi) with step 1 and 4 nodes (Vy, Ve Vs V3 with step 2. 6 nodes can also be accessed
in total by V,. As a result, V, is more central than node V; since d1>d,. Betweenness centrality. N,(T) = 12
shortest paths that pass through node V;. The paths from the starting to the ending node are {Va-Vs VoV
ViV Vi Vs ViV ViV VeV ViV VeV VsV VeV Ve Vol Np(2) = 8 shortest paths that pass through
node V. The paths are (V;-Vy ViV ViVs ViV ViV VieVs ViV VeVl NoB) = 5 V-V VoV Vi Vs Vi Vs
ViVl o) = Npi5) = Nu(6) = Np(7) = 0. N, = 25 the total sum of shortest paths that pass through the
nodes, thus Ny= Npu(1)+Ng 24Ny (3)+ Ny (44N (5)+ N [6)+N,(7). The centralities are Cy, (1) = 12/25 = 048, G, (2)
=825=032 Cp (3 =525=020 Cy (4) = G, (5) = C (6) = G, (7) = 0, thus node V; is more central.




Hierarchical clustering is a method of cluster analysis which seeks to build a hierar-
chy of clusters. There are two different strategies to organize data. These are the
agglomerative and the divisive: Agglomerative: It is a “bottom-up” approach. Each
observation starts in its own cluster, and pairs of clusters are merged as one moves up
the hierarchy. Divisive: This is a “top-down” approach. In this case, all of the observa-
tions start by forming one cluster, and then split recursively as one moves down the
hierarchy. Some of the most common tree based clustering algorithms that organize
data in hierarchies are the Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) [117,118], Neighbor Joining [112,119] and Hierarchical Clustering [120,121],
all of which represent their clusters as tree structures. The results of hierarchical clus-
tering are usually presented in a dendrogram. Figure 10 shows an example of how
genes can be clustered.

Let n, be the number of clusters and x,; is the ith object in cluster r and cluster r is
formed from clusters p and g. In the following, we describe the different methods used
to calculate distances between clusters in hierarchical clustering.

Single linkage calculates the smallest distance between objects in the two clusters to
merge them: d(r, s) = min(dist(x,;, x)), i € (i 1), j € (1,.1y).

Complete linkage calculates the largest distance between objects in the two clusters
to merge them: d(r, s) = max(dist(x,;, X)), i € (iys 1), j € (L,lig).

Average linkage uses the average distance between all pairs of objects in any two

1

My Mg
" >_ 2 _dist(xy, x). This algorithm is also known as Unweighted
s =1 j=1

Pair Group Method with Arithmetic Mean (UPGMA) [117,118].

clusters: d(r,s) =



Centroid linkage finds the Euclidean distance between the centroids of the two clus-
1
ters: d(r,s) = ||X; — X;||2% = — Y_ %+ || |2 is the Euclidean distance.
T =1
Median linkage uses the Euclidean distance between weighted centroids of the two
clusters, d(r,s) = ||x — x|

2, Xr, Xs are weighted centroids for the clusters r and s. If

cluster r was created by combining clusters p and g, x, is defined recursively as
1

Xr = E(xp + X)X

Single or complete linkages are the fastest of the linkage methods. However, single
linkage tends to produce stringy clusters, which is not always preferable. The centroid
or average linkage produce better results regarding the accordance between the pro-
duced clusters and the structure present in the data. These methods require much
more computations. Average linkage and complete linkage may be the preferred meth-
ods for microarray data analysis [115].

Ward’s linkage finds the incremental sum of squares; that is, the increase in the
total within-cluster sum of squares as a result of joining two clusters. The within-clus-
ter sum of squares is defined as the sum of the squares of the distances between all
objects in the cluster and the centroid of the cluster. The sum of squares measure is

2nn
equivalent to the following distance measure d(r,s) = m—r;]Hff — X;5||2
v+ 1
where || ||2 is the Euclidean distance and X;, X; are the centroids of clusters r and s

and n, and n, are the number of elements in clusters r and s.



Weighted average linkage uses a recursive definition for the distance between two
clusters. If cluster r was created by combining clusters p and g, the distance between r
and another cluster s is defined as the average of the distance between p and s and the

distance between g and s: d(r, s) = (@(p. s) ;d{q,s]l

Neighbor Joining [112,119] was initially proposed for finding pairs of operational
taxonomic units (OTUs) that minimize the total branch length at each stage of cluster-
ing of OTUs starting with a star-like tree. The branch lengths as well as the topology
of a parsimonious tree can quickly be obtained by using this method [112].

Known platforms that already share the tree-based algorithms described above are
the Hierarchical Clustering Explorer (HCE) [122,123], MEGA [124-127] or TM4. [128].

A recent review article shows which file formats, visualization techniques and algo-
rithms can be used for tree analysis [129].

Another category of clustering algorithms tries to cluster data in separate groups by
identifying common properties that the nodes of a network share. Different strategies
exist, like for example trying to find dense areas in a graph or areas where message
exchange between nodes is easier or to identify strongly connected components or cli-
que-like areas etc. Many of such algorithms have been used in different case studies
like for example to identify protein families [130], to detect protein complexes in PPI
networks [131,132], or for finding patterns and motifs in a sequence [133]. Even

though many more exist, some of the most famous algorithms are given below.



