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Figure 1: al A tvpical analoeg EMG signal detected by the DE-2.1 electrode. (b) The digital sequence
resulting from sampling the signal in (a), at 2 kH=z {every 0.3 ms).
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Figure 2: (a) Sampling a I V, 1 Hz sinusoid at 10 Hz. (b) Recreating the sinusoid sampled ar 10 Hz.
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Figure 3: (a) Sampling a 1 V, I Hz sinusoid at approximately 2 Hz.
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Figure 4: (a) Sampling a I V, 1 Hz sinusoid ar 43 Hz. (b) Recreating the sinusoid sampled at 43 Hz yields
the red signal at 1.2 Hz. The original I Hz signal is undersampled.




Signal Integration
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Figure 5: Fourier decomposition of a sample motor unit action potential (MUAP) recorded using a
DE-2.1 electrode. The original signal is shown in red. The superposed blue signal is the mathematical
summation of the 10 sinusoids above. The exact reconstruction of the red signal would require an infinite
number of sinusoids, but appreciable accuracy can be achieved with only 10.




Time domain - frequency domain

i (Fourier Transform)

Signal = Z[aSinX + bCosx]| +¢

Fourier
.' - .

. ' Transform

Signal Constituent sinusoids of different frequencies



Four essential components of time-

i varying signal

Frequency: f

Amplitude: a

Offset: ap

0 —43—+

Phase angle (shift): 6

d

igure 11.2  The four essential components of a time-varying signal.
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Motor unit action potential

i (MUAP)

The detected waveform
consisting of the
spatiotemporal
summation of individual
MAPs from muscle
fibres in the vicinity of
recording electrodes

MOTOR UNIT ACTION POTENTIAL
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Motor unit action potential
i train (MUAPT)

Repetitive sequence of
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Kinesiological Electromyography

The study of muscular
function and co-
ordination during

selected movements
and postures
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i What is an Electromyogram (EMG)?

= A recording of the
electrical activity
associated with the
contraction of skeletal
muscle

= raw EMGs usually <5 mV
(peak to peak)

= raw EMGs usually
‘processed’

= raw EMGs usually
synchronised with other
analysis technique(s)
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electromyography

| Applications of kinesiological

00

@ BICEPS (N = 81
-A— DELTOID (N = 7§)
- Fp| (N = 43)

-]
=

s Evidence of muscle
activity
= Relationship with

NORMALIZED EMG SIGNAL
(RMS amplitude)
g

muscle force
= Indication of muscle 4 of ma wolumtary ontraction)

fatigue



Amplitude
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Generated Signal
Short-Time Fourier Transform Frequency Spectrum
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Generated Signal
Short-Time Fourier Transform Frequency Spectrum

>
O
c
0
-
o
o
L

R s
500- -_———
D=

O_I | | | | |
0.025 0.05 0.075 01 0125 0.15 0175 0.2
Time




Generated Signal
Continuous Wavelet Time-Frequency Spectrum
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i Signal analysis - Fatigue
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DuBois-Reymond, 1849

International Society of
Electrophysiology and
Kinesiology, founded in 1965
= http://shogun.bu.edu/isek/index.asp
‘Muscles Alive’ by Basmajian
and De Luca, 1985 (final
edition)
Journal of Electromyography
and Kinesiology, 1991

SENIAM, 1999




Electromyography in
Sport and Exercise

= First Study

= Broer and Houtz, 1967
= 1 subject, 32 muscles,
= 6 sports

= Reviews
« Clarys et al., 1988
= Swimming and skiing
=« Clarys and Cabri, 1993
= >130 studies
= 32 sports (>100 skills)
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Understanding the Electromyogram
(EMG)

RECORDING SYSTEM DATA PROCESSING SYSTEM

: ANALYSIS
=7 | QUALITATIVE

- ;'
\ QUANTITATIVE
GENERAL ) B

AND
KINESIOLGGIC
INFORMATION

NEUROMUSCULAR SYSTEM




Detection of the
electromyographical signal

s

Surface electrodes

oy V2

Staggered distal
ends folded cver needls
tip

Fine-wire electrodes




Electrode location and

i orientation

s LOCATE in the
middle of the muscle
between the origin
and insertion

= ORIENTATE on a
line parallel to that
of the underlying
muscle fibres




Reducing skin-electrode
resistance

= The dead layer of skin,

grease etc. provide a
resistance to the
current from the
underlying muscle and
should be removed

= shaving hair

= washing with soap and
water

= rubbing with alcohol

tissue?

