

OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING

MINISTRY OF NATIONAL EDUCATION AND **RELIGIOUS AFFAIRS**

Νέες Τεχνολογίες στην Ανάλυση της Κίνησης

Διάλεξη 1 Σφάλμα – Ανάλυση χρόνου και συχνοτήτων – Εξομάλυνση δεδομένων

> Γιάννης Γιάκας PhD ggiakas@pe.uth.gr

Presentation Outline

Background – Problems

Solutions

Current / future research

time (s)

The effect of error : displacement

Pezzack, 1977; Lanshammar, 1982

- Acceleration = velocity / time
 - Acceleration = DER (Velocity) = DER_DER(Displacement)

The effect of error : velocity

The effect of error : acceleration

Reference acceleration provided by Graeme Wood, 1997

Why is this happening ?

Frequency domain analysis

Time domain - Frequency domain

Time domain - frequency domain (Fourier Transform)

Constituent sinusoids of different frequencies

Four essential components of timevarying signal

• Figure 11.2 The four essential components of a time-varying signal.

Velocity and acceleration

 Any error included in the displacement data will significantly be amplified via the differentiation process (ill posed problem)

e.g. DER(0.1*sin(30*X)) = 0.1*30*Sin(30*X)

 $DER(Sina^*X) = a^*Cosa^*X$ $DER(Cosa^*X) = -a^*Sina^*X$

Signal = $\Sigma[aSinx + bCosx] + c$

Displacement

Noisy signal

Data reproduced by Hatze (1990)

Velocity

Noisy signal

Data reproduced by Hatze (1990)

Acceleration

Angular displacement of the elbow

Giakas (2002)

Angular acceleration of the elbow

Giakas, Stergioulas and Vourdas, 2000

Problems

- Selection of appropriate cut-off frequency
- Differentiation process
- Endpoint distortion

Signals are non-stationary

Angular displacement of the elbow

Georgakis, Stergioulas and Giakas, 2003

Selection of cut-off

- Winter (1974)
- Hatze (1981)
- Woltring (1986)
- Dohrmann et al (1988)
- Damico and Ferrigno (1990)
- Simons and Yang (1991)
- Giakas and Baltzopoulos (1997a)
- Yu (1999)
- Challis (1999)
- Georgakis, Stergioulas and Giakas (2003)

Differentiation process

 The calculation of velocity and acceleration requires a different cut-off frequency applied to the displacement data (Hatze, 1981; Giakas and Baltzopoulos, 1997b)

Differentiation process

Giakas and Baltzopoulos (1997b)

Differentiation process

Giakas and Baltzopoulos, 1997b

Endpoint distortion

The signal is distorted at the edges when some filters are used

Vaughan 1982

- Smith (1989)
- Vint and Hinrichs (1996)
- Giakas et al (1998)

Endpoint distortion

Fundamentals

- Every single point requires a different cut-off frequency
- Every axis (of the same point) requires a different cut-off frequency
- Different data collection settings require adjustment of the filtering parameters

Georgakis, Stergioulas and Giakas 2003

Signals are non stationary

data point

Giakas, Vourdas and Stergioulas 2000

Signals are non stationary

Giakas, Stergioulas and Vourdas 2000

Joint time frequency analysis

Georgakis, Stergioulas and Giakas 2003

Signals are non stationary

Georgakis, Stergioulas and Giakas 2003

http://isb.ri.ccf.org/software/ISBS99/GGPSA/

References

- Giakas G (2004). Power Spectrum analsis and Filtering (Chapter 9). In N Stergiou (2004), Innovative analyses of human movement. Human Kinetics, Champaign IL.
- Derrick T (2004). Signal Processing (Chapter 9). In Robertson et al (2004), Research Methods in Biomechanics. Human Kinetics, Champaign IL.
- Georgakis A, LK Stergioulas, and G Giakas (2003). An automatic algorithm for filtering kinematic signals with impacts in the Wigner representation. Med & Biolog Eng & Comp 40(6), 625-633.
- Georgakis A, LK Stergioulas, and G Giakas (2003). Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency. IEEE Transactions in Biomedical Engineering 50(2), 262-265.
- Georgakis A, LK Stergioulas, and G Giakas (2002). Wigner filtering with smooth roll-off boundary for differentiation of noisy non-stationary signals. Signal Processing 82(10), 1411-1415.
- Giakas G, Vourdas A and LK Stergioulas (2000). A time-frequency domain approach for filtering non stationary kinematic signals. *J Biomechanics* 33, 567-574
- Giakas G, V Baltzopoulos and R M Bartlett (1998). Improved extrapolation techniques in recursive digital filtering: a comparison of least squares and prediction. J Biomechanics 31, 87-91
- Giakas G and V Baltzopoulos (1997a). A comparison of automatic filtering techniques applied to biomechanical walking data. J Biomechanics 30(8), 847-850
- Giakas G and V Baltzopoulos (1997b). Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives. J Biomechanics 30(8), 851-855