Markov Clustering [134] (MCL) algorithm is a fast and scalable unsupervised clus-
tering algorithm based on simulation of stochastic flow in graphs. The MCL algorithm
can detect cluster structures in graphs by a mathematical bootstrapping procedure
which takes into account the connectivity properties of the underlying network. The
process deterministically computes the probabilities of random walks through a graph
by alternating two operations: expansion, and inflation of the underlying matrix. The
principle behind it is that random walks on a graph are likely to get locked within
dense subgraphs rather than move between dense subgraphs via sparse connections. In
other words, higher length paths are more often encountered between nodes in the
same cluster than between nodes within different clusters, such that the probabilities
between nodes in the same complex will typically be higher in expanded matrices.
Clusters are identified by alternating expansion and inflation until the graph is parti-
tioned into subsets so that there are no longer paths between these subsets [135,136].

k-Means [137] is a method of cluster analysis which aims to partition # observations
into k clusters in which each observation belongs to the cluster with the nearest mean.
K-means and its modifications are widely used for gene expression data analysis [138].
It is a supervised method and users need to predefine the number of clusters. Its com-
plexity is O(nlk) where k is the number of clusters, n the size of the dataset and [ the
loops of the algorithm. The k-means algorithm is one of the simplest and fastest clus-
tering algorithms. However, it has a major drawback: the results of the k-means algo-
rithm may change in successive runs because the initial clusters are chosen randomly.

Affinity Propagation [139] takes as input measures of similarity between pairs of
data points and simultaneously considers all data points as potential candidates. Real-
valued messages are exchanged between data points until a high-quality set of exem-
plars and corresponding clusters gradually emerges.



Restricted Neighborhood Search Cluster Algorithm [140]: It tries to find low cost
clustering by composing first an initial random clustering. Later it iteratively moves
one node from one cluster to another in a random way trying to improve the cluster-
ing cost.

Spectral clustering [141]: This algorithm tries to find clusters in the graph such that
the nodes within a cluster are connected with highly-similar edges and the connections
between such areas are weak, constituted by edges with low similarity. The aim is to
identify these tightly coupled clusters, and cut the inter-cluster edges. Figure 11 shows
an example of protein complex prediction from PPI yeast dataset [12].

Despite the great variety of clustering techniques, many articles directly compare the
various clustering methodologies like [135] and [142]. Very often we encounter articles

that compare similar algorithms using different datasets and come to very diverse con-
clusions and results i.e [142,143].

Concerning the visualization of networks, the availability of clustering techniques and
their complex configuration/combination, today to a large extent, there is a lack of
visualization platforms or tools that are able to integrate a variety of more advanced
algorithms and the development implementation of such implementations emerges
[144]. Platforms that share clustering algorithms are the Network Analysis Tool
(NEAT) [145] and jClust [146] but they are still poor in the variety of methods they
offer. Software like ArrayCluster [147] and MCODE [60] is often used in analysis of
gene expression profiles and coexpression detection. Many visualization tools [144]
such as Medusa [148], Cytoscape [149], Pajek [98] and many others [144] visualize net-
works in both 2D and 3D, but very few of them like Arena3D [150] try to bridge the
gap between clustering analysis and visualization.
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ya to X sivat ioo¢ pe 3/12=0.25. H avtiotowxn tu yia tov Y sivat 0 kaBw¢ Hetaét Twv YETOVwY Tou HEV UNAPXEL
kauia ouvbeon.
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Figure 10 Average linkage hierarchical clustering example. The expression of 44 genes was measured

in 4 experiments (E,, Ez, E3, E4). The genes were classified according to their coexpression levels. The

Pearson Correlation Coefficient was used (r-value) to analyze gene set signal values. Genes were clustered

according to the r-value correlation matrix using the Average Linkage Hierarchical clustering method. The

tree on the left clusters the expressions of the genes whereas the tree on top of the figure clusters the
profiles of the experiments. Thus experiments £, and E; are similar and closely related.
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Figure 11 Predicting protein complexes from PPl networks. Protein complexes predicted after
applying Spectral clustering algorithm and filtering the results in a yeast protein-protein dataset [12] using
the jClust application [146]. The budding yeast Arp2/3 complex that is highlighted was successfully
predicted.




Figure 5 Clustering Coefficient. A) Mode V behaves like a hub but it has clustering coefficient C = 0. B)
MNode V comes with a high clustering coefficient. The maximum number of potential connection is given
by Ema—=|V|IV]-1)/2 where |V] = 5 is the number of the neighbors of node V, thus £, = 10. The neighbors
of node V are connected with 7 edges between each other, £ = {(V;, Vi, (Vs V3, V3 Vi), (Vg Vs, (Vs V),
(Vy, V3), (Vy, Vgl The clustering coefficient of node V is C = E/F e = 710 = 0.7.