= abrading with
sandpaper??



i Cross-talk

= Signals from muscles
other than those that
the electrodes are
meant for

= Reduced by:

= Careful preparation and
knowledge of anatomy

= less adipose tissue
= smaller electrodes
« Evaluated by:
= Muscle function testing?
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What do raw EMGs reveal?

EMG (nV or mV)
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What do raw EMGs reveal? e
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i What do raw EMGs reveal?

= How active are the l/\
biceps and triceps
during flexion and )

extension against
resistance?

= Not sure.

= Need to process the
raw EMG to be able
to quantify amount Of e srenenee s pegetages o e s A 5o+ e\ apanans
muscle activity.




‘_L Early processing methods

= Semi-quantitative scales
(e.g. Basmajian, 1978)

= Nil 0

= Negligible +

= Slight +

= Moderate ++
= Marked +++
= Very marked ++++

(equivalent to isometric maximal
voluntary contraction)




‘-I:rocessing I - Rectified EMG

o | ol
b = raw EMG (digital) B I‘ i“"'u-“"‘ Il

¢ = full wave rectified EMG

a b &

= Full Wave Rectification
= reversal of all negative phases of raw EMG

= required for subsequent calculation of Average
Rectifled EMG



i Processing II - Integrate

= Integrated EMG
(IEMG)

= Calculation of area
underneath rectified
EMG-time curve
= Over what time is
integration performed
(i.e. Time Window)?
= e.g. 1 stride
= €.g. a specified time

= Units = uV-s or mV:s

Rectified

EMG (mV)

ol

M

d EMG
|

M.

Time (s)




i Processing II - Integrated EMG

Integrated EMG
often calculated
over successive time
intervals (usually

Rectified
EMG (mV)

between 50 - 250
ms)

= New Integrated
EMG-time curve
plotted to show

IEMG
(mV-s)

trend in muscle :
aCtVity Time (s)



Processing III - Average Rectified EMG
(AREMG)

s Also referred to as:

= Mean Absolute Value
(MAV)

g
:
= Simply calculated by ~ ~

EMG

%

dividing the Time

Integrated EMG A (s)

(IEMG) by the time -

over whichitwas =z ¢
integrated (T), i.e.: =&

AREMG = IEMG
T Time
(s)



Effect of length of Time Window
‘Lon Processed EMG
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The longer the time window the smoother the processed EMG



Root Mean Square (RMS) EMG

= Root Mean Square EMG

Select time window (e.g.
100 ms)

Square all rectified EMG
values within each
window

Calculate mean of each
window

Calculate square root of
each mean value

Plot new root mean square
EMG -time curve

Raw EMG
(mV)

RMS EMG
(mV)

e.g.
100 ms

Time (s)

Time (s) |



Average Rectified EMG

VS
Root Mean Square EMG

AREMG (mV)
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i What do processed EMGs reveal?

= IS biceps more l/\
active during flexion
against a resistance )

than triceps is
during extension 1.5 mV

against the same
resistance?

= Not sure.
= Why not?

AREMG
(mV)




Factors affecting Processed EMGs

= Intrinsic (e.qg.) s
= Number of active Ty \
MUs
« MU firing rate
= Subcutaneous

ELECTRODES

tissue
= EXxtrinsic (e.qg.) :.Processed EMGs
= Electrode cannot be directly
. . compared between
= configuration )
ocati different muscles or
= location

. . individuals
= orientation



Normalisation of EMGs

= Express processed EMG from = Normalised biceps EMG
task as a percentage of the = (1.5 MV/2.72 mV) x 100
processed EMG from an ' '
Isometric Maximal Voluntary = 55%0f MVC

Contraction (MVC), i.e.: = Normalised triceps EMG
EMG, . x 100 % = (1.2 mV/2.2 mV) x 100
EMG = 55%00f MVC

MVC
Isometric MVC at mid-range jo/m.‘ angle = Provides a measure of
If peak EMG from biceps muscle activation level
MVC = 2.72 mV during a task?
If peak EMG from triceps = Allows comparison of
MVC = 2.20 mV processed EMGs between

different muscles and
individuals?
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Summary

= Raw EMGs need to be processed in order to
objectively quantify the level of muscle activity

= Integrated EMG, or
= Average rectified EMG (Mean Absolute Value), or
= Root Mean Square EMG
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compare the IeveI of muscle activity between
different muscles and different individuals

= Express as a percentage of the EMG from an isometric MVC
= Do MVCs fully activate muscles?
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