
;* ADC writes to STK500 LEDs on PORTB and saves to mega32 SRAM. ADC is Triggered by timer1 OCR1B.
;* ADC writes to STK500 LEDs on PORTB based on 200Hz sampling interval, which is set by Timer1
;* The ADC is directly triggered by timer1 OCR1B i.e. no need to wait for timer, only wait for data sampled in ADC
;* Samples are stored in SRAM.
;* ATTENTION!!!! MPU CLOCK AT 8MHz for 200Hz sampling to be correct
;***
; STK500 default board clock is 3.68MHz and requires jumper OSCSEL on the STK500 to be between 1 and 2
; STK500 default 3.68MHz board clock can change from STK500 in ISP mode (HW settings) window
;
; STK500 default board clock is NOT used since ATmega32 comes with fuse SUT_CKSEL for internal RC Osc 1MHz i.e.
; the ATmega32 internally generates the 1MHz clock. This can be changed from the STK500 in ISP mode (Fuses) window
; To change any of the above RS232 MUST be connected to STK500 RS232 CTRL (not to JTAG board)
;===

.include "m32def.inc"

;***** Global register variables (remember R26-R31 is XYZ 16bit regs)
.def temp =R20
.def cntr1 =R21
.def cntr2 =R22
.def temp1 =R16
.def temp2 =R23
.def temp3 =R24
.def tempL =R19
.def tempH =R18
.def leds =R17

.equ DATASTART =$0060 ; First internal SRAM address to start saving ADC samples (0x00 to 0x5f are register address space)
.equ DATAEND =RAMEND - DATASTART ;OR .equ DATAEND = $0800 : max value is DATAEND, min is DATASTART+1. Leave 0x60 bytes for the STACK

.org 0x000

reset: ;Main program entry point on reset starts at the end of interrupt vector table

ldi temp, high(RAMEND)
 out SPH, temp ;Set Stack Pointer to top of SRAM (for ATmega32 it is $85f)
 ldi temp, low(RAMEND)
 out SPL, temp

 ldi temp,0b11111111 ;turn OFF all STK500 LEDs (do this to avoid LEDs turning on for 2usec)
 out PORTB,temp

 ldi temp,0b11111111 ;set PB0-7 as outputs (STK500 LEDs)
 out DDRB,temp

 ldi temp,0b00000000 ;disable pull up resistor on each input pin of PORTA
 out PORTA,temp

 ldi temp,0b00000000 ;set PORTA as INPUT for ADC in PA0
 out DDRA,temp

 ldi ZL,low(DATASTART) ; Initialize Z register, which holds SRAM address where next ADC sample will be stored
 ldi ZH,high(DATASTART)

; ************************************ ADC Initialization ************************************
 ldi temp, 0b01100000 ;REFS1bit7 and REFS0bit6 set to 01 for AVCC 5V. Set ADLARbit5=1 for 10 bit Left Adjusted Output.
 out ADMUX, temp ;Set MUX4bit5-MUX0bit0 to 00000 for ADC) single ended input selection

; ************************************ CTC Timer Initialization ************************************

 ldi temp2, 0b01000000 ; WGM for CTC mode (i.e. counter counting from 0x0000 to OC1RA) set to zero WGM10bit0 and WGM11bit1
 out TCCR1A, temp2 ; set COM1A1bit7 and COM1A0bit6 to 01 to enable toggling of OC1A (i.e. PD5) when OCR1A value is reached

 ldi temp2, 0b00001000 ; WGM for CTC mode (i.e. counter counting from 0x0000 to OC1RA) set WGM12bit3=1 and WGM13bit4=0
 out TCCR1B, temp2 ; Also, set CS12bit2, CS11bit1 and CS10bit0 to zero to stop counting before loading TCNT1 and OCR1A

 ldi tempH, high(41493-1) ; high byte of upper limit to count upto is decimal 40000=5000us x 8 (since clock is 8MHz) for 200Hz fs (41493 to also compensate for error in CLK; see above)

out OCR1AH, tempH ; load OCR1A high byte
 ldi tempL, low(41493-1) ; low byte of upper limit to count upto is decimal 40000=5000us x 8 (since clock is 8MHz) for 200Hz fs (41493 to also compensate for error in CLK; see above)
 out OCR1AL, tempL ; load OCR1A low byte

 ldi tempH, 0x00 ; Timer 1 will count upwards from 0x0000
 ldi tempL, 0x00

out TCNT1H, tempH ; load timer high byte FIRST since it is stored internally in a temporary location until the low byte is written
 out TCNT1L, tempL ; now that high byte is loaded, load timer low byte

 ldi temp2, 0b00010000 ; clear timer 1 overflow flag OCFR1A1bit4 by writing a logic 1 to it

out TIFR, temp2

 ldi temp2, 0b00001001 ; WGM for CTC mode (i.e. counter counting from 0x0000 to OC1RA) set WGM12bit3=1 and WGM13bit4=0
 out TCCR1B, temp2 ; Also, set CS12bit2, CS11bit1 and CS10bit0 to 001 starts counting

waittimer:
 in temp, TIFR
 sbrs temp, OCF1A ; skip next instruction if OCF1A flag is set i.e. after the timer reaches OCR1A
 rjmp waittimer ; loop while OCF1A flag is not set

;================================ ADC Conversion ===
startConversion:

ldi temp, 0b11000000 ;ADENbit7=1 to enable ADC, ADSCbit6=1 to start conversion, ADPS2bit2-ADPS0=000 for prescaler set to 1
out ADCSRA, temp ;Set MUX4bit5-MUX0bit0 to 00000 for ADC) single ended input selection

waitadc:
 sbic ADCSRA, ADSC ;ADSC bit = 0 after the ADC conversion is complete
 rjmp waitadc ;loop until the ADCS bit = 0

 ldi temp2, 0b00010000 ; clear timer 1 overflow flag OCFR1A1bit4 by writing a logic 1 to it
 out TIFR, temp2

 in tempL, ADCL ;Must read FIRST ADCL and THEN ADCH otherwise new conversion does not start
 in tempH, ADCH

 st Z+, tempH ;store ADC 8bit value to SRAM (via register Z) and icrease Z

 ldi temp, 0xff ;turn 0s into 1s and 1s into 0s since STK500 LEDs turn on when PBx is zero
 eor temp, tempH ;turn 0s into 1s and 1s into 0s since STK500 LEDs turn on when PBx is zero
 out PORTB, temp

;================================ check the end of SRAM ==

 ldi temp, low(DATAEND) ;check the end of SRAM. If not, continue with the conversion.
 cpse temp, ZL ;cpse >> compare, skip if equal
 rjmp waittimer
 ldi temp, high(DATAEND)
 cpse temp, ZH
 rjmp waittimer

;================================ when SRAM ends, send AA to Led’s ===================================
done:
 ldi temp, 0xAA
 out PORTB, temp
 rjmp done ; when SRAM is full stop sampling