Figure 8 Eccentricity Centrality. V;: 4 % 1, 2 % 2; V; accesses 4 nodes (Vs Vy Vs, V) with step 1 and 2
nodes (V, V3 with step 2. The step represents the shortest path, The maximum shortest path dpae = 2. Va
31, 3 x 2 Similarly V; accesses 3 nodes (V, V3 V;) with step 1 and 3 nodes (V3 Vs V) with step 2. The
maximum shortest path dpee = 2 V3 2 X 1, 3 x 2, 1 x 3; Similarly V5 accesses 2 nodes (V), V) with step 1,
3 nodes (V5 Vs V) and one node (V) with step 3. The maximum shortest path dpeg = 3. Vg 2% 1, 2 % 2,
2 % 3; The maximum shortest path dy.—=3. Vs 1 x 1, 3 X 2, 2 ¥ 3; The maximum shortest path dg. = 3.
Ve 1= 1,3 %2 2 x3; The maximum shortest path dyee = 3. V2 1 %1, 2 % 2 3 % 3: The maximum
shortest path dy, = 3. As a result, the ordering of the nodes according to o @ (Vi V3), (V3 Vi Vs Ve Vs
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Eixéva 9.10: Tuxaia diktua kat Aiktua aveédptnta-kKAluakac. a) Katavoun BaGuou Kou,Bwv ya éva ruxalo biktuo
(vkpt) kit éva avsfapmto-KAwaKac diktuo (yaAalio). H XGpGKU)plOTlKI’) “Lakptd oupa” tou 6£ur£pou sivat evOSIKTIKn
pag Karavounc vopou 6uvau/7c;, n onoia 5lV£l suBsia ypauun os 6U7A/7 AoyapiBuukn KAwaKa onwc¢ @aivetat oto f)
onou avanapiotatat ypa@ika n kartavoun Pabuou kopPwv yia éva Siktuo npwrtsivikwv aAAnAsmbpdoswv (6nwc
autod tn¢ Eikévac 9.1).



Etkova 9.12: a) Ispapxiko Aiktuo. ) Aiktuo aveédptnto kAiuakac y) To HovTEAO MPOTIUNCLaKAC oUVOEDNC.
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Properties

Degree > deg(v) = 3 dog(u) = ||
Closeness centrality
Betweenness centrality
Eigenvector centrality
Clustering coefficient
Nestedness

Modularity W=y L3 [0
Bipartivity



Nestedness

 If B Is a perfectly nested binary matrix,
then there exists a permutation of rows
and columns such that the set of edges In
each row I contains the edges in row I+1,
while the set of edges in each column |
contains those In column j+1. In particular,
the rows and columns of B can be sorted
(with B;; > 0 vj and B, ; > 0 Vi) such that
B;; = min(B;; ;, B;;;), @ property that can be
extended to quantitative matrices as well



Ecological indices

The symbol L indicates the number of realized links,
whereas |U|and|V| denote the number of species of each
party in bipartite networks (e.g., hosts [U] vs. parasites
[V]).

Connectance (C) is the fraction of all possible links that

are realized,C=L/(|U]|*|V|)), which represents a standard
measure of food web complexity.

The related linkage density is defined as D= L/(|U|+|V]).

In a food web of |U| consumers and |V| prey species, the
mean number of prey species (links) per consumer is
termed generality, given by G =L/|U|, and the mean links
per prey vulnerability, given by V=L/V.



« The web-asymmetry defines the balance between
numbers in the 2 levels and it is given by W =
(IV]-|UD/(JU[+|V]), where positive numbers indicate more
low-trophic level species and negative more high-trophic
level species.

* Most of these metrics also have a weighted counterpart,
whereas there are also several other metrics designed
for quantitative interactions, such as Shannon's
evenness (for measuring interactions), H2 (a network-
level measure of specialization based on the deviation of
a species’ realized number of interactions and that
expected from each species’ total number of
Interactions), and niche overlap (the mean similarity in
the interaction patterns between species of the same
trophic level).



Bipartite graphs
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Projection

 The most complete treatment was given by Nacher and Akutsu [64]
who studied the case of scale-free distributions for both sets of
nodes (denoted by S-S) and that of scale-free and exponential
degree distribution (denoted by S-E) for the 2 sets of nodes. They
presented a mathematical analysis demonstrating that it is possible
to infer the degree distributions of projected networks given the
Information contained in the original bipartite network, thereby
deriving some simple relationships. For instance, a bipartite network
with 2 sets of nodes with degree distributions P (k) « k7¥1 and P,,(k)
o kv2 exhibits a V-projection that follows a power-law kmax(-y1+1,-y2)
for node degree, where y1 and y2 indicate the power law exponents
of the distribution of U and V nodes, respectively, in the bipartite
network. On the other hand, a bipartite network with 2 sets of nodes
with degree distributions P (k) « k=¥t and P,,(k) < exp(-Ak) leads to
a V-projection, defined by a power-law k™¥1*1 node degree
distribution. The analytical results were confirmed by computer
simulations performed using artificially constructed networks [64].



