
;* TIMER1 TOGGLE LEDs on PORTB in NORMAL MODE
;* MUST use CLOCK 8MHz (fs=200Hz, Ts=DW=5msec)
;* 5/12/16
;***
; BLOCK DIAGRAM
; start:
; set timer in normal mode AND stop timer
; set timer to 0xFFFF-40000 (63BF)
; clear TOV1
; start timer
; waitloop:
; is TOV1 set ?
; if no goto waitloop
; if yes change LEDs (i.e. execute main program that does things)
; jmp start

.include "m32def.inc"

reset:
 ldi R16,0b11111111 ;set PB0-7 as outputs (STK500 LEDs)
 out DDRB,R16

ldi R17,0b00000000 ; WGM for normal mode (i.e. counter counting up to FFFF) set to zero
WGM10bit0 and WGM11bit1

 out TCCR1A, R17

forever:

ldi R18,0b00000000 ; WGM for normal mode (i.e. counter counting up to FFFF) set to zero
WGM12bit3 and WGM13bit4

out TCCR1B, R18 ; Also, set CS12bit2, CS11bit1 and CS10bit0 to 000 to stop counting
before loading TCNT1

 ldi R20, high(0xffff-40000); 5ms intervals i.e. 40000cycles at 1/8usec per cycle
 ldi R21, low(0xffff-40000)

out TCNT1H, R20 ;load timer high byte FIRST since it is stored internally in a
temporary location until the low byte is written

 out TCNT1L, R21 ; now that high byte is loaded, load timer low byte

ldi R19, 0b00000100 ;clear timer 1 overflow flag TOV1bit2 by writing a logic 1 to it as
the datasheet says pg 113

 out TIFR, R19

ldi R22, 0b00000001 ; WGM for normal mode (i.e. counter counting up to FFFF) set to zero

WGM12bit3 and WGM13bit4
 out TCCR1B, R22 ; Also, set CS12bit2, CS11bit1 and CS10bit0 to 001 starts counting

waittimer:
 in R23, TIFR

sbrs R23, TOV1 ;skip next instruction if TOV1 flag is set i.e. after the timer
overflows past FFFF

 rjmp waittimer ;loop while TOV1 flag is not set

 ldi R24, 0b11111111 ;timer1 has reached ffff and TOV1 is set, so do something (LED toggle)
 eor R25, R24
 out PORTB, R25

 jmp forever