Projection

Various methods of bipartite network projection have been proposed in the literature,
and they all involve the use of a threshold, and, in most cases, they yield weighted
unipartite networks. Usually, edges, the weights of which exceed the threshold value,
are retained, while those with weights that are below the threshold value are omitted.
The methods greatly vary, however, on the way threshold values are identified. The
simplest and most widespread approach for extracting the backbone of bipartite
projections is through the application of an unconditional (or global) threshold. In
particular, a single weight threshold is selected and applied to all edges in the
bipartite projection, and edges are retained in the backbone network only if their
weight in the bipartite projection exceeds this predefined threshold. The most
commonly used weight threshold of zero preserves all edges with a non-zero weight,
whereas others have used different thresholds, including these sets at the percentage
of the maximum observed edge weight or at the mean observed edge weight. The
unconditional threshold approach, although widely used, suffers from several
shortcomings. In general, if the presence of any shared connections to V-nodes is
considered adequate for inferring that an edge exists between 2 U-nodes, then an
unconditional threshold should be used for backbone network extraction. If, however,
an instance of shared V-nodes is not sufficient to infer that an edge exists between 2
U-nodes, then unconditional threshold backbones may be problematic. The structure
of a backbone extracted by using an unconditional threshold depends heavily on the
selected threshold value; moreover, certain structural features of unconditional
threshold backbones of bipartite networks are systematically biased. Thus, this
approach in which a universal threshold is applied indiscriminately to all edge weights
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Centralization 0.25123
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ADAM30 NON-INSULIN Edges 14903
DEPENDENT DIABETES MELLITUS Radius 1.00000 ADAM30 ADAMTS9
ADAMTS9 NDN-lNSUL"_V- - Density 0.03843 BOD1 ZMIzZ1
DEPENDENT_DIABETES_MELLITUS Gene- |Diameter 10.00000 ABCD1 BPI
BIN1 ALZHEIMER'S_DISEASE _ Gene |Clustering 0.73574 ccoe62 ZNF646
BMP4 MALIGNANT_NEOPLASM_OF_COLON network | Coefficient BPI ST13P1
- - Centralization |0.16384 ABCD1 ST13P1
BOD1 CROHN'S_DISEASE Betweeness ADAM30 ST13P1
BPI BIPOLAR_AFFECTIVE_DISORDER Centralization | 0.00000
BPI SCHIZOPHRENIA Closeness =g
CCDC62 PARKINSON'S_DISEASE v,
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RPL17P45  OBESITY
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Cytoscape

Cytoscape is an open source bioinformatics software platform for
visualizing molecular interaction networks and integrating with gene
expression profiles and other state data. Additional features are
available as plugins. Plugins are available for network and molecular
profiling analyses, new layouts, additional file format support and
connection with databases and searching in large networks. Plugins
may be developed using the Cytoscape open Java software
architecture by anyone and plugin community development is
encouraged.Cytoscape also has a JavaScript-centric sister project
named Cytoscape.js that can be used to analyse and visualise
graphs in JavaScript environments, like a browser.



Cytoscape

*/AOYIOUIKO avOIXTOU TTNyaiou KwOIKa

[1AaTpoOpua oxediaong, ouvOeTNG avaAuong Kal TrTapouaiacng dia@opwy JIKTUWV

£ Cytoscape Desktop (New Session)

File Edit View Select Layout Plugins Help

QAQ&

e e —

P2

[N

Control Panel BT
e T ™|
Network | VizMapper™ | .. | ¢ ) , - - .
L Q“L' = Import Network and Edge Attributes from Table . M
Current Visual Style — —
O
Import Network from Table
Data Sources
Input File file: fC: fUsers sissy [Desktop biology ¥ 20networks format foodwebs_2/Maspalomas_2.xls Select File(s)
Interaction Definition
Source Interaction Interaction Type Target Interaction
\Column 3 ~| €® [Default interaction -| €2 .icolumn 4 =
@ Columns in BLUE will be loaded as EDGE ATTRIBUTES.
x ‘, Advanced
[# Node Label ID ‘ [ Show Text File Import Options
[ UnusedPr... [ ‘ :
| Preview
Edge Color =
Edge Font Face Excel™ Workbook Left Click: Enable/Disable Column, Right Click: Edit Column
Edge Font Size dikhol
Edge Label =
g X Column 1 X Column 2 ¥ Column3 « Column4 X Column5 X Column 6
Edge Label C... 1 Cyanobacteria 29 1 552615.0 1.0 -~
Edge Label ... 1 Eukaryotic Phyto 22 2 552615.0 1.0 =
Edge Label Wi... 1 Chara globularis 22 3 46400.0 1.0
= 1 Ruppia Maritima 22 4 290000.0 1.0
Edge Line Style i Cladophora 22 5 11600.0 1.0
Edge Line Width i Periphyton 22 [ 33000.0 1.0
2 1 Pelagic Bacteria 16 23 25000.0 1.0
Edge Opacity | 1 Microzooplankton 18 23 12610 10 2
Edge Source ... | A U C
Edge Source ... Data Panel
Edge Source ... E D Ov O I
A [—
Edge Target ... ov o bl
Edge Target ... Ak l 2 [ - ]
Node Attribute Browser \ Edge Attribute Browser ] Network Attribute Browser |

Welcome to Cytoscape 2.8.1

Right-click + drag to ZOOM

Middle-click + drag to PAN

Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504




Network-Analyzer

EpyaAgio avaAuong 1rou utroAoyilel o€ Eva diKTUO TIG BACIKEG KAl TIG OUVOETES
TOTTOAOYIKEG TTOPAMETPOUG

Eicaywyn dIKTUOU

EtmiAoyr} TUTTOU QIKTUOU (KATEUBUVONEVOC- U KATEUBUVOUEVOC YPAPOG)
YTTOAOYIONOG BACIKWY (Hia TIMA)

YT1roAoylopdG ouvOeTwy (KaTavoun)

YV VY

. Network Analysis of ©uAkol.1 (undirected) l n\ X

r -
(] Metworkénalyzer - Network lnlerpretationl/
— Betweenness Centrality Closeness Centrality | Stress Centrality Distribution
The network contains only directed edges and they are not paired. Shortest Path Length Distribution Shared Meighbors Distribution | Meighborhood Connectivity Distribution
Interpretation { Simple Parameters | Mode Degree Distribution I Avg, Clustering Coefficdent Distribution | Topological Coefficents
mﬁ&.ﬁéﬁﬂeﬁﬁg- ‘;'451 Mumber of nodes : 24
e e Network density : 0.279
® I:{> Treat the network as directed, = Lark Clameter : Metwork heterogeneity : 0.565
Metwork radius : 2 Isolated nodes : 0
Metwork centralization : 0.549 '

Mumber of selfJoops : 0
Multi-edge node pairs : 5
Analysis time (sec) : 0.101

Shortest paths : 552 (100%)
Characteristic path length : 1.790
|| Avg. number of neighbors : 6.417

@ |:> Treat the network as undirected.

[ OK H Cancel ] [ Help

Save Statistics ] [ Visualize Parameters




Network-Analyzer

1= Pokkoll

Metwork Analysis of ©uddcl.l [undireched}_

AN

=

Betweenness Centrality

Closeness Centrality I

Stress Centrality Distribution

Shortest Path Lenath Distribution |

Shared MNeighbors Distribution I

Meighborhood Connectivity Distribution

Simple Parameters

Mode Degree Distribution | Avg. Clustering Coeffident Distribution | Topological Coeffidents

Mumber of nodes

E =

Degree

30

l Chart Settings ]
’ Enlarge Chart ]
I

Change Range ]

’ Remove Fitted Ling ]

: Remove Power Law |

[ Export Chart ]
[ Export Data ]

’ Help ]

Save Statistics ] [ Visualize Parameters l

o (@ &

€} NetworkAnalyzer - Fitted Fﬁ

A line in the form v = a + b x was fitted.

a= 213 b =|-0.099
Correlation = 0,370
R-squared = |0.137

[ oK ][ Help]

[t

A power law of the form vy = ax? was fitted.

(o] MetworkAnalyzer - Fitted Function

a=|6.820 b =|-0.583
Correlation = |0.450
R-sguared = |0.257

Mote: R-sguared is computed on logarithmized values.

[ oK ][ Help]
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online data import ‘ B T App to read adjacency matrix

Force-Directed Layouts (-mat) files
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clustering

integrated analysis AnatApp @ R ANIMO @

utility ANIMO (Analysis of Networks
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networks within Cytoscape 3. terms in the network and display



Networks / Pajek =«

Program for
Large Network Analysis

In January 2008 this page was replaced by Pajek Wiki.

Pajek runs on Windows and is free for noncommercial use.

DOWNLOAD Pajek

Data: test networks, GPHs, GEDs, PDB files.
Screenshots; History; Manual (pdf); Papers/presentations; Applications; in News; Examples: SWVG, PDF.

How to ? English / Slovene / Japanese (problems with |E - download and use Acrobat reader).

Pajek nicely runs on Linux via WinelConverting Excelltext into Pajek formaty

Pajek to SVG animation. WoS to Pajek.

Slides from NICTA workshop, Sydney, Australia, June 14-17, 2005.

Slides from workshop at GD'05, Limerick, Ireland, Sept 11-14, 2005.

Pajek workshop at XXVIII Sunbelt Conference, St. Pete Beach, Florida, USA, January 22-27, 2008: slides.
Network analysis course at ECPR Summer School in Methods and Techniques, Ljubljana, Slovenia, July
30 - August 16, 2008.

W. de Nooy, A. Mrar, V. Batagel]: Exploratory Social Network Analysis with Pajek, CUF, January 2005, ESNA page.
P Doreian, V. Batagel), A. Ferligoj: Generalized Blockmodeling, CUP, Movember 2004.

Chapter about Pajek: V. Batagel], A. Mwar: Pajek - Analysis and Visualization of Large Networks.
in Jiinger, M., Mutzel, P., (Eds.) Graph Drawing Soffware. Springer, Berlin 2003. p. 77-103 / Amazon.

An improved version of the paper presented at Sunbelt'97 was published in Connections 21(1998)2, 47-57 - V. Batagel), A.
Mrvar: Pajek - Program for Large Network Analysis (POF; PRISON_KIN).

Our layouts for Graph-Drawing Competitions G

Mladina (front page); Pajek in Koeln; PajekMan in Osoje (Ossiach, Austria);
Some other examples: 1, 2, 3, 4, 5, 6. Different collections of pictures;

If you want to be promptly informed about new Pajek versions and other news join the

Pajek mailing list.

Vlado; Andrej; Vliado/Networks; Networks Info; Networks software and data
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JUNG (Java Universal Network/Graph) (O'Madadhain, Fisher, White, &
Boey, 2003) is a free, open-source software for the manipulation, analysis,
and visualization of network data. JUNG can handle various types of
networks, including bipartite and multipartite graphs, multigraphs, and
hypergraphs directed and undirected graphs. The tool offers the ability to
annotate graphs, entities, and relations with metadata. Additionally, contains
Implementations of a number of algorithms from graph theory, social
network analysis and machine learning. These include routines for
clustering, random graph generation, statistical analysis, decompaosition,
optimization, and calculation of network distances and ranking measures
(centrality etc). Finally, JUNG provides also visualization tools for the
interactive exploration of network data. Users can choose among the
provided layout and rendering algorithms, or use the software to create their
own custom algorithms



NetworkX

High-productivity software for complex networks

o
NetworkX is a Python language software package for the creation, manipulation, and study of the
]
structure, dynamics, and functions of complex networks. L
Documentation Examples Reference
all documentation using the library all functions and methods

Features

Python language data structures for graphs, digraphs, and multigraphs.

Many standard graph algorithms

Network structure and analysis measures

Generators for classic graphs, random graphs, and synthetic networks

Nodes can be "anything” (e.g. text, images, XML records)

Edges can hold arbitrary data (e.g. weights, time-series)

® Open source BSD license

® Well tested: more than 1800 unit tests, >90% code coverage

¢ Additional benefits from Python: fast prototyping, easy to teach, multi-platform



NeAT

 http://rsat.bigre.ulb.ac.be/rsat/index_neat.h
tml

irsat [PYNS 1

NAT B!GRe Network analysis tools
~ b

Network Analysis
Tools

BiGRe Université Libre de Bruxelles

™ Networks
ToolMap Introduction Forum Tutorials Publications Credits Data Links Download
Metwork comparison

Node topalogy statistics
Gat node neighborhood

Randomize network News

Welcome to Network Analysis Tools (NeAT). This web site provides a series of modular computer programs specifically designed for the analysis of biclogical networls.

Alter network
New tools
Format conversion /
layout calculation ® In the context of the EU-funded MICROME project, focused on the annatation of bacterial metabolism, we developed a simplified interface for the pathway extraction tool, specifically adapted to discower metabolic pathways from sets of

Graph display functionally related bacterial genes (c.g. co-expression clusters, operons, syntons, synteny groups, ...).

* Dath finding and Recent publications

pathway extracti
1. Bool

Jacques van Helden, Ariane Toussaint and Denis Thieffry (2012). Bacterial Molecular Networks. Velume in the series Methods in Molecular Biology 804 (28 chapters). [Publisher's site]
k-shortest path finding

Metabolic path finding 2. van Helden, 1., Toussaint, A. and Thieffry, D. (2012). Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling. Methods Mol Biol 804, 1-11. [PMID 22144145]
Pathway extraction 3. Lima-Mendez, G. (2012). Reticulate Classification of Mosaic Microbial Genomes Using NeAT Website. Methods Mol Biol 804, 81-81. [PMID 22144145]

Pathway extraction
(micrame prototype)

4. Faust, K. and van Helden, . (2012). Predicting Metabolic Pathways by Sub-network Extraction. Methods Mol Biol 804, 107-30. [PMID 22144151]

5. Brohée, 5. (2012). Using the NeAT Toolbox to Compare Networks to Networks, Clusters to Clusters, and Network to Clusters. Methods Mol Biol 804, 327-42. [PMID 22144162]
¥ Clusters
6. Faust, K., Croes, D. and van Helden, 1. (2011). Prediction of metabolic pathways from genome-scale metabolic networks. Biosystems 105, 109-21. [PMID 21645585] [doi:10.1016/] biosystems.2011.05.004]

C=p 7. Faust, K., Dupont, P., Callut, 3. and van Helden, 1. (2010). Pathway discovery in metabolic networks by subgraph extraction. Bicinformatics 26:1211-8. [Pubmed 20228128]

classes/clusters

Contingency stats

sther publications

Convert classification to
different format

L T — ’ W‘
MCL clustaring \

RNSC clustering L4

This website is free and open to all users.

Map clusters onto
network

Cluster membership

¥ Graphics

Draw heatmap

~ Roccurves

ROC curves and stats

~ Data

Callect data from external
servers

Download a subgraph
from STRING

Download organism-

fic networks fi
Keeg e fem For suggestions or information request, please contact :

Sylvain Brohée (sylvain-at-bigre.ulb.ac.be)

Sample data




graph-tool

« Graph-tool is an efficient Python module for
manipulation and statistical analysis of graphs

(a.k.a. networ

s). Contrary to most other python

modules with similar functionality, the core data

structures and algorithms are implemented in
C++, making extensive use of template
metaprogramming, based heavily on the Boost

Graph Library.

This confers it a level of

performance that is comparable (both in memory
usage and computation time) to that of a pure

C/C++ library.

* http://graph-tool.skewed.de/



http://www.python.org/
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Metaprogramming
http://www.boost.org/doc/libs/release/libs/graph
http://graph-tool.skewed.de/performance
http://graph-tool.skewed.de/

Network Workbench

* Network Workbench: A Large-Scale Network
Analysis, Modeling and Visualization Toolkit for
Biomedical, Social Science and Physics
Research.This project will design, evaluate, and
operate a unique distributed, shared resources
environment for large-scale network analysis,
modeling, and visualization, named Network
Workbench (NWB).

* http://nwb.cns.iu.edu/doc.html



http://nwb.cns.iu.edu/doc.html

igraph

* Igraph is a collection of network analysis
tools with the emphasis on efficiency,
portability and ease of use. igraph Is
open source and free. igraph can be
programmed Iin R, Python and C/C++.

 http://igraph.org/redirect.html



http://igraph.org/redirect.html

BioPerl (Network package)

The bioperl-network or Bio::Network package parses and analyzes
protein-protein interaction data provided by databases such as DIP,
BIND, IntAct, HPRD, and MINT . It replaces the Bio::Graph*
modules written by Nat Goodman and Richard Adams.

This package is based on Perl's Graph module and uses it to supply
an underlying suite of graph algorithms. In theory any Graph method
can be used to query or analyze a Bio::Network::ProteinNet object.

The Bio::Network package is currently maintained by Brian Osborne.

The 1O module is used to read a file and create a network. The
formats that are currently supported are DIP and PSI MI 2.5. If you
are parsing PSI Ml read Module:Bio::Graph::10::psi_xml first for
notes on various databases and their PSI Ml.

http://www.bioperl.org/wiki/Network package



http://dip.doe-mbi.ucla.edu/
http://www.bind.ca/
http://www.ebi.ac.uk/intact/
http://www.hprd.org/
http://160.80.34.4/mint/Welcome.do
http://www.bioperl.org/wiki/Nat_Goodman
http://www.bioperl.org/w/index.php?title=Richard_Adams&action=edit&redlink=1
http://search.cpan.org/search?query=Graph&mode=all
http://search.cpan.org/search?query=Graph&mode=all
http://www.bioperl.org/wiki/Brian_Osborne
http://www.bioperl.org/wiki/Module:Bio::Network::IO
http://www.bioperl.org/wiki/Module:Bio::Graph::IO::psi_xml
http://www.bioperl.org/wiki/Network_package

Graph (Perl)

* This module Is for creating abstract data
structures called graphs, and for doing
various operations on those. The
Implementation depends on a Perl feature
called "weak references" and Perl 5.6.0
was the first to have those

» http://search.cpan.org/~jhi/Graph-
0.9704/lib/Graph.pod



http://search.cpan.org/~jhi/Graph-0.9704/lib/Graph.pod

PowerClust

http://www.compgen.org/tools/powerclust/

powerClust

Home

powerClust is an easy-to-use web application for clustenng analysis. It comes with several supervised and
unsupervised algorithms to cluster and group heterogeneous data. application to run
The algorithms supported by powerClust are shown below

= Affinity Propagation
= Spectral Clustering
= Markov Clusterning (MCL)

The main idea behind powerClust project is to provide a strong collection of clustering algorithms that can be
applied to various data to address different problems. Ideas of how this software can be useful for biologists for:

= Abstract clustering of literature that are related between each other

= Microarray clustering

= |dentification of protein families

= Prediction of protein complexes from protein-protein interaction data

= Prediction and visualization of homologous proteins

= Clustering of heterogeneous data to see connections between clusters
= Chemical clustering using Tanimoto distances

.and many many other case studies


http://www.compgen.org/tools/powerclust/

AvaTrTucn TTAATQOPHAG OTTTIKOTTOINONG

) O) V) )

AvaTtrtuén TTAATQOPPAG OTITIKOTTOINONG dedopévwy powerClust

http://www.compagen.org/tools/powerclust/

To epyaAegio Oivel Tn duvatdTNTA OTOUC XPNOTEC va TO XPNOIMOTTOINOOUV VIO
OTITIKOTTOINOT €iTE 0€ ATTAd €ite o€ dIeEPN dikTUA.

To powerClust déxeTal WG €i0000 £€va APXEIO KEIMEVOU LE TIG OUVOEOEIC TOU
OIKTUOU €iTe JE BApn €iTE XWpPig Bapn.

To epyaleio TTapEXEl OTITIKOTTIOINON O€ OIAQOPEG OIATALEIC OTTWG: OIaTagN
Fruchterman-Reingold, kukAIKAQ d1dTagn, Tuxaia didaragn, didragn o€ TTAEyua.

[Mpoo@epel emmiong €mMTTAEOV  ETMIAOYEG YIO VA KAVEI TNV OTITIKOTTOINON  TTIO
KATATOTTIOTIKY  OTTWG:  aTTOKPUWYN/EPPAVION ETIKETWYV, ATTOKpUYN/EPPAVION
KOMBWYV, atrokpuyn/eaeavion atreubeiag fR/kal EUUECWY CUVOETEWV.

O xpAoTNG UTTOPEI va €10Ayel OTO £PYaAEio Eva BIMEPES YPAPO Kal va €¢ayel duo
aT1TAOUG YPAPOUC.

To apxeio €§6dou utopEli va xpnolgotroinBei wg €icodo 0€  egpyaAcia
TPp1od1doTaTNG (3D) aTTEIKOVIONG DIKTUWV.



powerClust

ApXIKR 0€Aida TTPOYPAUPATOC OTITIKOTTOINONG BIOAOYIKWY OIKTUWV

File| Graph Layout About

Open

Export Indirect Connections

Export Indirect Connections Left Bipartite
Export Indirect Connections Right Bipartite




powerClust

Mapddelyua OTTTIKOTTOINONG £VOC BINEPOUG BIoAoyIKOU DIKTUOU (yovidlo-aoBEveia) o€ Tuxaia
d1adragn (Random)
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powerClust

Mapddelyua OTITIKOTTOINONG €vOC dlePOUC BioAoyikou OIKTUoOU o€ Tuxaia diaracn (Random) kai
ETTITTAEOV EJPAVION TWV EPHECWYV OCUVOECEWV (KOKKIVN DIOKEKOUUEVN YPAUMA)
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Clustering

Avartrtuén mAat@oépuag opadoTtroinong dedopévwy powerClust
http://www.compgen.org/tools/powerclust/

[MepiAapBaver 3 aAyopiBuoug opadoTroinong:

= MCL (Markov Clustering), Affinity Propagation: un €mBAETTOUEVOI
aAyopiBuol opadotroinong dnAadn o aAyopiBuog utroloyilel Twv apiBuod
TWV OJAdWYV OTIC OTTOIEC TACIVOUNOEi Ta dedouEvQ.

= Spectral Clustering: €emPBAETOMEVOC aAYOPIOUOC  opadoTtroinong
OnAadrn o XpRoTng Ba TTPETTEl va opioel Twv aApIBUd Twv OPAdWY OTIC
oTToiEC €TTIOUET va TagivounBouv Ta dedouéva Tou.

Q)¢ €ic0do oToug aAyopIBuoucg diveTe Eva O€T OEQOUEVWV TO OTTOIO TTEPIAAMPBAVEI
éva OIKTUO JE I XWpPIc BAapn OTIC OUVOETEIC TOU.

O xpnroTtnc ciodyel Ta dedopéva aTov aAyopiBuo TTou BEAEI va XpNOIUOTIOINCEI
KAl QUTOG TOU ETTIOTPEPEI TA opadoTToinNuEva dedopEva Tou.



Table 1

A summary of the tools dedicated to bipartite graph analysis and their properties

Tool

Cytoscape

DisGeNET

BiLayout

Pajek

NetworkX

UCINET

Gephi

FALCON

Arena3D

BicAT

GeneWeaver

ONEMODE

Circos

Hiveplots

Networksis

enaR

Netpredictor

biGRAPH

BiRewire

DEsubs

Usage

Generic network analysis tool

Cytoscape's plugin to analyze disease-gene interactions

Bipartite layout

Generic analysis and visualization tool

Analysis of several types of graphs including bipartite graphs

Social networks; NetDraw is specialized for bipartite graphs

Generic network analysis tool

Analysis of ecological networks

Visualization of multilayered graphs

Analysis of networks based on biclustering techniques

Integration of functional genomics experiments

Stata module for producing 1-mode projections of a bipartite network

Data visualization using a circular layout

Data visualization using radially distributed linear axes

Tool to simulate bipartite networks

Provides algorithms for the analysis of ecological networks

Prediction of missing links in any given bipartite network

Extension of the igraph library for bipartite graphs

Bipartite network rewiring through N consecutive switching steps

Visualization of disease-perturbed subpathways

URL

http://www.cytoscape.org/

http://www.disgenet.org/web/DisGeNET

http://bilayout.bioinf. mpi-inf.mpg.de

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

https://networkx.github.io/

https://sites.google.com/site/ucinetsoftware/home

https://gephi.org/

https://github.com/sjbeckett/FALCON

http://arena3d.org/

http://www.tik.ee.ethz.ch/sop/bicat/

https://geneweaver.org/

http://fmwww.bc.edu/repec/bocode/ofonemode.ado

http://circos.ca/

http://www.hiveplot.com/

https://cran.r-project.org/web/packages/networksis/index.html

https://cran.r-project.org/web/packages/enaR/

https://github.com/abhik1368/Shiny_NetPredictor

https://cran.r-project.org/src/contrib/Archive/biGraph/

https://bioconductor.org/packages/release/bioc/html/BiRewire.html

http://bioconductor.org/packages/release/bioc/html/DEsubs.html
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